* Faculty       * Staff       * Students & Alumni       * Committees       * Contact       * Institute Directory
* Undergraduate Program       * Graduate Program       * Courses       * Institute Catalog      
* Undergraduate       * Graduate       * Institute Admissions: Undergraduate | Graduate      
* Colloquia       * Seminars       * News       * Events       * Institute Events      
* Overview       * Lab Manual       * Institute Computing      
No Menu Selected

* News


Distributed Estimation in Dynamic Networks

Speaker: Stacy Patterson
Technion - Israel Institute of Technology

May 22, 2013 - 11:00 a.m. to 12:00 p.m.
Location: 1C13 Jonsson-Rowland Science Center
Hosted By: Dr. Elliot Anshelevich (x6491)


Distributed estimation algorithms generate an estimate of a global network state using only local interactions. In large networks with a vast wealth of data, it is important that these algorithms capture relevant information in a compact form and that they are robust to network dynamics. In the first part of this talk, I will focus on the effects of network dynamics on a well-known distributed estimation problem, the distributed average consensus problem. Distributed average consensus algorithms have a wide variety of applications, including sensor fusion, distributed optimization, and autonomous vehicle formation control. I will present our recent work on the stability and robustness of consensus algorithms in dynamic networks and show the analytical relationship between algorithm performance and the network size, topology, and dynamic characteristics. A notable result is that network topology imposes fundamental limitations on the scalability of distributed consensus algorithms that cannot be overcome without global information.

In the second part of the talk, I will address a more sophisticated approach to distributed estimation based on compressed sensing. Recent works have demonstrated that compressed sensing is applicable to a variety of problems in sensor networks, including urban environment monitoring and traffic estimation. I will show how we leveraged work in the database literature to develop a distributed compressed sensing algorithm that outperforms previous approaches by several orders of magnitude in both time and message complexity, making it an efficient solution for resource-challenged networks. I will then connect this algorithm with distributed average consensus by showing how we combine the two algorithms to obtain an efficient distributed compressed sensing algorithm suitable for dynamic networks.


Stacy Patterson is a Technion Postdoctoral Fellow and a Viterbi Postdoctoral Fellow in the Department of Electrical Engineering at Technion – Israel Institute of Technology. She received her M.S. and Ph.D. in Computer Science from the University of California, Santa Barbara in 2003 and 2009, respectively. From 2009 to 2011, she was a postdoctoral scholar in the Center for Control, Dynamical Systems, and Computation at the University of California, Santa Barbara. Her research interests are in distributed algorithms and their applications in aggregation, estimation, and control.

Last updated: May 17, 2013