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Abstract

We investigate the asymptotic behavior of the length Hy(n) of a maximal chain (longest
totally ordered subset) of a set of n points drawn from a uniform distribution on unit d-
dimensional Eulerian cube V4 = [0,1]%. For d > 2, it is known that c4(n) = Hy(n)/n'/4
converges in probability to a constant ¢; < e, with limg_,,,cq = e. For d = 2, the
problem has been extensively studied, and, it is known that co = 2. ¢4 is not currently
known for any d > 3. We present an experimental approach to the estimation of cg.
Straight forward Monte Carlo simulations to obtain ¢4 have already been proposed, and
shown to be beyond the scope of current computational resources. We propose two
experiments that result from a more careful analysis of the location of maximal chains.
The first experiment, boosting, improves upon the straight forward Monte Carlo by
narrowing the search area for maximal chains and developing specialized algorithms
for the search. The second experiment, co—convergence, further improves the efficiency
and is based upon a conjecture regarding the asymptotic behavior of c¢4(n) that we
formulate. We provide experimental support for our conjecture. Our experiments
yield new estimates for ¢4, for d € {3,...,6} which suggest that the sequence {c4} is
increasing in d. MRSC # 06A07,65C50

1 Introduction

Erdés and Szekeres proved in [7] that every permutation of {1,2,...,p? + 1} has either an
increasing or decreasing subsequence of length p+ 1. This result inspired Ulam to investigate



the expected value L,, of the length of a longest increasing subsequence in a random per-
mutation of n numbers. The Monte Carlo simulations conducted by Ulam ([14]) led him to
conjecture that the answer asymptotically approaches c¢y/n for some constant ¢ > 1. Based
on more extensive computations, Baer and Brock ([1]) conjectured that ¢ = 2. Hammersley
in [8], proved that 7/2 < ¢ < e, and presented heuristic arguments for the value ¢ = 2.
Logan and Shepp proved in [9] that ¢ < 2, and Pilpel [12] presented an elementary proof
of this inequality. Finally, Versik and Kerov ([15]) settled the conjecture by proving ¢ > 2.
The structure of the distribution of L, has been studied in [2], [5], [11].

The multidimensional generalization of the monotone subsequence problem was first con-
sidered by Steel in [13], who conjectured the existence of a constant that generalizes the
Hammersley’s constant ¢ to the d-dimensional case. The correct generalization was found
by Bollobés and Winkler in [4]. Let V4 = [0,1] be the unit cube in d dimensions and let
n random points x(1), x(2),..., x(n) be chosen independently from the uniform distribu-
tion on V. These points form the underlying set of a random order P4(n) with a partial
ordering given by x(7) < x(j) if and only if x4(7) < x¢(j) for all k =1,...,d. Let the height
H,(n) be the number of elements in a longest chain (totally ordered subset) of P4(n). We
are interested in the asymptotic behavior of the random variable

calm) = 247, 6

Bollobas and Winkler ([4]) have demonstrated that c4(n) converges in probability to a con-
stant ¢4 (d > 0). For convenience, we restate their theorem here.

Theorem 1.1 ([4]) Ford=1,2,..., define c; = limsup E[cq(n)], then

n—o0

1. cg<e.

2. For alle >0 and § > 0, there exists M (e,0) such that if n > M(e, ) then

P [ Hdl(/zb)
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3. lim ¢4 = e.
d—o0

Except for ¢, = 2, no other ¢4 is currently known. Further, it is not even known whether
or not the sequence {c;} is monotonically increasing in d. It is not hard to conceive a
computational experiment that would, hopefully, lead to approximate values of ¢4, for some
d> 2.

Experiment 1:

1. For a large integer n, randomly generate a set S of n points from the uniform
distribution on V4 = [0, 1]%.



2. Compute the height Hy(S) of S, the length of a maximal chain and c4(S) =
Hd(S)/nl/d.

3. Repeat these computations K times to obtain c4(S1), ca(S2), . - -, ca(Sk)-

4. Compute the mean, ¢4(n), and the standard deviation, o4(n), of the ¢4(S;)’s.

For K sufficiently large, one expects that ¢;(n) will be close to E[cy(n)] (to within o4(n)/VK),
and if n is sufficiently large, then E[cq4(n)| should be close to ¢;. The determination of whether
n is sufficiently large is a difficult problem. One usually runs an experiment for the largest
value of n that is practically feasible, given the current computational resources. Unfortu-
nately, however, it has been discovered through experimental investigations ([10]) that the
values of n that need to be considered in order to get a good approximation for ¢4 are not
computationally feasible. In particular, according to [10], n = 10° points for d = 3 is not
sufficiently large to suggest an estimate for c3. Thus, we would need to consider n at least as
large as 10'°. Since the standard dynamic programming algorithm for computing the length
of a maximal chain is quadratic in n, solving even one example with n = 10! points would
typically take a few weeks on a modern workstation. In order to develop reasonable statistics,
one would need several years. An equally acute problem is with the memory requirements
for such an experiment, namely, storing 10'° d-dimensional vectors in RAM is impossible on
almost any advanced workstation, and storing them on disk would substantially slow down
the algorithm.

