* Research

All Research Groups

The following research groups exist in the Computer Science Department. Applicants to the graduate program should apply to one of the groups listed below. They should indicate their choice on the admission application where it asks for "Intended area of research or specialization." Graduate applicants should also check the faculty page to see which faculty are on sabbatical or not accepting new graduate students.

Social and Cognitive Networks Academic Research Center

The Center for Social and Cognitive Networks links together top social scientists, neuroscientists, and cognitive scientists with leading physicists, computer scientists, mathematicians, and engineers in the search to uncover, model, understand, and foresee the complex social interactions that take place in today's society. All aspects of social networks, from the origins of adversarial networks to gauging the level of trust within vast social networks, are investigated within the center.

Principal Faculty: Sibel Adali, Mark Goldberg, Jim Hendler, Malik Magdon-Ismail, Boleslaw Szymanski.

Tetherless World Constellation

This research focuses on the emerging area of Web Science and the evolving web and related semantic technologies. Active areas of research include: knowledge provenance and explanation; privacy, policy, and workflow transparency; trust, social networking, and collaboration technologies; cyberinfrastucture for data integration, particularly for science data; ontology evolution environments; and ethical, policy, and social aspects of Web use and usability.

Research Labs: eGovernment Data Lab, Web Science Research Center.
Principal Faculty: Peter Fox, James Hendler, Joanne Luciano, Deborah McGuinness.

Data Science: Data Mining; Machine and Computational Learning; Algorithms for Massive Data Sets

This research area deals with the theoretical and applied aspects of automated information extraction (knowledge discovery) from data. For large data sets, emphasis is placed on developing efficient, scalable, and parallel algorithms for various data mining techniques in addition to the data management itself. Examples include association rules, classification, clustering, and sequence mining. For small data sets, the emphasis is on robust computational learning systems (supervised, unsupervised and reinforcement) and their theoretical properties. Application areas include combinatorial optimization, computational biology (bioinformatics, computational genomics), biomedical engineering, public health informatics, cheminformatics, web mining, geographic information systems and computational finance.

Research Labs: Laboratory for Learning from Data (LFD-Lab)
Principal Faculty: Kristin Bennett, Petros Drineas, Mark Goldberg, Malik Magdon-Ismail, Bülent Yener, Mohammed J. Zaki.

Algorithms and Theory

Theory of Computation provides the foundation needed for effective applications. The theory group at Rensselaer's Computer Science Department brings together researchers in many areas of Computer Science to develop novel approaches and solutions to problems in information technology. Our research is characterized by close collaboration with researchers in diverse application areas, such as networking; bioinformatics; visualization; pattern recognition, physics and astronomy; digital library, data mining; and experimental algorithmics.

Principal Faculty: Elliot Anshelevich, Petros Drineas, Mark Goldberg, Mukkai Krishnamoorthy, Malik Magdon-Ismail. Bülent Yener.
Emeritus Faculty: Robert McNaughton, Dave Musser.

Computer Vision

Research in computer vision in the Department of Computer Science has taken a new direction. Professor Charles Stewart and his students, both graduate and undergraduate, are working on applications of computer vision to problems in environmental monitoring, with the largest domain being oceanography. A wide range of problems arise, including illumination modeling and color correction, registration and 3d reconstruction, motion analysis, and recognition. Practical issues of high-volume throughput and large-scale software system development are also under consideration.

Principal Faculty: Charles Stewart.


In order for robots to reach their full potential as productive members of society, they must become more autonomous, socially adept, and dexterous. Toward this end, the research in the Computer Science Robotics Laboratory is focused on three areas: grasping and manipulation, physical simulation, and planning and control for autonomous operation in unstructured environments.

Principal Faculty: Jeff Trinkle.

Computational Science and Engineering

Students and faculty members work on computational approaches and algorithms to solve large-scale problems that arise in natural science and engineering. Current research includes massively parallel computing methods, adaptive methods for solving partial differential equations, multiscale computations, scientific software libraries, algorithms for medical imaging and tomography, high-performance matrix algorithms, computational biology, and parallel adaptive unstructured mesh methods.

Principal Faculty: Mark Shephard.
Related Faculty: Malik Magdon-Ismail, Boleslaw Szymanski, Carlos Varela.

Computer Graphics

The faculty and students in the Computer Graphics Research Group are interested in a wide variety of rendering, geometry, simulation, and visualization problems motivated by computer games, special effects in movies, architectural design & pre-visualization, and many other exciting applications. We study topics including physically-based digital sculpting, efficient high-quality photo-realistic rendering, new data representations and algorithms, and the use of modern graphics hardware for interactive applications. Other topics include modeling terrain and compressing large datasets in computational cartography and geographic information science.

Principal Faculty: Barbara Cutler, Wm. Randolph Franklin.


