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ABSTRACT:

Fragmentary river segments have to be joined appropriately before becoming useful to addressing transportation problems like route
planning and pollutant tracking. When height observations are available at the given river locations only, conventional terrain recon-
struction techniques often fail to help to classify river/non-river locations at the tributaries. We propose using the hydrology-aware
variant of Overdetermined Laplacian Partial Differential Equation (ODETLAP) to improve the situation. Its original version features
regularizing every position, known or unknown, with the average of its immediate neighbors. Slope continuity as a result helps infer
ridges at regions between the river segments, which is crucial to correct tributary formation. To honor the given river locations as
local minima, in this ODETLAP variant we regularize the corresponding heights to values smaller than the respective neighborhood
averages. When this average deflation is large enough, the given river locations become local minima in the reconstructed terrain. We
foresee application of our solution framework in a few 2D or 3D network tracing problems having similar sample distribution, like
dendrite network reconstruction.

1 INTRODUCTION

Knowledge of the complete river network is essential to a num-
ber of geographical and environmental applications. For exam-
ple, we need to know how the river segments are connected to
design the shortest route for a ship to travel from one place to
another. We have to identify the exact segment connectivity and
river locations before determining the areas that are likely to be
affected by pollutants or flooding. However, that information is
usually not immediately available with conventional surveying
techniques. The presence of clouds and canopies often occlude
parts of the river network (Asante and Maidment, 1999). We are
only able to identify the river segments.

To apply these data to connectivity applications, we need to join
these river segments appropriately. A complete river network
is usually a fully-connected tree. Branches can be multiple-cell
thick, but very often we aim to figure out one-cell thick branches
representing the middle lines of the rivers. We usually expect
that every river location has a single way for the water to reach
some sea shore or terrain edge (Asante and Maidment, 1999).
If we have fragmentary river observations only (no height data
are available), what we can do is to extend the segments (Asante
and Maidment, 1999). Criteria like shortest connection distance
or segment curvature preservation may be assumed to guide the
process. However, the search space is still huge. Numerous so-
lutions are possible. In contrast, if some other terrain property,
which is usually the set of elevations, is also known, we may rule
out certain possibilities. For example, it is nearly impossible for a
river segment on one side of the hill to meet another river segment
on the other side.

In our previous work (Lau and Franklin, 2010), we reported that
such height awareness can be achieved by the induced terrain
approach, which involves first reconstructing a full terrain with
a hydrological corrected terrain reconstruction algorithm, and
then deriving a river network using the biased river derivation
algorithm that favors given river locations. Figure 1 illustrates
the whole workflow. If height samples are available across the
terrain, we recommend natural neighbor interpolation and stream

burning (NN-SB) as the underlying terrain reconstruction algo-
rithm. This one-pass tactic honors the entire given river locations,
and offers reasonably accurate river/non-river classification even
when compared with other multi-pass alternatives.

Figure 1: Workflow of the induced terrain approach of river net-
work reconstruction.

This work describes a strategy for some even more hostile situa-
tions in which height samples are only available at certain given
river locations. In such cases, we find that replacing NN-SB with
the hydrology-aware variant of Overdetermined Laplacian Partial
Differential Equation (HA-ODETLAP) gives much more accu-
rate river/non-river classifications at the tributaries. These types
of locations are where other conventional schemes depend heav-
ily on given height samples to infer ridges and valleys crucial to
correct water distribution and river formation. In Section 2 we
will explain why this is the case through a review of the basic
ODETLAP. In Section 3 we will describe how the basic ODET-
LAP framework is adapted to incorporate given river locations in
order to honor them as local minima as we expect for real river
locations. In Section 4, we will suggest what this finding implies
for future work, like potential applications to problems of a simi-
lar nature.



2 OVERDETERMINED LAPLACIAN PARTIAL
DIFFERENTIAL EQUATION

2.1 Basic version

ODETLAP stands for Overdetermined Laplacian Partial Differ-
ential Equation (Gousie and Franklin, 2005, Xie et al., 2007)
(Some refer to it as Inverse interpolation (Claerbout and Fomel,
2008)). This approach solves for an n × n elevation grid Z =
{zi,j} where 1 ≤ i, j ≤ n through setting up an overdetermined
system. The unknowns are all the n2 points in the elevation grid,
whether their height values are already known or not. Each posi-
tion whose height is known induces two equations, an averaging
equation and an exact equation. The averaging equation is in gen-
eral

zi,j = (zi−1,j + zi+1,j + zi,j−1 + zi,j+1)/4 (1)

which is the discretized version of the following Laplacian Partial
Differential Equation.

