
Data Structures and Algorithms | CSCI 230

Algorithm Analysis

Motivating Examples

Here are three standard algorithms | two searches and one sort | which should

be analyzed to determine their computational e�ciency.

Sequential Search:

// Sequentially search an array of n elements to

// determine if a given value is there. If so, set loc to

// be the first array location containing it and return true.

// Otherwise, return false.

bool

SeqSearch(float arr[], int n, float value, int & loc)

{

loc=0;

while (loc<n && arr[loc] != value) {

++ loc;

}

return loc<n;

}

Insertion Sort:

// Sort an array of n elements using insertion sort.

void

InsertSort(float arr[], int n)

{

for (int i=1; i<n; i++) {

float temp = arr[i];

int j = i-1;

while (j>=0 && arr[j] > temp) {

arr[j+1] = arr[j];

j -- ;

}

arr[j+1] = temp;

}

}

Binary Search:

// Use binary search to determine if a given value is

// somewhere in an ordered array of n elements. If so,

// set loc to be the first array location containing it

// and return true. Otherwise, set loc to be the array

// location where it should be inserted and return false.

// The array ordering is assumed to be what's called

// "non-decreasing" order, which means that

// arr[0] <= arr[1] <= ... <= arr[n-1]

// or, more precisely,

// for 0 <= i < n-1, arr[i] <= arr[i+1]

bool

BinSearch(float arr[], int n, float value, int & loc)

{

int low = 0, high = n-1, mid;

// Before each iteration of the loop, the following

// conditions hold:

// 0 <= low < high < n,

// for each j, 0 <= j < low, arr[j] < value

// for each j, high <= j < n, value <= arr[j]

//

while (low < high) {

mid = (low + high) / 2;

if (value <= arr[mid])

high = mid;

else

low = mid+1;

}

loc = low;

if (arr[loc] == value)

return true;

else {

if (loc == n-1 && arr[n-1] < value) loc = n;

return false;

}

}

Exercise

Howmany operations, as a function of the array size n, are required by SeqSearch.

If you �nish this, try to answer the same question for InsertSort. What issues

2

arose in your discussion?

Algorithm Analysis Rules

� The goal is to determine the worst-case or average-case time required by

an algorithm, generally as a function of the \size" of the data. (Sometimes

even the \best-case" is considered!)

� Assumptions: sequential execution, simple statements cost 1 unit of time,

in�nite memory, integers and reals represented in a �xed amount of mem-

ory.

� Generally, statements are counted to form a function f(n), where n is the

size of the data. Sometimes only special operations such as comparisons

or exchanges are counted.

� We will discuss in class rules for counting when algorithms include:

{ Consecutive statements.

{ If-then-else.

{ Loops and nested loops.

Order Notation

Order notation is a mathematical formalism used to summarize the computation

time required by an algorithm, simplifying the function derived to count the

number of operations. On the positive side, this avoids quibbling over the

number of operations (and cost) involved in simple algorithmic steps. On the

negative side, this does result in some loss of precision.

� T (n) = O(f(n)) if there are constants c and n0 such that T (n) � cf(n)

for all n � n0.

� T (n) = �(f(n)) if and only if T (n) = O(f(n)) and f(n) = O(T (n)).

� Limits may be used to simplify this. Suppose

lim
n!1

f(n)

g(n)
= L:

Then

{ If L = 0, f(n) = O(g(n)).

{ If 0 < L <1, f(n) = �(g(n)).

If L doesn't exist, nothing can be concluded. L'Hopital's rule may be used

to analyze the limit. This requires converting f and g from functions of

integers to functions of real numbers, which is usually trivial.

3

Order Notation | Rules for Manipulation

� If T1(n) = O(f(n)) and T2(n) = O(g(n)), then

{ T1(n) + T2(n) = max(O(f(n)); O(g(n)), and

{ T1(n)T2(n) = O(f(n) � g(n))

The same rules hold when � is used throughout.

� If T (n) is a polynomial of degree n then T (n) = O(nk) (actually, T (n) =

�(nk)).

� (log n)k = O(n) for any constant k > 0, but (logn)k 6= �(n). Also, if a > 0

is any �xed constant, then a = O((logn)k), but a 6= �((logn)k).

� \O" estimates for summations are done in two ways.

{ Evaluate the summation using techniques from Chapter 1 and then

determine an \O" (or \�") estimate from the resulting function.

