Self-Learning Rock Paper Scissors Robot

Bryant Pong
Q-Learning Algorithm

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t(s_t, a_t) \times \left[R(s_t) + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right] \]

Four variables needed (all variables are \([0, 1]\)):

Alpha (learning rate): higher alpha is to 1, robot learns faster, but incorrect moves will affect the robot more

Gamma (discount factor): higher gamma is to 1, robot will use learned information rather than performing random moves

Epsilon (probability of a learned action): epsilon starts off at 0.999, decrements after robot performs a move

Kappa (thoroughness variable): kappa ensures that more accurate values are recorded for the future
The Robot

• 3 Touch Sensors/3 Motors
Rock (Retracted)
Rock (fully extended)
Decision Making

- **Markov Chains**
- 3 x 3 x 3 array (like a Rubik’s cube)
 - 1st Dimension: Move Player Made (rock, paper, scissors)
 - 2nd Dimension: Move Robot Made (rock, paper, scissors)
 - 3rd Dimension: Result (robot won, lost, or tied?)
- Array stores probability of success for a given state
How does the robot make a decision?

```plaintext
if(norm_random() > epsilon)
{
    //Use learned information
    ClearScreen();
    TextOut(0, LCD_LINE1, "I'm thinking...");
    Wait(1000);

    //loop through all possible choices
    for(i = 0; i < CHOICES; i++)
    {
        //use the lookup table to determine what the best
        //move to make to counter the player's move
        if(qscores[initial_input][i] > max_q_score)
        {
            //find the move with the highest success rate
            //and store if
            max_q_score = qscores[initial_input][i];
            next_movement = i;
        }
    }
}
```
Reward System

if((i == 0 && j == 0) || (i == 0 && j == 2) || (i == 1 && j == 0) || (i == 1 && j == 1) || (i == 2 && j == 1) || (i == 2 && j == 2))
{
 reward = -10000;
}

//otherwise, the robot must win; reward it with a virtual point!
else
{
 reward = 1;
}
How does the reward system work?

• Robot gains *virtual points* when it wins; loses *10,000* points when it ties/loses

• Example: Give a kid $20 if he can learn to fly

• Kid tries to crawl, walk, run, and jump to fly

• Eventually, kid learns that he cannot fly

• Along the way though, kid learns how to crawl, walk, run, jump