Hence, the main challenge for an experimental approach to estimating c,4 lies in the design
of feasible computational experiments that estimate cq4(n) for very large n, even if it is
infeasible for Experiment 1. In this paper, we propose an approach that addresses both
the computational efficiency and the memory issues. The core idea behind our approach is
the observation that a maximal chain “close” to the diagonal of the unit cube V,; = [0, 1]¢
must exist as n — oo. We present a theoretical justification of this observation and use this
fact to construct sequences that converge to c;. Based upon geometrical considerations, we
conjecture that each of these sequences converges at essentially the same rate. We present
experimental data to support this conjecture, and then use this conjecture to derive, from
the data, estimates for {c;}, for d = 3,4,5,6. The intervals for ¢, for those values of d are
shown in Table 1. Our estimates suggest that {cs} is a monotonically increasing sequence
in d, a fact that has previously not been suggested by any experiments.

d=2 d=3 d=4 d=5 d=6
ca | [1.998,2.002] | [2.363,2.366] | [2.514,2.521] | [2.583,2.589] | [2.607,2.617]

Table 1: Estimates of ¢;. The intervals indicate the range in which we estimate ¢4 to lie.

The outline of the paper is as follows. The next section describes two approaches to the
design of experiments that build upon Experiment 1. The presentation is informal, and we
do not describe every detail of all attempts that were made. The only exception is for the



approach that actually yielded estimates for ¢4. In section 3, we present the data supporting
our conjecture, in addition to the data used for deriving the estimates for ¢;. All technical
details, proofs of three theorems, and many plots are presented in the appendix.

Acknowledgment. We are grateful to Catherine McGeogh for introducing us to the prob-
lem and sharing the information about her experiments.

2 Location of Maximal Chains

Since a longest chain is only a very small subset of the set of n random points in V(r),
we can expect to gain an advantage over the straightforward simulation in Experiment 1 by
restricting our search for such a chain to a small region where we are likely to find the chain.
Thus, our first task is to identify a region in the cube which with probability tending to 1 as
n — oo contains a maximal chain. It is intuitively apparent that a good candidate for such
a region is the set of points that are “close” to the diagonal, say, at most a distance r from
the diagonal. The justification of this observation is given in Theorem 2.1, which we prove
using a modification of Bollobas and Winkler’s proof of Theorem 1.1.

Let V4(r) be the region of V4 = [0,1]? obtained by translating a cube of side r along the
diagonal as shown in Figure 1. One can show (Theorem A.4 in the appendix) that the
volume Vy(r) of V4(r) is given by

Va(r) = r*+dr* (1 — 7). (3)
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Figure 1: Diagonal volume element obtained by translation of a cube of side r

Let n points be sampled uniformly in V4(r) to form a random partially ordered set Py(n, 7).
Denote the height of this set by Hy(n,r) and define the random variable c4(n,r) by

co(n.r :—Hd(n,r)
) = V)

4

(4)



Intuitively, we expect that if one were to generate n* = [n/V,(r)] points in the whole cube
V4, then about n of them would fall in V(7). If n* is large, a maximal chain should exist
in V4(r), thus Hy(n,r) should approximate Hy(n*), the height of P4(n*). Therefore, for n

sufficiently large,
Hy(n") ;
caln, 1)~ 250 = () (5)

Hence, for fixed r, c4(n,r) should converge to c¢4. This is exactly the claim of the next
theorem, which is essentially an analog of Theorem 1.1.

Theorem 2.1 Fizd € {1,2,...} andr > 0. For all e > 0 and § > 0, there exists M, (e, ?)
such that if n > M, (€, d) then

Plleg(n,r) —cql <€ >1-=9§ (6)

where the constants cq are given in Theorem 1.1.

PROOF: See the proof of theorem A.1 in the Appendix. [ |

Essentially, Theorem 2.1 states that for every r > 0, there is a sufficiently large n such
that a set of n points generated uniformly in a region close to the diagonal “represents”
a much larger “virtual set” generated uniformily in the whole cube. Thus, computing the
height of this smaller set would be equivalent (asymptotically) to computing the height of
the larger virtual set. This result has several interesting implications for our experiments.
The first is, of course, that we can restrict our search for a longest chain to points close
to the diagonal. The second is that there is no need to generate points in the whole cube.
Since we are interested exclusivly in the points that are close to the diagonal, we only need
to generate these diagonal points in a way that would be consistent with having generated
a larger number of points in the entire cube. A third, and crucial implication, is that if one
fixes an r > 0, then eventually, for large enough n, a maximal chain should fall in this region
close to the diagonal.

Thus, for a fixed » > 0, a Monte Carlo simulation to determine ¢4(n,r) can be used to
suggest a value for ¢4, provided n is sufficiently large. One might hope that the experiment
with a large and infeasible n* that yields a good estimate for c; would be equivalent to an
experiment with a feasible n ~ n*V;(r), for some r > 0. Thus, our general approach will be
to estimate E[cq(n,r)] for various n and r by Monte Carlo simulation, and use these values
to construct a final estimate for cg.