Bioinformatics is the science of managing, retrieving, analyzing, and interpreting biological data. Research is being carried out on topics such as sequence assembly, protein and RNA structure prediction, sequence/structure/motifs, comparative genomics, and the gene regulatory networks. Research also spans emerging areas like microarray data analysis, protein design, high dimensional indexing, database support, information integration, and data mining.

Principal Faculty: Chris Bystroff, Lee Newberg, Bülent Yener, Mohammed Zaki.

Pervasive Computing and Networking

Researchers investigate computer networks and their protocols, with a focus on wireless and sensor networks through the International Technology Alliance, a new 10-year research consortium led by the IBM Research Division and funded jointly by the US and UK Governments with participation of the leading researchers in the world. The focus is on sensor information processing and delivery, improvement of the quality of information obtained from sensor networks and adaptation of sensor networks to the dynamically changing user demands. Another area of activity is the security of computers, networks, and sensors. Secruity concerns are quickly becoming a significant barrier to the wide-spread acceptance of pervasive computing. The research tackles such issues as trust in Internet communications, identity of groups on the Internet, cryptographic and systemic challenges in sensor networks. Finally, in the area of high-performance pervasive computing, the focus is on computational environments in which task allocation, migration, and fault tolerance are supported automatically and on application of such environments to computations relevant to different scientific disciplines.

Research Labs: Worldwide Computing Laboratory, Center for Pervasive Computing and Networking
Principal Faculty: Chris Carothers, Boleslaw Szymanski, Carlos Varela, Bülent Yener.


Researchers in the security group focus on security problems at the systems level including discovering hidden networks in social networks; network camouflaging; and privacy protection in data mining systems.

Principal Faculty: Malik Magdon-Ismail, Boleslaw Szymanski, Bülent Yener.
Related Faculty: Mark Goldberg.

CogWorks Laboratory

At the CogWorks Lab we are interested in basic and applied research in the area of immediate interactive behavior. On the basic side, we are working to understand the interplay of cognition, perception, and action in routine interactive behavior. These interests entail understanding top-down versus bottom-up control of behavior, the role of implicit versus explicit knowledge, internal versus external representations, and knowledge in-the-head versus knowledge in-the-world. On the applied side, we specialize in the field of Cognitive Engineering (cognitive science theory applied to human factors issues). Our research methods include behavioral and performance measures (including eye-tracking), brain-based measures (EEG), and computational cognitive modeling (usingACT-R, SanLab, and closed form modeling).

Faculty: Wayne Gray.

Logic-Based Artificial Intelligence (RAIR Lab)

Researchers in the RAIR Lab design and build intelligent agents, software, robots, etc. on the basis of formal logic. R&D has been and is sponsored by NSF, ARDA/DTO, AFOSR, etc. PhD students need to have some background in logic, AI, and corresponding programming paradigms.

Faculty: Selmer Bringsjord.

Programming Languages and Software Engineering

The Programming Languages and Software Engineering research group investigates programming models, languages, concepts, methodologies, and tools to enable the development of correct, efficient, reliable, and maintainable software.

Principal Faculty: Ana Milanova, Carlos Varela.
Emeritus Faculty: Dave Musser.

Database Systems

This research area deals with the efficient and effective methods for storing, querying and maintaining data from possibly disparate and heterogeneous resources. Data is used in many different applications from scientific data sets, sensor data, images, video and audio to hypertext documents, and data on stock market behavior. Research focuses on methods for caching data, querying large and distributed databases and supporting applications such as computer-aided design and manufacturing and collaborative engineering.

Principal Faculty: Sibel Adali.
Related Faculty: Martin Hardwick, David Spooner.

Computational Geometry

Current research in computational geometry has two themes. The first concentrates on algorithms for the reconstruction of smooth geometric objects from their samples. Problems of interest include characterizing the conditions on sampling density, which allow a curve to be reconstructed from its samples. The reconstruction is homeomorphic and sufficiently close to the original and the algorithms developed to achieve the reconstruction. Also involved are the dependence of such algorithms on the dimension of the embedding space, related algorithms for the reconstruction of surfaces and manifolds, and finding the most concise representation of a manifold in terms of its samples. A second research track focuses on applications of computational geometry, particularly in robotic motion planning. The second computational geometry theme emphasizes small, simple, and fast geometric data structures and algorithms. Note that efficiency in both space and time can become more important as machines get faster. This research is applicable to computational cartography, computer graphics, computational geometry, and geographic information science. GeoStar, a recently concluded DARPA-funded project in this theme, modelled terrain to compress it and to site observers and then to plot motion paths to avoid those observers. A current NSF-funded project is modeling how levees erode as floodwaters overtop them.

Related Faculty: Barbara Cutler, Wm. Randolph Franklin.