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Abstract

By adding re�exion to the chemical machine of Berry and Boudol� we
obtain a formal model of concurrency that is consistent with mobility and
distribution� Our model provides the foundations of a programming language
with functional and object�oriented features� It can also be seen as a process
calculus� the join�calculus� which we prove equivalent to the ��calculus of
Milner� Parrow and Walker�

� Introduction

There is a mismatch between calculi for concurrent processes and languages for
programming distributed and mobile systems� Calculi such as CCS or the ��
calculus ���� ��� introduce a small number of constructs� and have a thoroughly
studied metatheory� However� they are mostly based on atomic non�local interac�
tion �typically rendez�vous	� which is di
cult to implement fully in a distributed
setting� Programming languages such as Actors ��� or Obliq ��� have separate
primitives for transmission and synchronization� for instance remote procedure
call and semaphores� However� they also have a much larger set of constructs�
usually including imperative primitives� and this hinders their formal investiga�
tion�

To bridge this gap� we introduce a new elementary model of concurrency� the
re�exive chemical abstract machine� We both use this model as the basis for a
practical programming language design� and study this model formally using a
process calculus� the join�calculus�

The re�exive CHAM model is obtained from the generic CHAM ��� by imposing
locality and adding re�exion� Locality is achieved by barring non�linear reaction
patterns this implies that each reaction rule or molecule can be associated with
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a single reaction site� Re�exion is added by letting reactions extend a machine
with new kinds of molecules along with their reaction rules this lets our model be
computationally complete� Our model is more e�ective than the generic CHAM�
molecules travel to their reaction site� instead of having to mix and match� It also
turns out that the sequential deterministic subset of our model is basically the
continuation�passing style ��calculus hence we can embed the ��calculus using
any CPS transform�

Our language design extends a higher�order sequential language with paral�
lelism in expressions �with fork calls	 and in function patterns �with join pat�
terns	� Jointly de�ned functions provide the same synchronization capabilities as
synchronous channels or concurrent objects� Moreover� join patterns are more
consistent with lexical scope� they statically bind �joint	 function calls to a body
of code� whereas the binding of messages to receptors is dynamic�

The join�calculus is simply the syntactic description of the re�exive CHAM
molecules� It is quite similar to the ��calculus� except that it combines restriction�
reception� and replication in a single �joint	 receptor de�nition� Our main theorem
states that the ��calculus and the join�calculus have the same expressive power� up
to weak barbed congruence it is obtained by exhibiting fully abstract encodings
in each direction� As a result we can expect most of the ��calculus metatheory to
carry over directly to the join�calculus�

� Overview

Most process calculi are based on synchronous channels� A channel is an ab�
straction of the communication media on which data is exchanged send and re�
ceive operations on channels provide a concise denotation for the transmission�
routing� and synchronization that actually occur in a concurrent system� The
��calculus ���� ��� has demonstrated that� in combination with an elegant scope
management technique� channel operations are computationally complete� The
PICT experiment ���� ��� ��� has further shown that the ��calculus� more speci��
cally its asynchronous fragment� can be used as the basis of a useful higher�order
concurrent language� in a non�distributed setting�

In a distributed setting� however� channels introduce atomic interaction be�
tween distant emitters and receivers �communication in the ether ����	� This can
be di
cult to implement� even more so if recovery from local failures is also sup�
ported� unless the channel implementation includes a sophisticated fault�tolerant
consensus protocol� some of the implementation details will be revealed by fail�
ures� This problem occurs even in the asynchronous setting� as there is interaction
between distant receivers� through contention�

On the other hand� channels are not absolutely required for high�level dis�
tributed programming� For instance� they are not primitive in object�based lan�
guages ��� �� unfortunately� these languages lack an abstract foundation as simple
and precise as the ��calculus� It is such a model that we purport to develop in
this paper� Our starting point will be the chemical abstract machine� which can
be regarded as the computational model of the ��calculus�
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Litterally� CHAM interaction is local� since molecules simply move around in
a solution� until they meet in matching pairs and react but the random mo�
tion in this description is not very e�ective� Assuming that the chemical rules
have disjoint domains� the CHAM also has a more operational interpretation� all
molecules travel to a reaction site associated to their rule� where they are sorted�
matched� and made to react ��guratively� reactions are �catalyzed� at the sites	�

Under this interpretation� however� the CHAM is not very concurrent� com�
munication is centralized in a �xed set of sites �catalyzers are bottlenecks	� and the
management of each site is complex� as the number of di�erent expected molecule
shapes can grow arbitraly �catalyzers clog up	� It would be much better to have
a larger number of sites with simpler matching instead� and this is exactly what
the re�exive CHAM modi�cations bring in� by allowing dynamic creation of sites
and restricting reaction patterns�

We now sketch the basic mechanisms of the re�exive CHAM the formal de�ni�
tion is exposed in section �� Our model operates on higher�order solutions R �M
comprising two multisets� The molecules M represent the processes running in
parallel the reactions R de�ne the current reduction rules�

Names are the only values in our model� as in the ��calculus� They have a
twofold usage� port names� and transmitted values� We write xhyi to mean that
the name y is sent on the name x�

An atom is a pending message xhyi� A compound molecule consists of several
sub�molecules� glued by the join operator �j�� Molecules can be heated into smaller
ones� in a reversible way� As a �rst example� we consider a print spooler with two
ports� available printers like laser send their name on the port named ready� while
users send the �lenames �� � to be printed on the port named job� There are three
atoms in solution on the �rst line� versus one atom and one compound molecule
on the second line� where the molecule joins the laser�printer and the �le �� The
structural equivalence �� relates these two solutions� without reactions yet�

� � readyhlaseri� jobh�i� jobh�i
�� � � readyhlaseri j jobh�i� jobh�i

Denoted D or J �P � a reaction consumes compound molecules that have a spe�
ci�c join pattern J � and produces new molecules in the solution that are copies of P
where the formal parameters of J have been instantiated to the transmitted values�
This corresponds to reduction steps on the whole solution �R �M	 �� �R �M�	�
Continuing our example� we add a reaction that matches printers and jobs� then
sends the �lename to the printer�

D � readyhprinteri j jobh�lei � printerh�lei

We now add this chemical reaction in our solution� and we use it to reduce our
previous molecule and generate a new atom� Notice that non�determinism comes
from ��� and is just committed by the reaction�

D � readyhlaseri j jobh�i� jobh�i
�� D � laserh�i� jobh�i
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Our model is re�exive� meaning that reactions can be dynamically created� This
is done by our last kind of molecule� The de�ning molecule defD in P can be
heated in two parts� a new reaction D and a molecule P � In this case� the newly
de�ned ports can be used in both Q and P � The solution we just considered could
have come from a single molecule� with the structural rules�

� � defD in readyhlaseri j jobh�i j jobh�i
�� D � readyhlaseri j jobh�i j jobh�i
�� D � readyhlaseri j jobh�i� jobh�i

A more realistic spooler would send the name job to its users� and the name ready

to its printer drivers� This corresponds to the well�known scope�extrusion of the ��
calculus� However� our de�nitons have a strict lexical discipline� the behaviour of
ready and job may not be deterministic� but it is statically de�ned� Other processes
that receive these names may send messages� but they cannot add new reactions
for them� This essential restriction to re�exion lets us extend the language safely�
For instance� special names used only in ��rules may be added to the machine
without special care� while in the ��calculus any process may mistakenly alter
their behaviour�

In section �� we expand the model into a simple programming language with
mobility� and we illustrate some of its features� From the programmer�s point of
view� it is a high�level concurrent language with lexical scope and asynchronous
messages� We identify function calls as a special case of message passing with
CPS� we analyze two reduction strategies for the ��calculus� then we de�ne some
convenient syntactic sugar for sequential control�

The language also has object�oriented features� Elementary objects are de�ned
by new names and new reaction rules� methods are the names that are returned�
behaviours are declared in the rules� states are held in messages on internal names�
Elaborate synchronization schemes can be expressed among these concurrent ob�
jects by pattern�matching on their rules� Our �rm commitment to lexical scoping
makes our objects very static� meaning that more imperative features such as
cloning must be explicitly encoded�

In sections � and � we explore the properties of the join�calculus and its re�
lation to the ��calculus� The join�calculusis the process calculus induced by the
re�exive CHAM� We �rst de�ne the observational equivalence� then we use it as
a basis to compare the relative expressive powers of di�erent calculi� Our trans�
lations between calculus are proved fully abstract with regards to weak barbed
congruence in that sense� our technical results are precise up�to substitution of
encodings in any context of the host calculus� In section �� we strip the join�cal�
culus of convenient but unnecessary features� recursion� join patterns including
more than two messages� polyadic messages� de�nitions with several clauses� and
we obtain a core join�calculus that retain the expressive power of our model� In
section �� we compare this core join�calculus and the asynchronous ��calculus �����
In spite of signi�cant di�erences� both calculi provide exactly the same expressive
power� However� their scoping conventions makes the accurate encodings surpris�
ingly complex� We present both simple and accurate encodings� and we discuss
their characteristics� which illuminate what separates the two calculi�
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We conclude the paper with a few words on future work� An implementation
is under way� to evaluate our language in practice� and we mention the extensions
to support types� explicit distribution� failure�detection and migration�

In the annexes A and B� we sketch the proofs of full abstraction for the two en�
codings between the ��calculus and the join�calculus that are described in section
�� These results are obtained using auxiliary encodings and bisimulation�based
techniques� in particular weak bisimulation up�to expansion as proposed in �����

��� Related work

To our knowledge� Ban�atre ��� was the �rst to suggest �multi�functions� as prim�
itives for synchronization� They correspond to a �rst�order version of our join
de�nitions� in a procedural and synchronous language� Our work is more directly
related to the recent �asynchronous� trend of the ��calculus ���� ��� ��� and from
its �rst applications ���� ����

Our calculus focuses on mobility in a minimal setting� This contrast with
extensions for concurrency from an object�oriented or a functional kernel ��� �� ���
Likewise� distributed systems built on the actor paradigm ��� �� proposed a two�
layered architecture with a functional kernel wrapped in an imperative extension
for communication�

Other calculi introduce concurrency and�or distribution using di�erent prim�
itives� Instead of directed communication with a functional �avour� they rely for
instance on uni�cation and broadcast� This is the case for Oz ����� and for linear
objects ����

� The re�exive chemistry

We �rst give the syntax of processes� and the scope for their names� Then we
present the re�exive chemical machine� and we illustrate it on a few simple exam�
ples�

��� Names� Processes� De�nitions

Values in the re�exive CHAM are only names� as this is the case in the ��calculus�
Let N be an in�nite set of names we use name variables in lowercase letters
x � N to denote its elements� In the following� ex is a notation for a tuple of name
variables x�� x�� � � � xn�

The following grammar de�nes processes� join�patterns and de�nitions� A
process P is an emission of an asynchronous polyadic message xhevi� a de�nition of
new names� or a parallel composition of processes� A de�nition D consists of one
or several elementary de�nitions J � P that match patterns J joining messages
to guarded processes P � connected by the � operator� It entirely describe the
behaviour of its de�ned names�

P
def
� xhevi J

def
� xhevi D

def
� J � P

defD in P J jJ D �D
P jP
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Names that appear in a process P may be captured by an enclosing de�ni�
tion� The only binder is the join pattern J � but the scope of its names depends
of their position in messages� The formal parameters that are received are bound
in the corresponding guarded process� The de�ned port names are bound in the
whole de�ning process� that is� the main process and recursively all the guarded
processes� Received variables rv�J	� de�ned variables dv�J	 and dv�D	� and free
variables fv�D	 and fv�P 	 are speci�ed by structural induction� Notice the syn�
tactic restriction for processes� No received variable may appear twice in the same
pattern J � This rules out any comparison on names� and guarantees that join
patterns remain linear�

rv�xhevi	 def
� fu � evg

rv�J jJ �	
def
� rv�J	 � rv�J �	

dv�xhevi	 def
� fxg

dv�J jJ �	
def
� dv�J	 � dv�J �	

dv�J � P 	
def
� dv�J	

dv�D �D�	
def
� dv�D	 � dv�D�	

fv�J � P 	
def
� dv�J	 � �fv�P 	� rv�J		

fv�D �D�	
def
� fv�D	 � fv�D�	

fv�xhevi	 def
� fxg � fu � evg

fv� defD in P 	
def
� �fv�P 	 � fv�D		� dv�D	

fv�P jP �	
def
� fv�P 	 � fv�P �	

A name is fresh with regards to a process or a solution when it is not free in
them� In the following� we use substitutions � and fx�yg� with possibly implicit
	�renaming on non�free variables to avoid name clashes�

While this is not needed in the join�calculus� we will assume that for any
given name variable the number of arguments is the same in every message and in
every join�pattern� Formally� this amounts to use a recursive sort discipline and
to consider only well�sorted processes� as for the ��calculus���� ����

��� Operational semantics

We extend the chemical approach of Berry and Boudol ��� with re�exion� We �rst
give some heating�cooling reversible rules ��� This corresponds to the underlying
structural equivalence on processes� and includes re�exion� Once molecules have
been suitably dissolved� the single reduction rule �� expresses the mechanism of
communication in a much simpler way than for the ��calculus�

Rules operate on higher�order solutions R � M� On the right�hand�side�
active processes are �molecules� in the multiset M� on the left�hand�side� active
de�nitions are �reactions� in the multiset R� For the sake of simplicity� we only
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mention the elements of both multisets that participate in the rule� separated by
commas�

�str�join� � P jQ �� � P�Q
�str�and� D �E � �� D�E �
�str�def� � defD in P �� D�dv � P�dv

�red� J � P � J�rv �� J � P � P�rv

Side�conditions for substitutions�
�str�def� �dv instantiates the port variables dv�D	 to distinct� fresh names�
Dom��dv	 	 �fv�R �M		 � �
�red� �rv substitutes the transmitted names for the distinct received variables
rv�J	�

The �rst two structural rules express that �j� and ��� are commutative and
associative� �str�def	 describes the heating of a molecule that de�nes new names�
The restriction on �dv is reminiscent of the restriction pre�x 
 in the ��calculus�
with regards to scope extrusion� and at the same time enforces a strict static scope
for the de�nitions� �red	 is a meta reduction rule that associates the actual reduc�
tion rule to each reaction in R� In one computation step� such reductions consume
any molecule with a given port pattern� make a fresh copy of their guarded pro�
cess� substitute its received parameters for the sent names� and release the process
as a new �oating molecule�

��� Some examples

We now give examples of processes and de�nitions� along with an intuitive de�
scription of their meaning� The formal treatment of observations is deferred until
section ��

defxhui � yhui in P ��	

def yhui � xhui in defxhui � yhui in P ��	

defx�huijx�hvi � xhu� vi in P ��	

defxhvijyh�i � �hvi in P ��	

def shi � P � shi � Q in shi ��	

def oncehijyhvi � xhvi in yh�ijyh�ijyh�ijoncehi ��	

def loophi � P jloophi in loophijQ ��	

The simpler de�nitions perform some wiring between names� in ��	 messages on
the local name x in P are forwarded to the outside as messages on y in ��	 the
leftmost x is a free name� while the rightmost one is locally bound in P � and
will require renaming however� messages on the local x are still forwarded in two
steps on the external one ��	 performs multiplexing of messages on x whose parts
are supplied on x� and x� ��	 was introduced as a print spooler in the overview�
but it more generally models ��calculus�like channels� as values are sent on x and
requests for values are sent on y� to me matched in the de�nition ��	 and ��	
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both express internal non�determinism P � Q using a compound de�nition� and
xh�i� xh�i� xh�i using the message on once as a lock ��	 replicates the process
P � starting a new copy each time the de�nition is used�

We �nish our series with a longer example that illustrates both higher�order
and the use of internal messages to store some local state� A reference cell ab�
straction is de�ned as�

defmkcellhv�� ��i �

�
B�

def geth�ijshvi � �hvijshvi
� sethu� �ijshvi � �hijshui

in shv�i j ��hget� seti

�
CA

Each mkcell message triggers the external de�nition� which in turn de�nes three
fresh names get� set� s� The �rst two are sent back on �� for later access or update
to the new cell� Thanks to lexical scoping� the last name s remains local� and the
initial message shv�i together with the two internal rules guarantee the invariant
of the cell� there is exactly one message on s� which contains the current value�

� Programming in the join�calculus

We now use the re�exive CHAM as the foundation of a concurrent programming
language� While our model already provides enough expressive power� its features
are too low�level for actual programming� For instance� there is no convenient
way to express sequential control in a process� which strongly suggest the use of
some syntactic sugar� We �rst study the embedding of higher�order functional
programming� using continuation�passing styles� we encode two reduction strate�
gies for the ��calculus in clear�cut subsets of the join�calculus� Then we describe
a toy concurrent language based on these ideas� and we give some programming
examples� We �nally discuss object�oriented features� programming�

��� Two encodings of the ��calculus

De�nitions of the form � def fhxi � P in Q� seems to be very similar to the �let
f�x	 � E in E�� statement in functional programming� In particular� they share
the same static scoping discipline� The major di�erence comes from asynchrony
in our model� meaning that we must explicitly create and send continuations�

For a given CPS� we encode ��terms as processes that can be triggered� and we
compare their respective behaviour� With minor adaptations� we obtain results of
adequacy similar to those for the ��calculus����� The terms and their translations
converge or diverge accordingly� Our purpose here is to illuminate the tight con�
nection between functions and join�de�nitions� which makes our encodings simpler
than ���� ��� Our syntax for the ��calculus is as usual�

T
def
� x j �x�T j TT

Call�by�name� in this reduction strategy� ��terms are reduced in leftmost�
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order and no reduction may occur under a �� Our encoding is�

��x��v
def
� xhvi

���x�T ��v
def
� def�hx�wi � ��T ��w in vh�i

��TU ��v
def
� defxhui � ��U ��u

in def wh�i � �hx� vi in ��T ��w

Intuitively� the process ��T ��v sends its value on v� a value is a process that
serves evaluation requests sent on �� and requests supply two names� x to send
requests for the value of the argument� and w to eventually return a value when
evaluation converges�

The image of the translation is exactly the deterministic subset of the join�
calculus� de�ned as the set of processes that contain no parallel composition� and
neither join�pattern nor ��� in de�nitions� As expected� reductions for processes
in this subset are entirely sequential�

Parallel call�by�value� the ��term �TU	 can be reduced as soon as both T
and U have been reduced to values� thus allowing the function and the argument
to be evaluated in parallel� Again� no reduction may occur under a �� Using a
larger subset of the join�calculus� we encode this con�uent but non�deterministic
reduction strategy�

��x��v
def
� vhxi

���x�T ��v
def
� def�hx�wi � ��T ��w in vh�i

��TU ��v
def
� def th�ijuhwi � �hw� vi in ��T ��tj��U ��u

Again� the encoding ��T ��v sends its value on v and a value is a process that
serves evaluation requests sent on �� but evaluation requests now supply the value
of the parameter along with a name for the value of the term�

The image of the translation now uses parallel composition to capture the
non�determinism of the strategy� The symmetry between the evaluation of the
function and of the argument is apparent� backed by the two symmetries� on the
fork of evaluation requests and on the join of their results�

��� A language with sequencing

In our basic model� synchronization happens only as molecules are consumed� and
this su
ces to express control �ow� In practice however� the resulting programs
would contain many explicit continuations and would be di
cult to understand�
Instead� we make the sequential control apparent� we �x a CPS� and provide it
as syntactic sugar in the language� To this end� the new grammar extends the
syntax in two steps�


 Names are split in two families� synchronous and asynchronous


 Processes can consist of series of instructions fI�g that are executed sequen�
tially�
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P
def
� x�ev	 asynchronous message

fI�g sequence of instructions

P jP parallel composition

I
def
� def J � P �and J � � P ��� recursive de�nition

let ev � V named values

run P asynchronous process

do f� eV 	 synchronous call

if V then I �else I� conditional

return eV to f implicit continuation

V
def
� v value �name�� � � �

f� eV 	 synchronous call

J
def
� x�ev	 asynchronous message

f�ev	 synchronous message

J jJ join of several messages

As in the calculus� Asynchronous names x are de�ned and used for asyn�
chronous messages Synchronous names f are names that implicitly transmit a
continuation in every message� We extend the sort discipline to distinguish names
consistently� Whenever a message is sent to a synchronous name� a continua�
tion channel is de�ned as the remaining part of the current instruction sequence�
and the continuation is added to the message� Whenever such a message is re�
ceived as part of a join pattern� the continuation is bound in the corresponding
guarded process� and may be used to send back results using the return instruc�
tion� Brie�y� let binds names from synchronous calls do does the same when the
result is a synchronisation signal �	 run asynchronously forks a process return
�asynchronously	 sends results back on the continuation that was received on f �
Finally� any value may contain nested synchronous calls� The formal translation
is omitted�

While the underlying model is the same� this smoothly merges in a declarative
style some non�deterministic programming in a functional framework� For de��
nitions with only one message in their pattern� as is particular for continuations�
the substitution lemma holds� as the instantiated body can be substituted for the
calling message� as in any functional language�

In our examples� synchronous names are capitalised for instance the mkcell
example is the compilation of the program

def MKCELL�v�� �

� def GET�� � s�v� � s�v�� �return v to GET�

and SET�u� � s�v� � s�u�� �return to SET�

run s�v��

return �GET�set� to MKCELL �

The second example elaborates on the print spooler of the overview� in an impera�
tive style� Now� the user select a printer and a format� and �les are pre�processed
accordingly before printing� The channels PRINT and ENSCRIPT are synchronous
calls to the library� At run�time� the �les letter and note are transcripted and
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laser�printed� then the current printer is changed� then the �le drawing is printed
in colour�

� def NEWPRINTER�PRINT�format� � current����� �

� run current�PRINT�format�

return to NEWPRINTER �

and JOB�file� � current�PRINT�format�� �

� run current�PRINT�format�

do PRINT�ENSCRIPT�file�format��

return to JOB �

run current�LASER�ps�

do JOB�letter�

do JOB�note�

do NEWPRINTER�colour�pscolour�

do JOB�drawing� �

While this style mostly comes from the design of PICT ����� the functional
syntax for emissions and the static de�nition of receptions make it more direct
and allow a �ner control� The main drawback is that whenever a PICT channel
is actually used with several emitters and several receptors in parallel� it must
be compiled into a join�de�nition �see example �	 fortunately� this is uncommon
in programming examples� Our approach also o�ers more declarativeness than
object�based languages� since there is no need to mutate systematically the recep�
tor�

Concerning the implementation� the set of rules that comes from a de�nition
is independent from any other de�nition� Taking advantage of asynchrony� these
rules are managed locally by queues for messages� and by an automaton that
matches them with join patterns and forks accordingly the guarded processes� To
this end� well�known compilation techniques are available ����� Besides� the em�
bedding of large functional�style de�nitions can be made reasonably e
cient using
tail�recursion�like optimizations� Finally� concrete values and built�in functions
can easily be added� The behaviour of their reserved names is given by speci�c
��rules that describe the consumption of their messages� and are implemented as
low�level function calls�

��� Concurrent objects and synchronization patterns

Our model provides the essential features of objects� as is already the case for the
��calculus ����� First� we consider primitive objects that are already present in
the language� Using message�passing and pattern�matching in our de�nitions� we
encode objects as servers that receive requests to execute their methods�

The design of a full��edged object�oriented language would require some more
encoding� For instance� inheritance �or cloning	 is not primitive� We sketch some
features to support more general objects with dynamic de�nitions and inheritance�

����� Primitive objects

Objects are created in de�nitions� whose port names may be either returned and
made public� or kept private in the body of their de�nition� In that sense� our cell
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example is a simple primitive object� We identify names and methods� de�nitions
and active concurrent objects� The current state of an object can be split into
several components held on internal messages� according to the critical sections�
Besides� the interface may feature several states with di�erent synchronization
capabilities� The declarative pattern�matching on join messages is much more
expressive than the serialization of method calls� It contains the expressiveness of
coloured Petri nets� and can even be dynamically expanded�

We illustrate the combination of concurrency and synchronization on the ex�
ample of priority queues ��gure �	�

def MK�PRIORITY�QUEUE�� �

� def EMPTY�� � none�� �

� run none��

return TRUE to EMPTY �

and EMPTY�� � some�x�E�A�R� �

� run some�x�E�A�R�

return FALSE to EMPTY �

and ADD�x� � none�� �

� return to ADD

let E�A�R � MK�PRIORITY�QUEUE�� �

run some�x�E�A�R� �

and ADD�x� � some�y�E�A�R� �

� return to ADD

do A�MAX �x�y��

run some�MIN�x�y��E�A�R� �

and REMOVE��� some�x�E�A�R� �

� return x to REMOVE

if I�� then run none��

else run some�R���E�A�R� �

run none��

return EMPTY�ADD�REMOVE to NEW�PRIORITY�QUEUE �

Our priority queue features three synchronous methods EMPTY� ADD� REMOVE
with the expected meaning REMOVE retrieves the smallest value� or blocks until
a value is available� There are two internal states� none�� when empty� and
some�x�E�A�R� when containing the smallest value x in its head and another
priority queue with methods E�A�R in its tail� Statically� we can check that there
is always exactly one state message available for each de�nition� Values can be
concurrently tested� added� and removed in particular� a new some message is
released after at most one comparison when a new value is added� while the update
propagates toward the tail in parallel� When the tail is eventually reached� a new�
empty priority queue is created using the recursive de�nition MK PRIORITY QUEUE�
which returns three fresh methods on an empty priority queue to be stored in the
last�but�one some message�
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����� Class�based objects and inheritance

Our primitive objects lack dynamicity� because the lexical scope of their de�ni�
tions forbids overloading or cloning� It is well�known that inheritance and syn�
chronization for concurrent objects do not merge gracefully in our case� we can
recover ad�hoc dynamicity using indirections� In our spooler example� a dynamic
method to print �les is implemented by two static methods� job for invocation and
newprinter for overriding� while the current name associated with the method is
kept in the internal state currentprinter� Likewise� one can substitute state over�
writing for method overriding in many cases� and mix freely static and dynamic
components within the same objects�

While our solution seems better than the traditional object�as�server encoding�
it requires more than some local syntactic sugar� An alternative approach consists
in complementing the join�calculus with new features� e�g� with more general
records� to obtain richer primitive objects�

� The join�calculus

The join�calculus is simply the set of molecules of the re�exive CHAM� In this
section� we study in more details its properties as a process calculus� we �rst give
another� equivalent de�nition of a variant of the join�calculus� then we brie�y
discuss observation� and we identify observational equivalence as a barbed bisim�
ulation congruence �nally� we use this tool to precisely reduce the join�calculus
to its essential features�

Our re�exive chemical machine entirely de�nes the syntax �molecules as pro�
cesses	� the structural congruence ���	� and the reduction relation ���������	�
Any chemical solution can be cooled down into a single process� wrapping all
the reactions in a big de�nition header� Thus� join�calculus processes provide
another presentation of our model as a �rst�order rewriting system modulo struc�
tural equivalence� This more syntactic approach is especially useful to compare
our model to other calculi �several subsets of the join�calculus in this section� and
the ��calculus in the next one	�

��� The join�calculus as a process calculus

The core �recursive	 join�calculus is a restriction of the full calculus with simpler
de�nitions� join patterns and messages� Its syntax is given by the grammar�

P
def
� xhui j P�jP� j def xhuijyhvi � P� in P�

As before� the scope of u� v is P�� whereas the scope of x� y extends to the whole
de�nition� The structural congruence � is the smallest relation such that for all
processes P�Q�R� S� for all de�nitions D�D� such that dv�D	� dv�D�	 contain only
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fresh names�

P jQ � QjP
�P jQ	jR � P j�QjR	

P j def D in Q � defD in P jQ
defD in defD� in P � defD� in defD in P

P �� Q �� P � Q
P � Q �� P jR � QjR

R � S� P � Q �� defJ � R in P � defJ � S in Q

We now de�ne the reduction relation as the  �transitions of a labelled transition
system

�
��� where � ranges over fDg�fg� Our transition relation is the smallest

relation such that for every de�nition D � xhuijyhvi � R�

xhsijyhti
D
�� Rfs�u�

t�vg

and for every transition P
�
�� P ��

P jQ
�
�� P �jQ

defD in P
�
�� defD in P � if fv�D	 	 dv��	 � �

def � in P
�
�� def � in P � if � � 

Q
�
�� Q� if P � P � and Q � Q�

Lemma � The structural congruence � is the smallest congruence that contains

all pair of processes P�Q such that � P ���� Q� The reduction relation
�
��

contains exactly the pairs of processes P�Q up to � such that � P ��� Q

��� Observation

While the observation of concurrent processes is di
cult in general� the join�cal�
culus bene�ts from the experience gained from CCS and from the ��calculus� After
an informal discussion of observation criteria� we introduce the equivalence among
processes as the largest congruence with a few suitable properties� thus following
the approach proposed in ���� ��� for the 
�calculus� This provides an accurate
basis for comparisons with other calculi�

����� What is observable�

The only way for a process to communicate with the outside is to export some
names in messages on its free names� and to wait for an answer from an enclosing
de�nition� We distinguish processes accordingly� To each free name x� we associate
an asynchronous� output�only barb �x � which tests the ability of processes to emit
anything on x� In the following� ��� stands for any sequence of �� and ���

P �x
def
� x � fv�P 	 � �ev�R�M� � � P ��� R �M� xhevi
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����� Observational congruence

The congruence between processes is the largest equivalence relation � that is a
re�nement of the output barbs �x� that is weak�reduction�closed� and that is a
congruence for de�nitions and parallel compositions� �P�Q� if P � Q� then