3 Boosting

Not every combination of n and r is computationally equivalent to an n* = [n/Vy(r)]. In
fact, for fixed n, as 7 — 0, cg(n,7) — (rn)'~"/4d"/¢, which approaches zero. This simply
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indicates that r is too small for the given n, and it is unlikely that a maximal chain of a
random set with n* points in Vy is located inside V4(r). On the other hand, if n is fixed
and r is sufficiently large, but less than 1, then it is likely that about n out of n* points fall
in Vy4(r) and a maximal chain exists within even a smaller distance of the diagonal than r.
These observations suggest that given n, there exists an optimal r = 7,,(n), which yields'
a maximal value for c4(n, 7op). In the next section, we present an algorithm for computing
ca(n,r) which requires O(rnd) memory and runs in O(rn?d) time. Thus, it is of practical
importance to select as small an r as possible for which c4(n,r) approximates c¢;. We are
thus led to the following experiment

Experiment 2 (Boosting):

1. Select a maximal feasible n.
2. Set 7 = 1, and obtain an estimate for ¢4(n, ).

3. Decrease 1 (r < r — ¢, for a suitably chosen €) and re-estimate cq(n, 7). Repeat
until é4(n, ) stops increasing.

4. Determine 7,,(n), the r after which ¢4(n, ) started to decrease.

5. If 7opt (n)n?d is much less than the available resources, increase n (n < n +ng, for
a suitably chosen ng). Compute ¢q(n, ). Go back to step 3.

6. Once a maximal n has been reached, and its associated optimal r, r,,(n) has
been determined, compute ¢4(n, 7opt) to the desired accuracy. Output this value
as the estimate for cy.

As the name of Experiment 2 suggests, given a maximal n for Experiment 1 (determined
by computational resources), we can boost up to a higher n* by going to a smaller 7., and,
perhaps, further increasing n as described in Experiment 2, while still using the same amount
of computational resources. Unfortunatelly, boosting does not quite yield a computationally
feasible experiment for estimating c4. The root of the problem is that r,,(n) is not sufficiently
small, thus the corresponding n* is not sufficiently large. Additionally, due to statistical
fluctuations, c¢4(n,r) needs to be computed many times to obtain a reliable estimate for
¢a(n,r). Furthermore, in order to obtain 7,,(n) to a reasonable accuracy, ¢4(n,r) needs
to be computed for many r, hence making the determination of r,,(n) computationally
intensive, even for a feasible n. As an example, for d = 3, our simulations indicate that
Topt(n) lies in the range [0.08,0.11]; thus, to reach n* = 10'°, we would need to process sets
of size close to 10® or larger. The result is that boosting to an acceptable n* is still “close”
to infeasible.

!In fact, our experiments suggest that c4(n,r) has a single maximum as a function of r.



4 Co-convergence

Theorem 2.1 suggests yet another approach to estimating cq4. Select a set {r;}7; of values
for 7 and consider T sequences {¢4(n,7;)} for i = 1...7. By Theorem 2.1, each of these
sequences converges to the same limit ¢; as n — oo. The problem now is one of estimating
the common limit of these 7" sequences. Suppose ¢q(n) (= cq(n, 1)) converges at some rate
f(n) to cq

ca(n) = ca— f(n). (7)
Figure 6 suggests that chains in V4(r) can be constructed by summing chains in the sub-
cubes of side r along the diagonal. Hence the convergence of the chains in V() should
be closely related to the convergence of the sum of chains in the diagonal sub-cubes, which
in turn should be closely related to the convergence in each sub-cube. This convergence
is governed by f(n) and, thus, we are lead to conjecture that the order of convergence of
ca(n,r) for all r > 0 is essentially the same.

Conjecture There exists a function p(r) > 0, such that

Vr >0, ¢q(n,r) =cqg — pu(r)f(n) + o(f(n)) (8)

The goal of Experiment 2 was to obtain the smallest 7, namely 7,,(n), for which p(r.)
is a minimum. According to our conjecture, 7, (n) should be independent of n, at least
asymptotically, which could be a first test of the conjecture. The conjecture suggests a strong
interdependence between the sequences, and we might be able to exploit this interdependence
in order to get a more accurate estimate of ¢;. The traditional approach to obtaining the
convergence point of the sequence c4(n) would be to assume that f(n) has a certain form and
then obtain a value for ¢4 consistent with this assumption and with the observed values ¢4(n).
The success of this kind of an approach depends largely on the validity of the assumption on
f(n). Our conjecture allows us to estimate ¢, without estimating f(n). Given r;,r; (r; # r;),
and n, (8) implies that the following two equalities hold simultaneously

Ci(n,ri) = cq— p(r)f(n) +o(f(n))
ca(n,rj) = ca— p(r;)f(n) +o(f(n))

Resolving this system with respect to f(n), we have
Ca(n,ri) = (1 = A(ri,rj)) ca + A(ri, r5)Ca(n, 5) + o( f(n)). 9)

where A(r;,7;) = p(ri)/p(rj). In other words, Vi,j € [1,T] ¢q(n,r;) linearly depends on
¢4(n,rj), up to o(f(n)). Further, from the functions ¢4(n, ;) and ¢q4(n,7;), one can estimate
A(r;,r;) from the slope of this dependence, and (1 — A(r,7;)) cq from the intercept. ¢,
can then be obtained by dividing this intercept by 1—slope. We have thus constructed an



estimate for ¢, without having to make any statements about f(n). Further, from (9), we see
that the convergence to linear behavior is at a rate o(f(n)), whereas the convergence of the
sequences themselves is at the rate f(n). Thus, the linear behavior will materialize at smaller
n than the actual convergence. Hence, we expect to extract more accurate estimates for ¢4
in this way, given the computational resources. We are thus led to the following experiment.

Experiment 3 (Co-convergence):

1. Select a set 7 = {ry,...,rr} of values for r.
2. Select a set N' = {nq,...,nr} of values for n. Let N}, = {ny,...,ny} for h =
1,.... L.