{ Place upper bounds on terms in the summation to simplify it and

eliminate the summation.

Order Notation Exerices

1. Show that 5n2+6n = O(n2) using the original de�nition of \O" and then

using limits.

2. For each pair of functions, T (n) and f(n), determine which of the following

hold:

T (n) = O(f(n)) T (n) = �(f(n))

Justify your answer. (Assume k, a and b are unspeci�ed constants greater

than 1 and a > b.)

(a) T (n) = n2 logn+ 5n, f(n) = n3

(b) T (n) = log(nk), f(n) = (logn)k

(c) T (n) = loga n, f(n) = logb n

(d) T (n) = 2n, f(n) = 2(2n).

3. Give the best possible O estimate for T (n),

(a) T (n) = (n3 + 10n2) � (n3 logn+ 20n4)

Answer:

T (n) = (n3 + 10n2) � (n3 logn+ 20n4)

= (n6 logn+ 10n5 logn+ 20n7 + 200n6)

= O(n7)

4

(b) T (n) = n3n + n10 + 1500n3 logn.

Answer:

T (n) = n3n + n10 + 1500n3 logn

= O(n3n)

(c) T (n) =
Pn

i=1 5i(i� 1)

Answer:

T (n) =

nX

i=1

5i(i� 1)

= 5

nX

i=1

i2 � 5

nX

i=1

i

=
5

6
n(n+ 1)(2n+ 1)�

5

2
n(n+ 1)

=
5

3
n3 + lower order terms

= O(n3)

Or, even more simply:

T (n) =

nX

i=1

5i(i� 1)

=

nX

i=1

O(i2)

= O(n3)

4. Derive an \O" estimate for the worst-case of InsertSort based on the

function we derived in class.

5

Answer: We actually got a variety of answers for the number of operations, de-

pending on what we counted. If we count the two simple statements in the body

of the outer loop and the two simple statements in the body of the inner loop, and

assume the inner loop makes the maximum number of iterations, we get

T (n) =

n�1X

i=1

(2 +

i�1X

j=0

2)

Try evaluating this yourself.
First evaluating the inner sum and then the outer one,

T (n) =

n�1X

i=1

(2 + 2i)

= 2(n� 1) + (n� 1)n

= n2 + n� 2

What's this in O notation?

T (N) = O(n2)

We could count other operations, such as incrementing i and j, and we would get

di�erent constants in the exact formula for T (n), but constants don't matter in the

O notation.

Algorithm Analysis Exercises

1. Count the number of operations in each of the following two code frag-

ments as a function of n, the length of the array. Each should yield a

summation. Then, analyze each summation to give the best possible \O"

estimate for each fragment.

(a) // assume arr is an array containing n integers

int k = 5;

for (int i=0; i<=n-k; i++) {

sum = 0;

for (int j=i; j<i+k; j++) {

sum += arr[j];

}

cout << "Sum of elements " << i << " through "

<< i+k-1 << " is " << sum << "\n";

}

6

Answer: Counting each assignment and output statement as one operation, we

have

T (n) = 1 +

n�5X

i=1

(2 +

i+5X

j=i

1)

Try evaluating this yourself.

T (n) = 1 +

n�5X

i=1

(2 +

i+5X

j=i

1)

= 1 +

n�5X

i=1

(2 + 5)

= 1 + 7

n�5X

i=1

1

= 1 + 7(n� 6)

= 7n� 5

= O(n)

Note: Often when there are nested loops, the number of operations is quadratic. In

this case, though, the inner loop only iterates a constant number of times (5), so

the total time is linear, not quadratic.

(b) // assume arr is an array containing n integers

int k = n/2;

for (int i=0; i<=n-k; i++) {

sum = 0;

for (int j=i; j<i+k; j++) {

sum += arr[j];

}

cout << "Sum of elements " << i << " through "

<< i+k-1 << " is " << sum << "\n";

}

7

Answer: Again counting each assignment and output statement as one operation,

we have

T (n) = 1 +

n=2X

i=1

(2 +

i+n=2X

j=i

1)

= 1 +

n=2X

i=1

(2 + n=2)

= 1 + 2

n=2X

i=1

1 + (n=2)

n=2X

i=1

1

= 1 + n+ n2=4

= O(n2)

2. Rewrite the second code fragment to make it as e�cient as possible. Start

by thinking carefully about what it actually does! What is the complexity

of your new code fragment?

