
Data Structures and Algorithms | CSCI 230

Chapter 1 | Review Solutions

1. Give an inductive proof showing that for all integers n � 5, 4n+ 4 < n2.

SOLUTION:

Basis Case: When n = 5, 4n+ 4 = 24 and n2 = 25. Since 24 < 25, the
basis case is proved.

Induction Step: For n > 5, if 4k + 4 < k2 for 5 � k < n then

4n+ 4 = [4(n� 1) + 4] + 4

< (n� 1)2 + 4 : : : by the Inductive Hypothesis

= n
2
� 2n+ 5

< n
2

: : : since �2n+ 5 < 0 if n > 5

2. Give an inductive proof showing that for all positive integers n,

nX
i=1

1

(2i� 1)(2i+ 1)
=

n

2n+ 1
:

SOLUTION:

Basis Case: n = 1

The left hand side is

1X
i=1

1

(2i� 1)(2i+ 1)
=

1

1 � 3
=

1

3
:

The right hand side is
1

2 � 1 + 1
=

1

3
:

Since these are equal, the basis case is established.

Induction Step: For n > 2, if
Pk

i=1
1

(2i�1)(2i+1)
= k

2k+1
for 1 � k < n

then

nX
i=1

1

(2i� 1)(2i+ 1)
=

n�1X
i=1

1

(2i� 1)(2i+ 1)
+

1

(2n� 1)(2n+ 1)

=
(n� 1)

2n� 1
+

1

(2n� 1)(2n+ 1)
: : : by the inductive hypothesis

=
1

2n� 1

�
(n� 1)(2n+ 1)

2n+ 1
+

1

2n+ 1

�

=
1

2n� 1

2n2 � n

2n+ 1

=
1

2n� 1

(2n� 1)n

2n+ 1

=
n

2n+ 1
:

3. Give an inductive proof showing that for all n � 1,

nX
i=1

i(i!) = (n+ 1)!� 1

SOLUTION:

Basis Case: When n = 1,
Pn

i=1 i(i!) = 1(1!) = 1. Substituting n = 1
in (n + 1)! � 1 yields 2! � 1 = 1. Since these are equal the basis case is
proved.

Induction Step: For n � 2, if
Pk

i=1 i(i!) = (k + 1)! � 1, for 1 � k < n,
then

nX
i=1

i(i!) =

n�1X
i=1

i(i!) + n(n!)

= ((n� 1) + 1)!� 1 + n(n!) by hypothesis, with k = n� 1

= n!� 1 + n(n!)

= (1 + n)(n!)� 1

= (n+ 1)!� 1

4. Evaluate the following summations.

(a)

100X
i=0

(�1)i

SOLUTION:

Writing this out explicitly yields:

100X
i=0

(�1)i = (�1)0 + (�1)1 + (�1)2 + (�1)3 + : : :+ (�1)100

= 1 + (�1) + 1 + (�1) + : : :+ 1 + (�1) + 1

= (1 + (�1) + (1 + (�1)) + : : :+ (1 + (�1)) + 1

= 1

2

(b)

2nX
i=5

i

SOLUTION:

2nX
i=5

i =

2nX
i=1

i �

4X
i=1

i

=
(2n)(2n+ 1)

2
� 10 stopping here is �ne

= 2n2 + n� 10

(c)

nX
i=0

(ai � 2i+ n)

SOLUTION:

nX
i=0

(ai � 2i+ n) =

nX
i=0

a
i
� 2

nX
i=0

i+

nX
i=0

n

=
an+1 � 1

a� 1
� (n+ 1)n+ (n+ 1)n

=
an+1 � 1

a� 1

(d)

n�1X
i=0

�
c+

i�1X
j=0

(j + 2)
�

SOLUTION:

This one's pretty involved and is a bit too much to do on a quiz...

n�1X
i=0

�
c+

i�1X
j=0

(j + 2)
�

= c � n+

n�1X
i=0

i(i� 1)

2
+

n�1X
i=0

2i

= c � n+

n�1X
i=0

i2

2
�

n�1X
i=0

i

2
+

2(n� 1)n

2

= c � n+
(n� 1)n(2n� 1)

12
�

(n� 1)n

4
+ (n� 1)n

= c � n+
(n� 1)n

12

�
(2n� 1)� 3 + 12

�

= c � n+
(n� 1)n(n+ 4)

12

3

5. Prove using mathematical induction that fn > (3=2)n, for n � 5. Here, fn
is the nth Fibonacci number. Use the de�nition of the Fibonacci numbers
given in the text. Study the example inductive proof on page 6 carefully.

SOLUTION:

Basis case: Two basis cases are needed. (This is important!) For n = 5,
f5 = 8 and (3=2)5 < 7:594. For n = 6, f6 = 13 and (3=2)6 < 11:391.
In each of these cases, fn > (3=2)n.

Induction hypothesis: For all k; 5 � k < n, fk < (3=2)k.

Induction step: For n � 7,

fn = fn�1 + fn�2

> (3=2)n�1 + (3=2)n�2 Induction Hypothesis

=
(3=2)n

3=2
+

(3=2)n

(3=2)2

=
2

3
(3=2)n +

4

9
(3=2)n

=
�2
3
+

4

9

�
(3=2)n

=
10

9
(3=2)n

> (3=2)n

Hence, fn > (3=2)n.

6. Write the code necessary to accomplish the merging step in MergeSort.
This code should follow the comments in the main MergeSort function.

SOLUTION:

The following is probably more terse than what you came up with on your
own. Be sure you understand what it is doing. It could be made more
e�cient, mostly by eliminating the need for allocating temp.

T* temp = new T[high-low+1]; // scratch array for merging

int i=low, j=mid+1, loc=0;

// while neither the left nor the right half is exhausted,

// take the next smallest value into the temp array

while (i<=mid && j<=high) {

if (pts[i] < pts[j]) temp[loc++] = pts[i++];

else temp[loc++] = pts[j++];

}

// copy the remaining values --- only one of these will iterate

4

for (; i<=mid; i++, loc++) temp[loc] = pts[i];

for (; j<=high; j++, loc++) temp[loc] = pts[j];

// copy back from the temp array

for (loc=0, i=low; i<=high; loc++, i++) pts[i]=temp[loc];

delete [] temp;

5