3. Compute ¢4(n,r), Vr € T and Vn € N.

4. Vi,j € [1,T] (i # j), perform an analysis on the pair of sequences {¢4(n,7;)} and
{¢i(n,r;)} for n € N, to obtain the slope, A4(h, i, j), and the intercept, Bq(h, 1, j),
for h=2..... L.

5. Evaluate cq(h,1,j) = Bg(h,i,7)/(1 — Ag(h,i,7)) for h=1,..., L.

/*cq(h,i,7) is a sequence of estimates for cg; this sequence should con-
verge to cq at the rate at which the linear behavior arises, i.e., o(f(n)).

*/
Compute e4(1, j), the value to which c4(h, 1, j) converges with respect to h.
Repeat steps 4-6 to compute e4(i, 7) for all (g) distinct pairs 4,7 € T.

Let Ly = min, jereq(4, j) and let Uy = max; je7 eq(s, 7).

© *® N>

Output the interval [Lg, Uy] as an estimate for c,.

Since the success of Experiment 3 largely depends on the validity of the conjecture, (8),
we discuss the motivation for the conjecture and how one might experimentally verify it.
Consider the quantity cq(n,r). Remember that n points in V4(r) is “probabilistically”
equivalent to n* points in Vg and since Hy(n,r) < Hy(n*), we conclude that c4(n,r) <
ca(n*) = cq — f (n/Vy(r)). A lower bound can be obtained by considering the 1/r diagonal
sub-cubes (Figure 6) inside V4(r). There are about n. = nr¢/V,(r) points in each subcube,
with heights given by H. = (n.)%(ca — f(n.)). Since Hy(n,7) > H./r, we have that
ca(n,r) > cq — f(nr?/Vy(r)). Thus, setting A, = 1/V4(r) and v, = r¢)\,, we conclude
(heuristically) that

ca— [ () < cg(n,r) <eqg— f(Am) (10)

providing the motivation for the observation that cy(n,r) converges at essentially the same
rate for all r. For large r, we expect the upper bound to be somewhat tight and for small r,
we expect the lower bound to be somewhat tight. Hence, starting from large r, by decreasing
r, we initially expect to get better values for ¢;, and then continuing to decrease r leads to
worse performance, indicating that an optimal r exists. Further, the bounds indicate that



f(An) < f(v-n), suggesting that f(-) is monotonically decreasing (or that c4(n) is increasing
in n). These were exactly the observations that led to boosting (Experiment 2).

We now discuss the experimental verification of the conjecture. We have seen that the
conjecture implies a linear relationship (up to o(f(n))). Suppose that we observe such a
relationship, can we then conclude that the conjecture holds? The following theorem tells
us that we can.

Theorem 4.1 Define a set of sequences c(n,r) for every r € (0,1] and suppose that each
sequence converges with respect to n to some value ¢ independent of r. Suppose also that
c(n,r) is differentiable with respect to r. The following two statements are equivalent.

1. Vr € (0,1], ¢(n,r) = c— u(r)f(n) for some functions u(r) > 0 and f(n);

2. Vri,ry € (0,1], (ri # 1)), c(n,m) = c(1 — A(ry, 7)) + A(ri, m5)c(n, ;) for some
differentiable function A(r,r').

PROOF: See the proof of Theorem A.2 in the appendix. |

Thus, not only does the conjecture imply a very specific linear relationship between all pairs
of sequences, but, if for some value of ¢, that same linear relationship holds for all pairs of
sequences (i. e., all 7; # r;), then the conjecture holds. Experimentally, this means that
c(h,r;,rj) in Experiment 3 should converge (with respect to h) to the same value for all
distinct pairs 75, 7;, or, equivalently, the interval [Lq4, U] should be small. If this were to
happen, then not only would we provide experimental justification for the conjecture, but
we would also obtain an accurate estimate for cg.

5 Algorithms

Both experimental approaches described in the previous section attempt to get more accurate
estimates for ¢, by effectively “accessing” higher n without actually computing with the
higher n. Both techniques rely on efficient algorithms for computing cy4(n, 7).

The first task is to generate n points chosen independently from a uniform distribution in
Vu(r). A trivial algorithm is the one that generates random points in V,; and keeps only
those that fall in V,4(r), continuing until n points in V,4(r) have been generated. This can
be highly inefficient, especially if r is small, as the acceptance rate will be extremely small.
A more efficient approach is to generate random points in V4(r) itself. This can be done
quite efficiently, and further, it is possible to generate the points in a sequential manner so
that the dynamic programming algorithm for computing Hy(n,r) keeps in memory only a
small portion of the total of n points, those that are necessary for executing the algorithm.



The second task is to compute Hy(n,r). The standard dynamic programming algorithm
has computational complexity O(dn?) ([6]). However, since the points are generated in a
sequential manner, it is possible to design an algorithm that maintains a working set that
takes advantage of the sequential point generation. Operations need only be performed on
this working set, resulting in a factor of r reduction in both computational complexity and
memory requirements.