δ2z

δx2
+

δ2z

δy2
= 0 (2)

(N. B.: We will have slightly different treatments if the point is
on an edge or at a corner of the grid.)

The exact equation is
zi,j = hi,j (3)

where hi,j is the known height at that position.

For each unknown-height position, only an averaging equation is
created.

As a result, if k of the n2 positions have known heights, there
are n2 + k equations for the n2 unknown variables. k of them
attempts to set the heights of the known-height positions to the
respective values, while the remaining n2 equations impose a
regularization constraint, which in this case smoothes the over-
all surface by trying to set the height value of each position to the
average of its immediate neighbors.

When there are more equations than the unknowns and the sys-
tem of equations is inconsistent, we optimize for a least squares
solution. We can bias the solution to particular equations by mul-
tiplying a factor R > 1 to both sides of the respective equations.
In the original implementation, we can increase our bias to all the
averaging equations for a smoother surface but reduced accuracy
and vice versa. Figure 2 presents an overview of the system.

Figure 2: Original ODETLAP

The superiority of the ODETLAP approach lies in its ability to
handle continuous contour lines of elevations and isolated points
at the same time. Also, while producing a surface that infers
mountain tops inside innermost contours, it enforces continuity of
slope across contours. As a result, it shows no visible indication

of the input contours, i.e., no generated terraces (Franklin et al.,
2006).

Note that any equation in the system cannot have more than five
variables. As a result, the coefficient matrix A is sparse. Sparse
linear systems can be solved rather quickly using sparse QR fac-
torization. We can speed up the computation even more by mul-
tiplying the adjoint of A to both sides of the linear system (from
Az = b to AT Az = AT b) before solving for z. The new coeffi-
cient matrix AT A is symmetric positive definite. Much more ef-
ficient computation using Cholesky factorization is available (Li
et al., 2010). Solving a 400 × 400 dataset takes about 30 CPU-
seconds on a Lenovo Thinkpad X61 with one 2.1GHz dual-core
Centrino vPro processor and 3GB RAM running Windows Vista.
For larger datasets, we can partition the problem, solve the pieces
in parallel, and smoothly merge them together (Stookey et al.,
2008). Such a divide-and-conquer approach means we are re-
quired to recompute a local subblock rather than the whole grid
when there is a local data update. Such cost saving is critical for
dealing with terrain data which are increasingly massive.

2.2 Extension to include known river locations

River locations are expected to be local minima relative to sur-
rounding non-river locations. To honor this expectation in HA-
ODETLAP which is the hydrology-aware version of ODETLAP,
we modify the averaging equation at each known river location:
we regularize its height to a value smaller than the respective
neighborhood average. For example,

zi,j = (zi−1,j + zi+1,j + zi,j−1 + zi,j+1)/4f (4)

where f is the average deflation factor: if we increase its value
from 1, the value imposed to zi,j by this averaging equation de-
creases from the neighborhood average. With sufficiently large
f , that value will be smaller than any of its non-river immedi-
ate neighbors. The computed surface will have a local minimum
at that location. An illustration is shown in Figure 3. Another
possible realization of the formula is available (Muckell, 2008).

Figure 3: Test case for HA-ODETLAP. Known river loca-
tions with respective heights (top). Terrain recovered using
basic ODETLAP (bottom left). Terrain recovered using HA-
ODETLAP f = 1.04 (bottom right).

Figure 4 illustrates the overall system of our hydrology-aware ex-
tension. Note that we just change the values of some non-zero
entries in the A matrix. Zero locations in the original system re-
main zeros. The sparsity structure of the A matrix is not changed.



Thus the modified system can be solved within a time similar to
the original system.

Figure 4: HA-ODETLAP

As in the original system, the accuracy-smoothness parameter
R determines our trade-off between smoothness of the recon-
structed terrain and accuracy of the known heights. Here since all
the height samples are concentrated at the river locations, terrain
surface smoothness is not that relevant, and this justifies a high
accuracy setting, say R = 20. The new parameter f is much
more interesting and thus worth more attention. To look into how
this parameter affects river location production and recovery, we
conduct the following experiment.

Our test dataset includes some six 400 × 400 digital elevation
models (DEMs) shown in Figure 5. A bigger plot of mtn1 is
available in Figure 6 top left.

