WAM/Hand Simulink Controller

Rensselaer Polytechnic Institute
Robotics Lab

John Behmer
Overview

- Background on Barrett Arm and Hand
- Required Matlab Toolboxes
- System Diagram
- The Controller
- Some Challenges
- What's left to be done...
Background on Barrett Arm/Hand

- **Barrett Arm**
 - 4 DOF and 7 DOF models (7 DOF includes wrist)
 - Human like, back-drivable, low friction
- **Barrett Hand**
 - 3 Fingers and a “Spread Joint”
 - Spread is back-drivable, fingers are not
 - Strain gauges (optional) in fingers
How did we get here?

• Barrett's code is ugly :-)
• UNM (Greg Starr and Matt Courtney)
 • Matlab/Simulink Controller for the WAM
 • Low level functionality
• Used this as our base
 • Gravity compensation
 • Convert 7 DOF to 4 DOF
Matlab Toolboxes

- Matlab – this one's easy
- Simulink – block diagram programming for dynamic systems, simpler than C code
- Real Time Workshop – Generates C code from Simulink models
- xPC Target – a very fast real-time OS which the compiled C code can be downloaded to
The Controller

- 500 Hz arm, ~30 Hz hand
- Gravity Compensation
- No friction/coriolis/centrifugal compensation
 - Instead use really high gains with really small steps
- 3 modes of operation
 - Joint Space
 - Cartesian Space
 - Impedance (a work in progress by Chris)
Joint Space

• Simple PID on top of gravity compensation
 • q = joint position
 • e = joint position error

\[\begin{align*}
 e &= q_{\text{des}} - q \\
 \dot{e} &= q_{\text{des}} - \dot{q}
\end{align*} \]

\[\tau = G(q) + K_p e + K_d \dot{e} + K_i \int e \, dt \]
Cartesian Space

• We already have joint space control
• Convert Cartesian Space back into Joint Space
 • Using inverse kinematics? No
 • Using the Jacobian (4 dof) – with very small \(dt \), the approximation is not too bad

• End result: change in \(q \) gives us our desired change in \(w \)

\[
\dot{w} = J \dot{q} \\
\frac{dq}{dt} = J^{-1} \frac{dw}{dt} \\
\dot{q} = J^{-1} \dot{w} \\
dq = J^{-1} dw
\]
Forming Trajectory

- Trapezoidal Profile
 - In Cartesian Space or Joint Space
Some Challenges

- **Maximum Joint Torque**
 - Solution: Set WAM property

- **Velocity Feedback**
 - Solution: TBD (Kalman filter?)

- **Steady State Errors**
 - Solution: Small time steps, high gains
 - Excellent tracking ability
 - Small vibration though
Where are we now?

- Very nice UDP interface from Matlab
 - 3 modes as described previously
- Matlab feeds high level control commands, and receives feedback
- Streams from cameras at the same time
- Saves all data in a very large struct
 - Can be pushed out to grasp database (almost)
What's left?

- A ton of things. Here are a few...
 - Real time controller for the hand
 - Filter velocity from arm, dampen vibrations
 - Setup grasp database to hold all the new data
 - Run camera system in a parallel thread
 - Grasping experiments comparing to dvc 3d
 - Camera calibration to align coordinate frames
The End

• Thanks! Questions?