5.1 Generation of Input Points

The generation of points is illustrated in Figure 2 (a), for the case of d = 2. First, an “origin”
point, t(z) = (¢(¢), t(7), ..., t(i)), is generated along the diagonal. Then one of the hypercubes
px(i), k = 1,...,d of dimension d — 1 is chosen at random and a point is generated from
a uniform distribution on this hypercube. In this way one can generate n points in V(7).
The probability density of the origin point coordinate ¢(7) is uniform up to ¢(i) = 1 — r and

Density of the Origin Point Coordinate, t

l 0.9
x(i+1) > '
Vd(r) [ ] g 0.6
Bost
t(+1) 2
/ % 04
- 3
pz(l) .X(i) & 03T s 0
t(i)/ 20

(0 — 1

(a) (b)

Figure 2: (a) The sequential generation of points in V4(r) illustrated for the case d = 2. (b)
Probability density of origin points for d=3, r=0.5

then decaying like (1 — #(i))4 ! for #(i) > 1 — r. This density is shown in Figure 2 (b), for
the case d = 3 and the case r = 0.5. Further, instead of generating the origin points in a
random order, we generate the n order statistics for the origin points.

Algorithm 1 (Sequential generation of input points):

1. Set ¢ =1 and tpyey = 0.

2. Generate the ™ origin point t(z) = (¢(¢),t(:), ..., (1)) where t(i) € [tyrev, 1] is the
i" order statistic (given that the (i — 1) order statistic was at t,.e,) of n points
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generated from the distribution of origin points such as the one shown in Figure

2.
Generate a random vector ={vy, vy, ..., v} where each v; is in [0, min{r,1 — ¢;}]
Generate a random integer k£ from {1,2,...,d} and set vy =0

Generate input point x(7) = {t(2) + v, t(i) + va, ..., t(7) + vg}-
Set tprey = t(7), i = i + 1 and go back to step 2 if i < n.

S O w

The detailed implementation of step 2 to generate the order statistics for the origin points is
given in the appendix in section B.1. The correctness of the algorithm is given by theorem
A.3 in the appendix. The next proposition states two (almost trivial) ordering properties
that the points x(1),...,x(n) have. While these properties might seem trivial, they are of
key importance to the algorithm for computing the height of the n points in V4(r), as we
shall see in the next section.

Proposition 5.1 (Ordering Properties) Suppose points x(1),...,x(n) are generated ac-
cording to the algorithm above. Then,

1. If t(i) > x(j), then, for all k > i, x(k) > x(j).

2. If i < j, it cannot be that x(i) > x(j), more specifically, P[x(i) > x(j)] = 0.

PrOOF: The first claim follows because for k > i, x(k) > t(i). Let the origin point of x(7)
be t(i) and let j > 7. One of the components of x(7) is ¢(i), therefore that component of
x(¢) must be less than the corresponding component of x(j) (with probability 1), proving
the second statement. ]

5.2 Computing Hy(n,r)

Although the ordering of the origin points does not guarantee that the projected input
points {x(1), x(2), ..., x(n)} are ordered, it does guarantee the ordering properties stated
in proposition 5.1. Property 2 ensures a newly generated point can never be below a previ-
ously generated point. Therefore, the height of newly generated points can be immediately
computed without considering future points. At iteration 7, property 1 ensures x(i) has a
height of at least h(x(j)) + 1 for all x(j) < t(i). Among these input points, the x(j) with
maximum height is identified as the barrier point and the rest are discarded. The remaining
input points (all x(j) > t(7) plus the barrier point) define the working set for iteration i+ 1.
The height of x(i + 1) can be determined by inspecting only the points in the working set.

Hy(n,r) is computed using the following procedure where ¢ and z are the origin point and
projected input point as generated by sequential generator described above. h(z) is the
height of the maximal chain ending at point z, and Zperrier is the barrier point.

11



Algorithm 2 (Computation of Hy(n,r)):

1.
2.
3.
4.

Set hpar = 1.

Using Algorithm 1, generate ¢(1) and x(1) and add x(1) to the working set.
Set the height of x(1) to 1 (h(x(1)) =1).
Fori=2ton
(a) Using Algorithm 1, generate ¢(7) and x(z).
(b) Initialize the height of x(i) to 1 (h(x(7)) = 1).
(c) For every point x(j) in the working set
i. If x(7) is above x(j) and h(x(j)) >= h(x(i)) then set h(x(7)) = h(x(j))+1.
ii. If x(j) is below t(i), if the barrier point is defined, and if h(x(j)) >
h(Zparrier), then remove the current barrier point and replace it with x(j).
iii. If h(x(j)) <= h(Zparrier) then remove x(j) from the working set

iv. If x(j) is below (i) and the barrier point is not defined then set x(j) to
be the barrier point.

(d) Add x(i) to the working set.
(e) If h(x(7)) > hmaz then set hiee = h(x(1)).

5. Return g, /n/e.
Iteration i Iteration i+1 Working Set
@Xi+1/// -
® @Xi+l///
®xi OXi Atin ® 7
, , ® e
o/i/i /// // /t/i /// @ ® @ - t|+1
At ®
® ¢ ® | ® roope
® - . — - c ® o
S g baftier point ;. barrier poift | @
] . 0]
0 /bafrier point ; O
r barrier; r barrierisg
KEY:

@ Discarded input point
® Working set input point
* Origin point

Figure 3: The working set at iteration ¢ and 7 + 1

The algorithm computes the height of each x(7) as the input points are generated. x(i)
is given a default height of 1. Every input point forms a chain of height 1 with itself as
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the beginning and end points. The new input point is compared with every x(j) in the
working set to find the highest chain which can be continued by x(i). Each x(j) is also
compared with t(i) to determine if it is below the barrier. If x(j) is below the barrier, it
either is removed from the working set or (in the case where h(x(j)) > h(Zpgrrier)) replaces
the current barrier point. After iteration i, the working set includes only the barrier point
and the points that are not below the Barrier t(i) (see Figure 3). This defines a subset of
the V4(r) which has a volume V,(r)r. Since n points are uniformly distributed in V4(r), it
is expected that the working set contains rn points. Since the algorithm must iterate over
the working set for every newly generated point, the expected number of point comparisons
is O(rn?). Therefore, using a very small r not only increases the number of virtual points n*
but decreases the memory requirements and the number of computations by a factor of r.