Hint: It computes a series of sums, but they are closely related to each other, so

it's not necessary to compute each sum from scratch.

3. In the analysis of InsertSortwe assumed that the worst-case would occur

at all times. What must be the state of the array for the absolute maxi-

mum number of operations to occur? Repeat the analysis of InsertSort

to derive average case and best case estimates? What state of the array

causes the best-case to occur?

More advanced analysis:

� In analyzing recursive algorithms, usually a recursive equation (also called

a \recurrence relation") is derived modeling the number of steps required,

which is then solved to yield a non-recursive formula. We will examine

this using the factorial function and then, later, a solution to the max

subsequence sum problem.

� Logarithmic times in analysis usually arise from algorithms, such as Binary

Search and Merge Sort, that break an array or data set in half and then

consider one or both halves separately.

Max Subsequence Sum

� The simplest solution: algorithm 1 and its analysis.

� An easy re�nement: algorithm 2 and its analysis.

� Divide-and-conquer: algorithm 3 and its analysis.

� A simple, fast solution: algorithm 4 and its analysis.

8

� We will con�rm the analysis results experimentally.

Exercises:

1. Derive a recursive equation to analyze MergeSortand then solve this equa-

tion. Assume the array is of size n = 2k for integer k � 0. For complete-

ness, here is the algorithm (combining material from Ch 1 and the Ch 1

review):

template <class T>

void MergeSort(T * pts, int n)

{

MergeSort(pts, 0, n-1);

}

templage <class T>

void MergeSort(T * pts, int low, int high)

{

if (low == high) return;

int mid = (low + high) / 2;

MergeSort(T, low, mid);

MergeSort(T, mid+1, high);

// At this point the lower and upper halves

// of "pts" are sorted. All that remains is

// to merge them into a single sorted list.

T* temp = new T[high-low+1];

// scratch array for merging

int i=low, j=mid+1, loc=0;

// while neither the left nor the right half is exhausted,

// take the next smallest value into the temp array

while (i<=mid && j<=high) {

if (pts[i] < pts[j]) temp[loc++] = pts[i++];

else temp[loc++] = pts[j++];

}

// copy the remaining values --- only one of

// these will iterate

for (; i<=mid; i++, loc++) temp[loc] = pts[i];

for (; j<=high; j++, loc++) temp[loc] = pts[j];

// copy back from the temp array

for (loc=0, i=low; i<=high; loc++, i++) pts[i]=temp[loc];

delete [] temp;

9

}

2. Find an e�cient algorithm (along with a running time analysis) to �nd

the minimum subsequence sum.

Review Problems

Here are a few review problems which have appeared on homeworks or tests in

previous semesters. Practice writing solutions carefully and then compare to

solutions provided on-line. If you can solve these problems and the problems

we worked on in class then you are ready for the chapter quiz!

1. Show that

nX

i=1

2i3 = O(n4).

2. For each of the following, �nd f(n) such that t(n) = O(f(n)). Make

f(n) as small and simple as possible, i.e. don't write t(n) = O(n4) when

t(n) = O(n3). Justify your answers.

(a) t(n) = 13n2 + 2n

(b) t(n) = 5(n+ 3 logn)(n logn+ 13) logn+ 13n2

(c) t(n) =

nX

i=3

nX

j=i

i(n� j)

3. Exercise 2.6a from the text. Try to derive summations �rst. Note program

fragment (6) is quite di�cult.

4. Derive a summation to count, as a function of n, the number of times

Hello is output by each of the following code fragments. Obtain an

accurate\O" estimate from the summation.

(a) for (i=1; i<=n; i++)

for (j=1; j<=i; j++)

for (k=j+1; k<=n; k++)

cout << "Hello\n";

(b) For this part, assume n = 2k and assume the notation 2^i means 2i.

for (i=0; i<=k; i++)

for (j=2^i+1; j<=n; j++)

cout << "Hello\n";

5. Exercise 2.11 of the text.

6. Write an algorithm that takes an unsorted list (provided as an array) of n

oating point values and returns the smallest di�erence between any two

values in the list. For example, for the list

10

2.9, 3.5, 1.1, 6.1, 2.3, 1.8, 8.7, 3.0, 2.4,

the algorithm should return 0.1, which is the di�erence between 3.0 and

2.9. Make your algorithm as e�cient as you can and give the worst-case

running time of your algorithm as a function of n, briey justifying your

answer. Hint: you may change or reorganize the contents of the array.

11