�� �x � N � P �x implies Q �x

�� P ��� P � implies �Q�� Q ��� Q� and P � � Q�

�� �D� defD in P � defD in Q

�� �R� RjP � RjQ

In most proofs� we also need a �ner� auxiliary expansion relation� and we
apply the bisimulation up to expansion technique ����� the expansion between
processes is the largest relation � that veri�es properties like ���� and such that
�P�Q� if P � Q� then

Q �� Q� implies P � � Q� or �P �� P �� P � � Q�

For example we have�

fv�P 	 � � �� P � � ��	

P � Q �� P � Q ��	

xhui � yhui ��	

def zhti � thui in zhxi � def zhti � thui in zhyi ��	

zhxi � zhyi ��	

defuhzi � vhzi in xhui � xhvi ��	

In ��	 no process has any barb� and reductions are simulated by no reduction on
the other side in ��	 and ��	� the two processes don�t have the same barbs in
��	 the two names x and y can be distinguished in contexts as in ��	 in ��	� two
distinct names are sent on x� but their behaviour is the same in every context
�although an internal reduction is needed to relay values from u to v	�

Despite technical di�erences in their de�nitions� � is also the congruence over
all contexts that is obtained from the weak� barbed bisimulation whose barbs are
�x� as de�ned for the ��calculus in ����� Such barbed congruences can be de�ned
for many process calculi� independently of their syntaxes� and we take advantage
of this common framework to obtain precise results�

����� Full abstraction

In all the following� we assess the relative expressive powers of miscellaneous calculi
from the existence of fully�abstract encodings between them�

De	nition � Let P��P� be two process calculi� with respective equivalences �� �
P� �P�� �� � P� �P��
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P� is more expressive than P� when there is a fully abstract encoding �� �����

from P� to P�� for all P�Q in P�� we have

P �� Q �� ��P ����� �� ��Q�����

P� and P� have the same expressive power when each one is more expressive

than the other�

We use observational congruence as the reference equivalence for each process
calculus� meaning that our full abstraction results are up to observation in any
context� This seems to be the �nest results one could expect between di�erent
process calculi�

��� Internal encodings

The re�exive CHAM model corresponds to a join�calculus that is convenient as
the kernel of a programming language� However� it is possible to reduce it further
to simpler primitives� To this end� we successively remove recursive scope� de�ni�
tions with several clauses D�D� join�patterns with more than two messages� and
messages with several transmitted values� We replace them by internal encodings�
which we prove to be fully abstract� Our purpose here is to isolate the essential
features of the join�calculus� and to give some useful examples� Of course� all the
derived features would be taken as primitives in a realistic implementation�

Theorem � The core join�calculus has the same expressive power than the full

join�calculus up to congruence� in particular� there is a fully�abstract encoding

�� ��� from the full calculus to the core calculus� for all processes Q�R of the full

join�calculus�

Q � R �� ��Q������R���

The actual proof consists of successive internal encodings of redundant fea�
tures in each part of this section� we explain a stage of the encoding� We omit
the proofs� Please note that the following encodings have been chosen for their
accuracy with regards to observation� and for their simplicity of exposition as
a result� they may use busy�waiting� and introduce in�nite sequences of internal
reductions they are not meant to be used in practice to implement the features
that we remove from the join�calculus� Indeed� we plan to implement e
ciently
the full calculus directly from its re�exive machine speci�cation�

����� Recursive binding

The non�recursive variant of the join�calculus is de�ned by restricting the scope of
de�ned variables in defD in P to P only� so that guarded processes inside of D
cannot refer to them� To get rid of the recursive usage of names in de�nitions� our
encoding simply shift the binding variables from de�nition to reception� Another
name � is de�ned to hold formerly recursive names� and a message containing the
recursive names is always available on it� In particular the received variable �� is
always bound to � each time a molecule is received�
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Lemma � Let ex be the vector of variables fv�Q		 dv�J	� and �� �� be fresh vari�

ables� We have�

def J � Q in P
� def J j�hex� ��i � Qj��hex� ��i in P j�hex� �i

����� Complex de	nitions

We compile every complex de�nition with n�way join patterns and�or multiple
clauses connected by � into several simpler de�nitions with only one pattern that
joins at most two atoms� For that purpose� we implement an invisible layer be�
tween the emitters and the guarded processes of the de�nition� that makes explicit
the automaton that matches messages and patterns�

For clarity� we use the syntactic sugar developped for our language to present
our encoding� except use the xhvi notation to indicate asyncronous names� rather
than capitalization as in Section �� We encode the de�nition D � J� �P�� � � � Jn �
Pn� Up to 	�conversion� we may assume that patterns Jk joins messages of the
form xihevii� Then� the translation of defD in Q is�����������������������������

���������������������������

def get�	jseth�s� �vi �return �s� �v to get

def xih�ui �

���
��

let �s� �v � get�	
run seth�s � fig� �vf�u��vigi
if i � �s then run xihvii

���
�	

� � �

def pkhi �

�������
������

let �s� �v � get�	
if �sk � �v
then run Pkjseth�s� �sk� �vi
else run seth�s� �vi
run pk�	

�������
�����	

run pkhi
� � �
run seth�� ��i
run Q

����������������������������
��������������������������	

The translation consists of a simple two�way�join de�nition that matches inter�
nal actions to an internal state hes� evi that �caches� the current pending messages
on each of the de�ned names xi of D� es represents the set of names of available
messages� and ev contains one of the pending values for these names� if any�

For each Jk� the auxiliary process de�nition pk repeatedly checks whether the
current state s contains all the de�ned variables sk of Jk� and triggers the guarded
process Pk when successful�

For each xi� the new de�nition inserts values of messages in the current state�
Notice that if another message is already present� it is removed and re�sent on xi
this makes sure that the choice of messages that are present in the cache ev can
freely be reconsidered until they are actually sent to a Pk�

Lemma � If DQ is the translation de�ned above� then

defD in Q � DQ
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Hence� if ��P �� is de�ned as the join�term obtained from P by applying the above

translation to all compound de�nitions in P � then �� �� is fully abstract�

����� Polyadic messages

As in the ��calculus� we communicate tuples of names on auxiliary private names
we �rst describe the protocol for pairs� the process Ox�u�v� sends the pair u� v on
x the context It�u�v��P � extracts a pair u� v from a �pair� name p� then executes
P � On the sender�s side� an internal state w holds the next value to be returned
to rw� Again� we use the syntactic sugar of the language to hide continuations�

Ox�u�v�
def
�

���������
��������

def r�	jwhzi �return z to r
run whui

def rw�	 �

���
��

let z � r�	
run whvi
return z to rw

���
�	

run xhrwi

���������
�������	

It�u�v��P �
def
�

���
��

let u � t�	
let v � t�	
run P

���
�	

The translation of well�sorted polyadic processes is de�ned inductively on pro�
cesses after a �rst encoding of tuples as nested pairs� we only have to describe
the translations for dyadic messages and de�nitions�

��xhu� vi��
def
� Ox�u�v�

�� def xhu� vijyhw� zi � P in Q��

def
�

������
�����

def x��r	jy��t	 � Ir�u�v��I
t
�w�z����P ����

def x�r	 � Ir�u�v��Ox��u�v��

def y�t	 � It�w�z��Oy��w�z��

run ��Q��

������
����	

This encoding may appear redundant� as pairs are encoded and decoded
twice However� this ensures that only valid pairs are involved in the actual join�
de�nition� With only one level of encodings� some contexts that do not comply
with our protocol may interfere� as is the case in the following example� where
P � Q but C��P ��� � C��Q����

P
def
� defxhu� vijyhw� zi � bhbi in zhxijxha� aijyha� ai

Q
def
� defxhu� vijyhw� zi � bhbi in zhxijbhbi

C� �
def
� def zhxi � h def t��i � � in xhti	 in � �

Lemma � The encoding �� �� is fully abstract� The core monadic and the core

polyadic variants of the join�calculus have the same expressive power�

��



� A comparison with the ��calculus

Despite their syntactic di�erences� the join�calculus can be considered as an o��
spring of the ��calculus� in the asynchronous branch of the family� The latter was
introduced independently in ��� as the �mini	 asynchronous ��calculus� and in ����
as the 
�calculus� Both authors suppress the guards on emission� and compare the
result to the original ��calculus� Going further in that direction� the join�calculus
is an asynchronous ��calculus with the strong restrictions�


 the three binders �scope restriction� reception� replicated reception	 are syn�
tactically merged in a single construct� the de�nition


 communication occurs only on de�ned names


 for every de�ned name� there is exactly one� replicated reception�

There are several reasons to be interested in a formal comparison between the
two calculi� the ��calculus has been thoroughly studied it is a reference calculus�
and many results relate other formalisms or implementations to it ��� ��� ��� ����
Therefore� it is appealing to �translate� such results automatically to the join�cal�
culus� On the other hand� some issues are best addressed in the join�calculus� as
for instance locality� implementation purposes� and explicit distribution� Besides�
this also provides a deep insight into what is common and what is di�erent in the
join�calculus and in the ��calculus�

Both encodings that are used to get our most precise results are complex�
but their underlying ideas are simple� In particular� much simpler encodings can
be obtained in less general settings for instance� programs written in PICT and
programs in the language presented in section � would use very similar implemen�
tation techniques�

Using the results of the previous section� we consider the recursive� polyadic
join�calculus with at most two�way�join de�nitions as the target calculus to encode
the ��calculus� and its monadic variant for the reverse encoding�

We �rst recall the de�nition of the asynchronous ��calculus then we encode
the ��calculus in the join�calculus� The �rst� naive encoding replaces each channel
of the ��calculus by a two�way de�nition however� some more work is needed to
achieve full abstraction� We present our approach based on ��rewalls� in detail�
but we defer the presentation of the proof to annex A� In the same manner� we
then encode the join�calculus in the ��calculus using the straightforward transla�
tion of de�nitions into scope�restriction and replicated reception� Using the same
approach� we also need to re�ne the encoding� The sketch of the proof can be
found in annex B�

In all our encodings� we will assume that every name that is introduced in
the translation rules is a fresh name that does not appear elsewhere in the terms�
This may involve some 	�conversion�

	�� The asynchronous ��calculus

To study this relationship� we precisely compare the join�calculus to the asyn�
chronous ��calculus� We use the syntax of Milner in ����� Without loss of general�

��



ity� we allow only monadic messages� and replicated input instead of more general
recursion�

P
def
� P jQ j 
u�P j xu j x�u	�P j  x�u	�P

Following the observational approach of ���� ��� ���� the congruence �� is
de�ned for the ��calculus as the asynchronous barbed congruence whose barbs
are the emissions on free channels�

Theorem � The join�calculus and the summation�free asynchronous ��calculus
have the same expressive power� up to their weak output�only barbed congruences�

	�� Asynchrony� Relays and Equators

Our encodings essentially rely on the properties of the asynchronous reduction�
based ��calculus as discussed in ���� ���� and on similar properties of the join�
calculus�

In both calculi� it is not possible to observe the reception of a message for
instance we have x�u	�xu �� �� and it is not possible either to distinguish
between two di�erent names that have the same external behaviour� We illustrate
the latter with a de�nition of equators between names�

M�
x�y

def
�  x�u	�yuj y�v	�xv

This process repeatedly receives values from x and forwards them to y and vice�
versa� so that no matter which name x or y is used to send a value� it can always
be made available for reception on the other name in one internal reduction�

Lemma � For all ��processes P�Q

Pfx�yg �� Qfx�yg implies M�
x�yjP �� M�

x�yjQ

	�� Encoding the ��calculus


���� Naive structural de	nition

To each channel x of the ��calculus� we associate two names xo for output� xi for
input� and an enclosing de�nition that matches output and input � The emitter
simply sends values on xo the receiver de�nes a name for its continuation� and
sends it as a reception o�er on xi�

��P jQ���
def
� ��P ���j��Q���

��
x�P ���
def
� defxohvo� viijxih�i � �hvo� vii in ��P ���

��xv���
def
� xohvo� vii

��x�v	�P ���
def
� def�hvo� vii � ��P ��� in xih�i

�� x�v	�P ���
def
� def�hvo� vii � xih�ij��P ��� in xih�i

��



For example� we translate the following ��process and its reduction


x��xajxbjx�u	�yu	 � 
x��xajyb	

to the join�process and the series of reductions

def xohvo� viijxih�i � �hvo� vii
in xohao� aiijxohao� aii

j def �huo� uii � yohuo� uii in xih�i

��
def �huo� uii � yohuo� uii
in defxohvo� viijxih�i � �hvo� vii
in xohao� aiijyohbo� bii

In the same manner� any reduction on a bound name in the ��calculus can be
simulated by a join�reduction followed by a deterministic reduction in the join�
calculus� and conversely any reduction in a join�calculus translation belongs to
one of these two cases� and can be simulated in at most one reduction in the
��calculus�


���� Full abstraction of the encoding

Unfortunately� the previous encoding does not re�ect the behaviour of processes
of the ��calculus when placed in an arbitrary join�calculus context� the protocol
relies on the presence of speci�c de�nitions for every free name� while the context
may de�ne them in some other way�

For example� the translation ��xajxbjx�u	�yu��� cannot reduce anymore� because
there is no englobing 
x� Worse� ��x�u	�xu��� exhibits a barb on xi that reveals the
presence of an input for x� and allows a context to distinguish this process from ��
And because of mobility� it would not be enough to supply a correct de�nition of
xo� xi for every translated free name� since a context would still be able to �forge�
a message xohz� ti from some of its own names z� t with arbitrary de�nitions�

To protect the translation from hostile contexts� the names resulting from the
free channels of the ��term must set�up a ��rewall� that enforces the protocol�
We re�ne our �rst idea� each channel x is now represented as several pairs xo� xi
from the naive encoding that cannot be distinguished from the outside� Two pairs
are merged by repeatedly communicating their pending messages to one another�
New pairs are de�ned at run�time according to the following secure protocol�


 Whenever a pair of names is received from the outside� the �rewall de�nes
a new� correct proxy pair� merges it to the external pair� and transmits the
new pair instead�


 Whenever a pair of names is sent to the outside� a new �rewall is inserted
to set up proxies for future messages on this pair�

As a result� the translation and the context never exchange names from a syntactic
point of view� We use the following contexts to build the �rewall on top of the
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naive translation�

Px� �
def
�

defxlhvo� viijxih�i � �hvo� vii
in def xohvo� vii � phvo� vi� xli in � �

Ex� �
def
� Px�xehxo� xiij� ��

M� �
def
� def p�xo� xi� �	 � Py��hyo� yiij��M

�
x�y���� in � �

For every free name x� Px encodes the creation of a new proxy for its output� Ex
does the same� and also exports the proxy on a conventional free name xe� Finally�
M recursively de�nes the proxy creator p for the whole translation�

Notation� Whenever a context de�ned with a name index appears without this
index� it stands for the application of the context for at least all the free variables in
the ��term� and for a de�nition for p� For instance� E���xy����

def
� M�Ex�Ey���xy������

Theorem � For all processes Q�R in the ��calculus�

Q �� R�� E���Q���� � E���R����

Note that E catches all the free variables of P jQ� In the proof� we also give an
auxiliary encoding that is strictly compositional�

	�� Encoding the join�calculus

The reverse translation is simpler� because the join�calculus is somehow the ��cal�
culus with restrictions on communication patterns� However� a careful encoding
is needed to prevent contexts of the ��calculus from reading messages from the
names they receive from the translation�


���� Structural de	nition

��QjR��j
def
� ��Q��jj��R��j

��xhvi��j
def
� xv

��def xhuijyhvi � Q in R��j
def
� 
xy�� x�u	�y�v	���Q��j j��R��j	

Reductions in ��calculus translations correspond exactly to the reception of
messages in join�patterns� In the translation� we loose the symmetry between x
and y and the atomicity of their join�reduction� but it does not matter as scope
restriction and �� ��j guarantee that these details cannot be observed�

Again� the translation reveals too much about the source process� as a context
of the ��calculus could start reading values on names bound in the translation of
de�nitions� Indeed� if we were translating the join�calculus into an asynchronous
��calculus extended with a type system with polarities ����� we could specify write�
only types for every channel that is communicated inside of the translation� and
the �typed	 previous encoding would already be fully�abstract�
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���� Full abstraction

To obtain our second full abstraction result� we also need to build a �rewall�
The interface recursively sets up one�way relays for every name that crosses the
boundary� It is built from the following terms� with the same convention on
indices�

Rxy
def
�  x�v	�
ve��rvevjyve	

R� �
def
� 
r� r�x� xe	�Rxxe j� �	

E�x � �
def
� 
x��Rxxe j� �	

R is a global de�nition for the translation� which sets up one�way relays Rxxe

or Rxxj from the �rst to the second of its argument� When a relay forwards a
message� it also sets up a relay going in the reverse direction for the transmitted
value� There is no syntactic scope extrusion of the translations of de�nitions� and
their synonym can always receive messages� We use the same notation convention
as before� E���P ��j stands for the application of R followed by applications of E�x
for at least all free variables of x of P �

Theorem � For all processes Q�R in the join�calculus�

Q � R�� E����Q��j� �� E����R��j�

� Future work

Many interesting issues on the join�calculus are outside the scope of this paper�
They include actual implementation techniques� type systems and in particular lin�
ear types for the names that represent continuations� as in ���� ��� ���� extensions
of the calculus with records for a better support of object�oriented programming�
Observation and equivalences also deserve a more detailed treatment� as well as a
comparison with their counterparts in the asynchronous ��calculus�

To conclude� we brie�y mention our current usage of the re�exive CHAM
and of the join�calculus in a programming language design where resources and
environments are explicitly distributed� while the details of the network and its
connectivity remain hidden� In a practical distributed setting where some sites
may fail� the atomicity of each interaction must be speci�ed accurately ���� in a
way that can be implemented locally� The join�calculus relieves us of many di
�
cult issues� As synchronization can only happen on de�nitions� it is su
cient to
require each de�nition to be annotated with some location� that is shared by all
its names and guarded processes� Likewise� the actual allocation of resources for
a de�nition such as waiting queues� automaton� and closures� happens locally as
the de�nition is activated using the chemical rule �str�def	� In that setting� mes�
sages are forwarded to their de�nition asynchronously� then handled locally� We
currently study extensions of the re�exive CHAM and of the language that pro�
vide explicit control of the localization of de�nitions on several sites� and possibly
their imperative migration from one site to another� This would make intensive
interaction more local� and would protect it from local failure� A distributed

��



prototype is under way� to assess the feasibility and the interest of a distributed
implementation of process calculi�
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A Sketch of the proofs of section �

Notation� In all the diagrams that follow� we use the usual conventions � for all
relations on plain lines� there exists relations on dotted lines� and stars denotes
the re�exive�transitive closure of a relation�

A�� E�� ��� is fully�abstract

A���� Combining translations and contexts

We �rst prove the direct implication by studying how a translation can inter�
act with an arbitrary join�calculus context� This is performed on an auxiliary
translation that is very similar to �� ����

De	nition � The translation �� �� maps ��processes to join�processes using the

same structural de�nition that for �� ���� except for scope restriction so that output

always leads to the creation of a new proxy pair�� and for unguarded outputs where

the de�nition of xo is unfolded��

��
x�P ��
def
� Px���P ���

��xv��
def
� Pz

h
xlhzo� ziij��M

�
z�v���

i
when unguarded�

De	nition � Hybrid terms are terms of the join�calculus that are structurally

equivalent to some P �Ej��Q���� where E is a join�calculus process� Q is a ��calculus
process� and P is an header of de�nitions such that for all free names x in Q� Px

appears in P� and such that every message on xl channels matches some xlhvo� vii
where Pv appears in P�

In particular� the processes E ���Q��� that appear in the theorem are hybrid
terms� We now study reductions inside of hybrid terms� These reductions can be�

�� reductions that use the join�de�nition of some xl� xi� which correspond to
reductions in the ��calculus

��



�� reductions that manipulate pairs of synonyms� or trigger continuations ��
which are induced by the encoding

�� reductions inside of E� which are independent of the translation�

We are mostly interested in the �rst family of reductions� To get rid of the
details of the encoding� we �rst de�ne two auxiliary expansions to relate hybrid
terms that di�er only because some deterministic reduction hasn�t been performed
yet� or because some extra synonyms have been introduced for pairs xo� xi� Then
we use the weak bisimulation up�to expansion technique �����

Lemma 
 Let �det be the relation on join�processes that contains all pairs of

deterministic reductions� �det

def
� ��det	

�� �det

def
����

det � Then �det is a barbed expan�
sion�

Lemma � Let �merge relates hybrid terms with one additional pair of synonyms

on the left�hand�side�

PPx�y

h
Ej��Q��j��M�

x�y���

i
�merge PPx �Ej��Q��� fx�yg

�merge

def
� ���

merge	
���

Then �merge is a barbed expansion�

Lemma � E ���Q���� � E ���Q���

Lemma  The reductions in the ��calculus can be mimicked on their translations�

if Q�� Q�� then P ���Q��� �� ��det�merge	
�P


��Q���

�

Lemma �� For all pair of hybrid terms P �Ej��Q���� P �Ej��R����

if Q �� R� then P �Ej��Q��� � P �Ej��R���

Proof� Let the relation B contains all the pairs of hybrid terms that are obtained
from congruent ��processes�

�Q �� R� P �Ej��Q��� B P �Ej��R���

We establish that B � �� To this end� we distinguish among the reactions
that may happen on the left�hand�side hybrid term� and in each case simulate it
on the right�hand�side� We consider four cases�

Reduction outside of the translation� they are the same on both sides�

Reduction inside of the translation� a communication occurs between a re�
ception o�er and an output it corresponds to a communication in the original
��term� except that as the value is received� a new proxy is created� and that
several deterministic reductions may be necessary to reach an hybrid term� On

��



the right side� we use Q �� R to obtain a sequence of reductions R �� R�� and
we mimic them in the translation�

P �Ej��Q���
B

P �Ej��R���

�
� �

P


Ej��Q���

� B
P


Ej��R���

� �
�
�

�

Intrusion of a pair of channels from the environment into the translation� The
receiving ��term Q is of the form 
eu��Q�jx�z	�Q��	� while there is a correct pending
value xlhzo� zii in the join�calculus and a de�nition to match them� We �rst use
an auxiliary commutative diagram to push the emission under the translation�
Using our lemma� we can then build reductions for the right term� and with a
few deterministic reductions on the bottom left� we get a new pair in B� On both
sides� we use our expansions on hybrid terms to switch xlhzo� zii and ��xz���

xzj
eu��Q�jx�z	�Q��	
��

xzjR


eu��Q�jQ��	
� ��

R�

�

�

P �Ejxlhzo� ziij��Q���
B

P �Ejxlhzo� ziij��R���

�
� �

P


Ej��
eu��Q�jQ��	��

� B � �
�

�

�

Extrusion of a pair of channels from the translation to the environment� the
emitting ��term is of the form Q � 
u��Q�jxy	� where possibly u � y� If l� u are
fresh names� we get a similar emission for R by applying the congruence Q �� R
to the context O � �

def
� lujx�y	�l�u	�M�

yz j � � �

O



u��Q�jxy	

� ��
O �R�


u��Q�jM�
yz	

�

�

��

u���R�jM�

y�z	
�

�

In the diagram� the reductions on the right can be reordered as internal reductions
in R� followed by the two reductions on x� l with O� From the �rst ones� we build

��



the corresponding reductions from the translation on the right to a term that is
an expansion of 
u���R�jM�

y�z	�

P


E �xih�i� j��
u��Q

�jxy	��
� B

P �E �xih�i� j��R���

P
h
E ��hzo� zii� j��
u��Q

�jM�
y�z	��

i�

B �
�

�

�

From the previous diagrams� and as � B � is a congruence and respects the
barbs� we obtain by de�nition of � that �� B �	 � �� and in particular B � �
�

A���� Correctness

We need yet another translation that is fully compositional� each term is wrapped
in a protective context� at each step of the structural de�nition conversely� the
names of each subterm must be made synonym for the names in the current term�

De	nition � The translation ��� ��� maps ��processes to join�calculus processes�

���P jQ���
def
� E �I����P ����jI����Q�����

���
x�P ���
def
� Nx����P ����

���xv���
def
� E �xohvo� vii�

���x�v	�P ���
def
� E �def �hvo� vii � I����P ���� in xih�i�

��� x�v	�P ���
def
� E �def �hvo� vii � xih�ijI����P ���� in xih�i�

with the following de�nitions and with the convention on indices�

Ix � �
def
� def xehyo� yii � ��M�

x�y��� in � �

Nx � �
def
� def xehyo� yii � � in � �

I catches exported synonyms for channels in the scope of the context� N
prevents extension� thus providing locality�

Lemma �� �Q� ���Q��� � E��Q��

Proof� In each case of the structural induction� we use variants of the relation
ExIxEx �P � �det�merge Ex �P �� We present two signi�cant cases�

���P jQ���
def
� E �I����P ����jI����Q�����

� E �IE���P ���jIE���Q����

� E��P jQ��

���
x�P ���
def
� Nx����P ����

� ENxEx ���P ���

� EPx ���P ���

� E ���
x�P ���

��



�

Lemma �� if E��Q�� � E��R�� then Q �� R

Proof� f�Q�R	� E��Q�� � E��R��g is a barbed congruence in the ��calculus� The
congruence follows from the previous result and the congruence property of ��

E��C �Q� �� � ���C �Q� ��� � ����C���	 ����Q���� � ����C���	 �E��Q���

The asynchronous barbs are the same� They can be individually tested in
simple contexts� The bisimulation is obtained from previous lemmas� �

A�� E
��� ��j is fully�abstract

In this part� we use conventions for names� In the ��calculus� zj is a free variable
of the translation� that corresponds to the external name z� In the join�calculus�
we introduce for each name x another name� bx� that may appear at most once
in a process� and only as the port name of an unguarded message bx�y	 we notebP a process that may contain these messages� Such messages will keep track of
internal names y that have been exported to the context to this end� we adapt
�� ��j to translate them into incoming relays�

��bx�y	��j
def
� Rxyj

De	nition � A hybrid term is a term of the ��calculus that is structurally equiv�

alent to

C
h
E��z �� bP ��j

i

where C is any context of the ��calculusof the form 
 ew�Rj� �	� and where bP is a

join�process with possibly some unguarded messages gbx�x	� such that its free vari�

ables are in f ezj � ebxg�
Lemma ��

C
h

xjyj�RxjzjRyjzj��

bP ��j	
i

� C
h

zj�Rxjzj��

bP ��jf
xj�yjg	

i

Lemma �� Let �J�� be the largest expansion between the ��calculus and the join�
calculus that respects barbs� Then for all join�process P we have P �J�� ��P ��j�

Lemma �� The relation that contains all pairs of hybrid terms whose extended

join�processes are congruent is a barbed congruence in the ��calculus�

Proof� The congruence property is obvious the bisimulation requires a case
analysis� which will also establishes that barbs are preserved� We study in more
details the interactions between the translation and its ��context� and the set�up
of new relays� Four kinds of reductions may occur�

External communication� apply the same one on the other side�

��



Intrusion of an external message is received on an incoming relay� the messages
is withdrawn from the ��calculus context� and committed to an internal usage
except from the �rst step which prevents the input of the message in the context�
the following steps are deterministic� and lead to a new hybrid term�

C
h
xujE��z �� bP �bx�x	���j

i
���

det C
h
E�u��z��

bP �xhuijbx�x	���j

i

To obtain a bisimilar hybrid term on the other side� we use the join�calculus
context�

Oi� �
def
� def by�x	 � bx�x	 in def bx�x	 � xhuijby�x	 in � �

Both join�processes have a barb on bx that is necessarily a single� unguarded mes�
sage� Consuming bx on both sides leads to a pair of congruent processes� We then
discard the useless de�nition of bx�x	� and wrap both processes as a new pair of
related hybrid terms�

Internal reduction on the translation of a de�nition� using � in the join�cal�
culus� we obtain a sequence of reductions on the left side� and mimic it in the
translation� Some deterministic reductions may be needed on both sides to reach
a hybrid term�

Extrusion by internal reduction on an export relay� in a few deterministic re�
ductions� messages on translations of free variables are exported to their public
��calculus name�

C
h
E��z �� bP �zhxi���j

i
��

det C
h

x�zxjE��z �� bP �bx�x	���j

i

We use the following context Oe to obtain an adequate sequence of reductions
on the right side� the �rst emission on zj is handled in a special way� while the
next ones are silently transmitted�

Oe � �
def
�

def e�	 � � in defahuijlhi � uhi
in def z�hxi � zhxi
in def zhxijch�i � �hxijchz�i
in def ��hxi � bx�x	jahei
in ch��ijahdijlhi � �

Oe

h bP �zhxi�
i �

Oe

h bQi

bP �bxu�
�

�

�

� �
�

�

� � bQ�

cQ� has no barb on c we can reorder the reductions on the right to defer
interaction with the context Oe� to obtain a sequence of reductions to mimic in
the translation� �

��



Lemma �
 for all P�Q in the join�calculus�

P � Q � E���P ��j �� E
���Q��j

De	nition 
 We use the compositional encoding ��� ���j where D � xhuijyhvi � Q
to obtain the second half of the theorem�

���QjR���j
def
� ���Q���jj���R���j

���xhvi���j
def
� E�x�v�xj�vj	�

��� def D in R���j
def
� 
xy��� x�u	�y�v	����Q���j	j���R���j	

Lemma �� For every join�process Q with free variables ez�
���Q���j � E��z ��Q��j

We conclude using the same argument that for the reverse translation�
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