Proposition 5.2 (Correctness of Algorithm 2) Suppose h(x(i)) for all x(1),...,x(n)
1s computed according to the algorithm above. Then,

1. h(x(7)) reflects the height of the longest chain ending at x(i).
2. hmaz 15 equal to the height of the longest chain in V4(r).

PROOF: At the first iteration of the algorithm, x(1) is assigned the correct height of 1. Each
x(i + 1) is compared with all x(j),j <= ¢ with the exception of the x(j) < t(i) which are
guaranteed by proposition 5.1 to be bellow x(i + 1). The maximum height of these points
is represented by the barrier point. Therefore, all possible maximum length chains ending
at x(7 + 1) are evaluated and h(x(7)) is set to the maximum height. The second statement
follows directly from the first by taking the maximum of all h(x(7)). n

6 Experiments

In this section, we sumarize our results and the calculations used to obtain them. For
illustration, we present the results for d = 3 here, and the other dimensions, d = 2,4, 5, and
6, can be found in the appendix, section C. We have performed computer simulations to
support the following claims:

1. The co-convergence of {cy(n,r)}, leading to estimates of {c4}.
2. The (asymptotic) independence (and uniqueness) of r,,(n) with respect to n, for d =
2,3,4,5,6.

The co-convergence simulations aim to confirm that for every pair of radii, r; # r;, and
sufficiently large n, there exist constants A and B, depending on r; and r;, such that

¢(n,r;) = B+ Ac(n, ;) + €. (11)
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Figure 4: (a) Convergence of ¢3(n,r). (b) Convergence of and c3(k; i, j)

The e signifies an error term that is composed of the o( f(n)) term, which governs the rate of
co-convergence, and the statistical fluctuations in measuring ¢. These statistical fluctuations
can made arbitrarily small by taking a large enough sample for computing ¢. Having obtained
A and B, B/(1 — A) is an estimate for ¢;. We selected n and r according to the following
scheme.

ng = [10*t%*%1| for k € [0,40], and r € {0.01,0.005,0.001,0.0005,0.0001}  (12)

The number of trials used for computing ¢4(n,r) was heuristically selected to obtain (ap-
proximately) the same degree of statistical accuracy (within the given computational re-
quirements) for each n and r. In principle, the larger the number of trials (for any given n
and r), the more accurate the estimates will be.

Figure 4(a) demonstrates the convergence behavior of c3(n, ), for the five values of r. Even
for n = 10%, it is not clear to what value these sequences are converging. Given c4(n, ;) and
ca(n,r;) for n =nq,...,np, we can estimate Aq(h,4,j) and By(h,i,j) for h=2,...,L as in
Experiment 3. The estimate given by B(h,i,7)/(1 — A(h, i, 7)) should converge with respect
to h to c¢g4, independent of which particular pair 7, j is used. The behavior of this ratio is
demonstrated in figure 4 (b) for d = 3. We elaborate on how the estimates A(h,i,j) and
B(h,i,7) were obtained in the appendix, section C.1, in addition to showing some sample
behavior for the case d = 3.

It is clear that these curves are all converging to the same value, supporting our conjecture
via theorem 4.1. Further, as expected, the convergence occurs earlier as compared with the
convergence of c3(n, ), in accordance with the expected o(f(n)) behavior. Thus, we propose
a range for c3 by taking the range of values to which these curves are converging. Similar
figures are shown in the appendix, section C.2, for the cases d = 2,4,5,6. We summarize
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Figure 5: Dependence of ¢4(n,r) on r for various n’s.

the results, in table 2 where we present the estimates for ¢4 obtained from each of the ten
pairs of sequences for each d = 2,3,4,5, 6.

(T‘j,T}c) d=2 d=3 d=14 d=5 d=26
(0.01,0.005) 1.9985 | 2.3636 | 2.5144 | 2.5887 | 2.6105
(0.01,0.001) 1.9978 | 2.3627 | 2.5139 | 2.5864 | 2.6145
(0.01,0.0005) 1.9982 | 2.3629 | 2.5151 | 2.5868 | 2.6153
(0.01,0.0001) 1.9985 | 2.3628 | 2.5165 | 2.5892 | 2.6156
(0.005,0.001) 1.9999 | 2.3631 | 2.5207 | 2.5867 | 2.6158
( 5
( 1
(
(
(

0.005,0.0005) | 2.0001 | 2.3638 | 2.5195 | 2.5866 | 2.6156
0.005,0.0001) | 2.0006 | 2.3632 | 2.5192 | 2.5866 | 2.6167
0.001,0.0005) | 2.0010 | 2.3658 | 2.5204 | 2.5827 | 2.6118
0.001,0.0001) | 2.0015 | 2.3643 | 2.5186 | 2.5837 | 2.6096
0.0005, 0.0001) | 2.0018 | 2.3663 | 2.5168 | 2.5832 | 2.6074

Table 2: Estimates of ¢4 obtained from various pairs of sequences for d = 2, 3,4, 5, 6.