Figure 5: Test 400×400 DEMs: (first row) hill1, hill2, (second
row) hill3, mtn1, (third row) mtn2, mtn3.

We first run r.watershed in GRASS GIS (Ehlschlaeger, 2008)
with accumulation cutoff threshold = 200, initial water amount at

each location = 1 over these six DEMs to obtain the respective
theoretical four-connected river networks. (Figure 6 top middle
shows the full river network of mtn1.) Next, we sample for the
partial heights and river locations as follows: For river locations,
first we divide the whole grid into 20 × 20 subgrids. In each
subgrid, we randomly pick a point and mask an area of 12 × 12
around it. Heights are provided at given river position only. (Fig-
ure 6 top right shows the resulting partial river network of mtn1,
while its bottom left shows the locations where heights are avail-
able.) After that, we pass the partial heights and river locations
data to our algorithm at five different f settings: 1.00, 1.01, 1.02,
1.03 and 1.04, and obtain the respective reconstructed terrain sur-
faces. Finally, we bias r.watershed as described in our previ-
ous work (Lau and Franklin, 2010) to figure out the respective
river networks that honor the entire given river locations. We
compute the river/non-river correct classification rates to quan-
tify how well the respective settings perform.

Dataset
HA-ODETLAP with f NN-SB

1.00 1.01 1.02 1.03 1.04
mtn1 6.89 2.59 2.50 2.45 2.45 4.20
mtn2 6.86 2.73 2.71 2.64 2.62 4.42
mtn3 6.17 2.77 2.64 2.69 2.71 4.14
hill1 6.15 2.60 2.67 2.73 2.72 3.18
hill2 6.75 2.41 2.51 2.56 2.58 3.78
hill3 6.52 3.50 3.50 3.51 3.54 3.43

Table 1: Error rates of HA-ODETLAP under different average
deflation factors f , together with natural neighbor with stream
burning (trench amount=30). Inside each cell is the classification
error with respect to the ground truth.

Table 1 shows how f matters. f = 1.00 is equivalent to the orig-
inal implementation. At that setting, HA-ODETLAP performs
worse than NN-SB because the algorithm does not model the
given river locations as local minima properly. For all other set-
tings, we see significant improvement over NN-SB. Indeed, we
find that for this particular set of terrains, f = 1.02 gives consis-
tently satisfactory results in general.

Figure 6 bottom middle and right show the recovered river con-
nections using these two terrain reconstruction schemes. One
may immediately realize that the tributaries cannot be correctly
reproduced when NN-SB is used: in this case we do not have any
height sample in the non-river area. As a result, NN-SB fails to
reconstruct proper V-shape centered at the river lines across the
non-river regions, which is important for deducing proper tribu-
taries. In contrast, the hydrology-aware adaptation in ODETLAP
infers local minima as long as the corresponding locations are
defined to be river locations, regardless of whether heights are
available.

3 CONCLUSION AND FUTURE WORK

We have proposed the hydrology-aware Overdetermined Lapla-
cian Partial Differential Equation (HA-ODETLAP) as a neat so-
lution to resolving for tributaries when height sample is only
available at the given river segment locations. By regularizing
all given segment locations as local minima and other locations as
the immediate neighborhood average, ridges and valleys are prop-
erly induced not only at given river locations but also areas with-
out any height samples. We believe that is the reason why HA-
ODETLAP induced-terrains offer superior tributaries and hence
smaller river/non-river classification errors because of their huge
contribution to the complete river network locations.



Figure 6: Full elevation (top left). Full river network (top middle). Available partial river segments(top right). Locations where heights
are available (bottom left). NN-SB river reconstruction result (bottom middle). Hydrology-aware ODETLAP result with f = 1.02
(bottom right).

Having seen the success of this set of techniques with complet-
ing hydrology networks, we are eager to port the same solution
framework to complete some other 2D or 3D networks with sim-
ilar sample data distribution. For example, in 3D dendrite net-
work recovery problems, we are trying to connect the dendrite
segments, each of which is represented by a tubular structure
with decreasing gray-scale intensity away from the axis, in such
a way that they are all eventually linked to the neuron nucleus.
If we model the dendrite pieces as river segments, the inverted
gray-scale intensities as heights, and the nucleus location as the
only place for all rivers to end (instead of any edges of the terrain
grid), we essentially transform this problem to a 3D river segment
connection problem. We are investigating whether our solution
framework can give an elegant and more accurate solution than
the existing approaches.
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