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Abstract

In the paper we show that for every set ofn disjoint line
segments in the plane, there is a partition (more may exist)
of the plane inton+1 open convex cells whose dual graph
is 2-edge connected. Questions about the dual graph of
a convex partition are motivated by the still unresolved
conjecture about compatible geometric matchings.

For a setS of disjoint line segments in the plane, a
convex partition of the plane is a setC of open convex
cells such that the cells are pairwise disjoint, they are dis-
joint from any segment, and their closures cover the en-
tire plane. Note that every segment endpoint must be in-
cident on at least two cells. Letσ be an assignment of
every segment endpoint to two adjacent convex cells. The
convex partitionC and the assignmentσ defines adual
graphD(C, σ): the cells inC correspond to the nodes of
the dual graph, and every segment endpointp corresponds
to an edge between the two cells assigned top. Forn dis-
joint segments, the dual graph has2n edges, with possible
double edges (see Fig. 1(a) ).
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Figure 1:Dual Graph and Extension Trees

Theorem 1. For every set ofn disjoint segments in the
plane, there is a convex partition withn + 1 cells and an
assignmentσ such that the dual graphD(C, σ) is 2-edge
connected.

It is straightforward to constructa convex partition for
a set ofn segments as follows. Letπ be a permutation on
the2n segment endpoints. Process the segment endpoints
in the orderπ. For an endpointp, extend the incident
segment beyond the endpoint until until the extension hits
another segment, a previous extension, or infinity. If no
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three segment endpoints are collinear, then this algorithm
producesn + 1 convex cells forn segments, and every
segment endpoint is incident on exactly two cells. We call
this a STRAIGHT-FORWARD convex partition,Cπ. Aich-
holzeret al. [1] conjectured that there is a permutationπ
such that the dual graphD(π) is the union of two span-
ning trees. The conjecture would immediately imply that
such a dual graph is 2-edge connected. We present a coun-
terexample to this conjecture (see Fig. 2).

Theorem 2. For everyn ≥ 15, there aren disjoint seg-
ments in the plane such that the dual graphD(π) has a
bridge (cut edge) for any permutationπ.
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Figure 2:Counterexample with 15 segments

Constructing a convex partition

In a STRAIGHT-FORWARD convex partition (defined
above), whenever two extensions meet, one of them stops
and the other one continues in its original direction. Here,
however, we let the two extensions merge and continue
in any direction in the closed wedge bounded by the two
extensions; every resulting cell is still convex.

In particular, we use the concept ofextension treesin-
troduced by Boseet al. [2]. A set S of n disjoint line
segments in the plane is a matchingM with 2n vertices.
We augmentM with directed edges(including directed
rays going to infinity) and the Steiner vertices they in-
duce, such that the directed edges and the input segments
jointly partition the plane into convex cells.

We require that: (1) every segment endpoint emits ex-
actly one outgoing edge; (2) every Steiner point disjoint
from M is incident on exactly one outgoing edge; (3) no
Steiner point on an input segment is incident on any out-
going edge; and (4) the directed edges do not form a cycle.
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Theextended-pathof a segment endpointp is a directed
path along directed edges starting fromp and ending on an
input segment or at infinity. Anextension treeis the union
of all extended-paths that have a common endpoint, which
is called theroot of the extension tree.

In our construction, we letσ assign a segment endpoint
p to the two cells adjacent to the unique outgoing edge
incident onp. Thus the 2-edge connected dual graphs
D(C, σ) can be characterized by a forbidden pattern (see
Fig. 1(b)).

Lemma 1. A dual graphD(C, σ) is 2-edge connected if
and only if no extended-path of any segment endpoint hits
the same segment.

Algorithm. We are given a setS of n disjoint line seg-
ments. First we draw extension trees that go to infinity
as follows. Draw successively any straight-line extension
that goes to infinity or hits a previously drawn extension.
After this initial step, the straight-line extension of any
remaining segment endpoint hits another segment. We re-
peat the subroutine ADDTREE for adding new maximal
extension trees until all extended-paths have been drawn.

Subroutine ADDTREE.
1. Find a segment endpoint whose extended-path has

not been drawn but its straight-line extension hits a
segmentpq such that at least one of the extended-
paths of pq has already been drawn (refer to
Lemma 2).

2. Draw the straight-line extension of the unextended
endpoint and successively draw any new straight-line
extension that hits a previous extension. We have
created a maximal extension treeT whose rootr
is incident on the segmentpq. Since at least one
extended-path ofpq is part of a previous extension
tree, at most one extended-path ofpq can be part of
T .

3. If an extended-path ofpq is a forbidden path, we
modify T with subroutine FLEXTREE(T ) below.

In subroutine FLEXTREE (see Fig. 3), we will modify
T while maintaining two invariants: (a) the interior ofP
expands; (b) pointss andr remain vertices ofP ;

Subroutine FLEXTREE(T )
1. Loop until a new segment endpoint appears on the

extended-pathγ. Let −→xy be the last edge of the
(flexed) polygonP alongγ such that the verticesx
and y are Steiner, andx is convex. Let−→yz be the
other edge incident ony alongγ. Let −→wy be a third
directed edge incident ony, in the exterior ofP such
that−→yz and−→wy are consecutive in among the edges
incident ony.
Rotate the edge−→xy so as to expand the polygonP . If
∠xyz > 180◦, then also move−→yz. Rotating the edge
−→xy will result in one of the following four cases:

(a) y arrives atw andw = (p′) is a segment end-
point.

(b) y arrives atw andw is a Steiner point disjoint
from input segments (iterate).

(c) −→xy or−→yz meets an endpointp′ whose extension
is not in the boundary of the polygonP . Notice

this is the case where the segment endpointp′

is incident on at least three cells.
(d) −→xy becomes collinear with the previous edge of

P (iterate).
2. Split the treeT by calling the recursive subroutine

SPLITTREE(T, p′).
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Figure 3:FlexTree Operation (a), (b) and (c)

Subroutine SPLITTREE(T, p′)
1. Split treeT into two extension treesT1 andT2. The

treeT1 consists of the extended-paths that terminate
at r, andT2 consists of the extended-paths that now
terminate atp′.

2. If treeT2 contains a forbidden path, then call subrou-
tine FLEXTREE(T2).

Lemma 2. If some extended-paths have been drawn and
the straight-line extension from every unextended end-
point would hit another segment (rather than a previous
extension or infinity), then we can draw a new straight-
line extension that hits another segment which has at least
one already extended-path.

Lemma 3. SubroutineFLEXTREE(T ) modifies an input
extension treeT with a forbidden extended-pathγ until a
segment endpointp′ appears alongγ, wherep′ 6= p and
the extended-path ofp′ is part ofT . During this modifi-
cation, the set of extended-paths inT remains the same,
and T remains disjoint from all previously drawn exten-
sion trees.
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