As a further piece of evidence for our conjecture, we conducted experiments to investigate
whether r,,:(n) is independent of n. Our second series of simulations, used values of n and
r given in the next table

n ‘ 50000 100000 200000 300000
r ‘0.01 0.02 0.06 0.08 0.1 0.14 0.20 0.3 1.0

For every combination of n and 7, over 350 samples were used to obtain ¢4(n, ). The results
are presented in Figure 5. The figure shows that 7., (n), the radius that maximizes c4(n, ),
appears to be independent of n, and, further, since the curves appear very nearly parallel,
the function u(r) itself appears to be independent of n, as required by the conjecture.
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7 Conclusions

We hope that the observations we have made, based upon our experiments, can be rigorously
proved. Our data seems to provide ample support for the conjecture 8, but a rigorous
justification is certainly desirable. The translated cube V,; was chosen on the grounds of
simplicity. The analog of the Bollobas & Winkler’s theorem can be proved for similar diagonal
volume elements with slightly different shapes. It is not clear what the optimal such shape
is, in terms of rate of convergence to c4, with respect to n. The behavior of c¢; with respect
to d (other than being monotonic and converging to e) does not appear to display a simple
enough behavior that would lead to an immediate conjecture for the constant c4 as a function
of d. It is hoped that further experiments would provide some guidelines toward a theoretical
understanding of the behavior of the maximal chains, and, of the constants c,.
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A Proofs of Results

Theorem A.1 Fizd € {1,2,...} andr > 0, for alle > 0 and § > 0, there exists M, (e, ?)
such that if n > M,(€,0) then

Pllca(n,r) —cql <€ >1-19§ (13)

where the constants cq are given in Theorem 1.1.

Proof: An equivalent way to generate n points uniformly in V,4(r) is to generate n* points
uniformly in V4 until n of them are in V4(r). Thus n* is a random variable with a distribution
given by

-1

(where we have let p = V4(r)). The expected value and standard deviation of n* are then

given by E[n*] = n/p and std[n*] = \/n(1 — p)/p?. Given € > 0 and for any v > 0, a straight
forward application of Markov’s inequality gives that

. N\ 1/d
ep \ld n ep \ 4 1—p
N R
( nl/2— - (E[n*]) =T nl/2— (epn)?

Thus, (n*/E[n*])"/* converges in probability to 1. First we show that the inequality cq(n,r) <
cq holds in probability as n — oo. Since Hy(n*) > Hy(n, r), we have that

P

e <o (gizg)
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and since the product of two sequences that converges in probability also converges in prob-
ability (to the product of the two limits), we see that the RHS of the inequality converges
in probability to cg.

e

R —

t<r

Figure 6: Diagonal sub-cubes of side 1/t < r

In order to show the reverse inequality, we proceed as in [4] and introduce sub-cubes of side
1/t along the diagonal, given by D; = [(i — 1)/t,i/t]¢ (see Figure 6). Suppose that t is
chosen large enough such that each sub cube is in the region Vy4(r), i.e., 1/t < r. Chains in
these sub-cubes combine to form chains in V(7). Let a maximal chain in the sub-cube i be
denoted Hgy(n*, 7). It is then clear that Hy(n,r) > >". Hq(n*, 1), therefore

izzt:l Hy(n*, ) 1:261 Hy(n*, 1) * 1/d
calnr) 2 “prea = ey <E[n*]>

Bollobds and Winkler, [4], show that Y, Hs(n*,4)/(n*)}/¢ converges in probability to c4
hence we conclude that the RHS of the last equality converges in probability to ¢; proving
that the inequality cq(n,7) > ¢4 holds in probability as n — oo thus concluding the proof
that cq(n,r) converges in probability to cq. [ |

Theorem A.2 Define a set of sequences c(n,r) for every r € (0,1] and suppose that each
sequence converges with respect to n to some value c¢ independent of r. Suppose also that
c(n,r) is differentiable with respect to r. The following two statements are equivalent.

1. ¢(n,r) = c—6(r)f(n) for some functions 6(r) > 0 and f(n) and for all r € (0, 1].

2. c(n,r) = ¢(1 — A(r1,7r2)) + A(r1,7m9)c(n, r2) for some differentiable function A(r,r")
and for all distinct pairs r1,r9 € (0,1].

18



PROOF:

1. That the first statement implies the second has already been demonstrated in the main
text for A(rq,r9) = 0(r1)/d(r2), and we do not repeat it here.

2. We show that the second implies the first. Suppose that the second statement holds.
Then,

ca(n,m) —c = A(ri,re)(ca(n,r2) — )
= A(ry,7m9)Q(n, 1) (14)

where Q(n,r3) = cq(n,r2) — c. The LHS is independent of 75, so taking the derivative
of the log of both sides, we get that for all ry, 7, € (0, 1],

d d
d—Tg log A(ry,re) = —d—mQ(n, )

The RHS is independent of 7, and thus, so must the LHS. Similarily, the LHS is
independent of n, and thus so must the RHS. Hence, they must both be equal to some
function ((r). Let a(ry) = [((ry). After an integration, we conclude that for some
functions x(ry) and g(n),

log A(r1,m2) = a(ry) + logk(ry)
logQ(n,r2) = —a(rz) +logg(n)

from which A(r,72)Q(n,re) = k(r1)g(n). Substituting into (14) we find
c(n, 1) = c+ £(r1)g(n)
replacing k with —x (as & is arbitrary) concludes the proof. |

Theorem A.3 If the algorithm above is used to generate points x(1), x(2),..., x(n) se-
quentially in V4(r), then the x(i)’s are uniformly distributed in V4(r).

