Grasp Acquisition Database
Presentation Outline

- Introduction/Refresher on SQL and Relational Databases
 - Fundamental principles
 - Basic queries and additional database features
- The goals of the GAD
 - Learning from Columbia's Grasp Database
- Proposed GAD Architecture and High-Level Schema
- Future Directions
At its core, a relational database is a set of tables (relations).

A table has columns, which represent a data type (attribute), and rows, which represent the data (tuples).
An Example of a DB Table

- The example at the left features 3 attributes: Name, Color and Quantity.
- Every table must have a Primary Key, and every record must have a unique PK.

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Color</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Road Frames</td>
<td>Black</td>
<td>NULL</td>
</tr>
<tr>
<td>2</td>
<td>Road Frames</td>
<td>Red</td>
<td>NULL</td>
</tr>
<tr>
<td>3</td>
<td>Helmets</td>
<td>Red</td>
<td>288</td>
</tr>
<tr>
<td>4</td>
<td>Helmets</td>
<td>Black</td>
<td>324</td>
</tr>
<tr>
<td>5</td>
<td>Socks</td>
<td>White</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>Socks</td>
<td>White</td>
<td>216</td>
</tr>
<tr>
<td>7</td>
<td>Helmets</td>
<td>Blue</td>
<td>216</td>
</tr>
<tr>
<td>8</td>
<td>Caps</td>
<td>Multi</td>
<td>288</td>
</tr>
<tr>
<td>9</td>
<td>Jerseys</td>
<td>Multi</td>
<td>144</td>
</tr>
<tr>
<td>10</td>
<td>Jerseys</td>
<td>Multi</td>
<td>180</td>
</tr>
<tr>
<td>11</td>
<td>Jerseys</td>
<td>Multi</td>
<td>216</td>
</tr>
<tr>
<td>12</td>
<td>Jerseys</td>
<td>Multi</td>
<td>252</td>
</tr>
</tbody>
</table>
The Advantage of Relational Databases

- Relational databases allow relationships between tables to show logical relations.
- A “Contact” table may have a “Contact_Id” attribute, that allows a connection to a “Grasp” table.
Standard Query Language (SQL)

- SQL is the standard programming language for relational databases
- Is very different from imperative languages like Java, C++, Python
 - SQL is a declarative language
 - This means that SQL queries allows you to specify *what* you would like to do, but not *how* to do it.
Manipulating a Database with SQL

- Typically, you write and test queries in a Database Management System (DBMS)
- Most programming languages provide libraries for connecting to a database and making queries to allow CRUD operations on the database (Create, Read, Update, and Delete)
An Introductory Example

- The example to the left represents a simple SQL query.
- The user wishes to view all records in the "Book" table over a certain price.
- The output will be ordered alphabetically.
Auxiliary Database Features

- Most enterprise-level databases consist of more than just tables and SPROCS.
- Foreign Keys, Views, Schemas, Functions and Triggers are a few of the additional features.
The GAD

- The GAD's main purpose is to store different kinds of grasp data in a logical and useful way.
- In designing the database, we will also want to consider:
 - Data Integrity (Keeping data complete)
 - Normalization (Ensuring data is not redundant and confusing)
 - Extensibility (Keeping our design open to improvements)
Columbia University's Robotics Group has implemented an open source Grasp Database that is similar in nature to our proposed database.

- Their database is a PostgreSQL DB and contains many (~240,000) grasping experiments.
Their Architecture (cont.)

- After downloading their database, I noticed a few good design choices.
- Columbia used a few different hands in their grasp experiments, so they created a “Hand” table to represent the different manipulator end effectors.
- They used a “Grasp” table to represent each grasp.
Proposed DB Server for GAD

- PostgreSQL is considered one of the most reliable and most competitive free and open source database server.
- A DBMS is included with the server.
Proposed DB Schema
The database is divided into three main regions:

- Tables corresponding to the manipulator and its properties
- Tables corresponding to a particular grasp and its properties
- Tables corresponding to a grasped object and its properties
For each entry in the “Grasp” table, we can associate properties of the Manipulator and Object that is being grasped in their respective tables.

This data can be time dependent.

We should be able to reconstruct every grasp with the data in these 3 table families.

Video data may present additional difficulties.
Future Enhancements

- A goal of the GAD should be flexibility to accommodate new grasping scenarios.
- New tables should be introduced as we implement post-processing and machine learning routines.
Thanks

• Thanks to Columbia Robotics Group and you all for your time!