Proof: One can show that the first step in the algorithm generates the order statistics
for the distribution of the origin coordinate, [3], where the origin coordinate distribution is
uniform from 0 to (1 —r) and then decaying like (1 — z)4~* from (1 —r) to 1 at which point
it is 0. The remainder of the algorithm then takes that as origin point and generates a point
on one of the d — 1 dimensional faces of side r given by x; = 0. |

Theorem A.4 The volume element Vy(r) is given by

Va(r) = v 4+ dr® (1 = r).
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PROOF: Vy(r) can be divided into disjoint parts with volumes defined as follows:

1. Polygons p; for 1 < ¢ < d which are defined by a d — 1 dimensional cube surface of side
r parallel to the plane z; = 0 and translated along the diagonal from (0,0,...,0) to
(1—r,1—r,...,1—r). Each polygon p; has volume V (p;) given by the integral along
the x; axes

1—r
Vip) = / rldr; = r (1 — 1)
0
2. A d-dimesional cube of side r defined by [1 — r, 1] with volume given by r.

Therefore the total volume is given by

Va(r) = Z Vp) +rt=rt+dri (1 —7)

B Implementation Algorithms

B.1 Generating the Order Statistics for the Origin Points

In this section we provide the details for the generation of the order statistics of the origin
points. Suppose we wish to generate the i'" order statistic. Let ¢,.¢, be the coordinate for the
(i —1)™ order statistic. If s = 1 then ¢, = 0. Define functions Vy(r), F(I,r,d), F~'(u,r,d),
and G=Y(u,l,n, k,r, d) as follows.

Va(r) = r*+dr*=t(1 —7) (15)
dri
V) 0<I<(1-r)
F(l,r,d) = ) (16)
1—(;;(:)) (1-r)<i<1
Va(r)u rd
dré=t Osusl- Va(r)
F~u,r,d) = (17)
1= [Va(r) (1 —w] " 1- v;(r) <u<i
G u,l,n,k,rd)=F ' (1—[1—F(,rd)][(1 —u)/"* D] r d) (18)
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Now, uniformily generate a random number u € [0,1]. Then, the " origin point, t(i) =
(t(7),...,t(7)) is given by

t(1) = G (u, tyrev, 0, 3,7, d) (19)
where n is the total number of points to be generated, r is the size of Vy(r) and d is its
dimension. A tedious but an elementary exercise (see [3]) shows that this procedure does
indeed generate the correct order statistics, and we do not include that analysis here.

C Experimental Appendix

C.1 Method used to obtain A,(h,i,j) and By(h,i,j)

Here we breifly elaborate on step for of the co-convergence experiment, Experiment 4. For
a pair of sequences given by r;, r;, let

. _ _ o Ag(k,1
Aalk,3) = Salnes 13) — Za(ne_s, ) and aﬂkwhﬁ (k=1,...,40).  (20)

If constants A,4(%,j) and By(7, j) exist, then aq4(k; 4, j) would approximate A,4(7, j). However,
the o(f(n)) term and the statistical noise require that we take a more robust approach to
get more reliable results. We, therefore, use the following procedure to approximate A4(%, j)
by a sequence Ag4(h,i,j) for h=2,... L.

Obtaining Ay(h,i,7): For every g = 2,...,h, compute the average A9 of {ay(k; i,j)}z:g.
Compute the standard deviation 6(" of {aq(k;i,j)}_,. Select the smallest g = go

for which 60 is the minimum to within 0.01. Output AW“) as an approximation for
Ad(h7 ia .7)

The approach is designed to accomodate the statistical noise and the fact that the conver-
gence of the a(k,1, j)’s might not have occurred at the begining of the sequence.

The procedure for approximating By(i, j) is similar to the one for A,(7, j). and is as follows.

Obtaining By(h,i,j): Compute by(k;i,5) = ca(ng, i) — Aa(k, i, j)ca(ng, rj). For every g =
2, ..., h, compute the average B9 of {by(k;1, ) }i—g- Compute the standard deviation
6™ of {ba(k;i,j)}r_, Select the smallest g = go for which §() is the minimum to
within 0.01. Output BU°) as an approximation for Bgy(h, 1, 7).

We demonstrate the behavior of A(h,1,7) and B(h,i,7) for d = 3 in figure 7. As can be seen,
the convergence occurs quite soon. The cases d = 2,4,5,6 are similar and do not convey
additional insight hence we do not show them here.
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Figure 7: (a) Convergence of the estimates for A4(k;1,j) for d = 3. (b) Convergence of the
estimates By(k;i,7) for d = 3.

C.2 Additional Plots for d =2,4,5,6
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Figure 8: Convergence of ¢4(n,r) and cq(k; 1, ) for d = 2.
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Figure 11: Convergence of ¢4(n,r) and cq(k;1,7) for d = 6.
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