
Triggers: A Dynamic Approach to Testing Multiuser Software
Robert F. Dugan Jr., Ephraim P. Glinert

Department of Computer Science
Rensselaer Polytechnic Institute
Troy, New York 12180, U.S.A.�

dugan, glinert � @cs.rpi.edu

ABSTRACT
In this paper we describe triggers, a novel technique for test-
ing multiuser applications. Triggers provide a framework
in which selected application events induce the execution of
virtual user test scripts. Unlike conventional execution based
verification systems which require complete prescription of
multiuser tests, our framework allows the tester to interact
with virtual user scripts in situ. Additionally, the extensi-
ble framework supports any application event or sequence of
events and provides an editor to configure the specifics of a
triggering event at runtime. Triggers can be used to investi-
gate a variety of problems common to multiuser applications
including: synchronization, performance, human-computer
interaction, and human-human interaction. We evaluated our
framework on a conventionally tested, mature multiuser ap-
plication. Our evaluation found triggers particularly effective
at uncovering race conditions and problems with response
time under load.

Keywords
Multiuser Software, Computer Supported Cooperative
Work, CSCW, Testing, Verification, Distributed Computing

1 INTRODUCTION
A critical component is missing from multiuser Computer
Supported Cooperative Work (CSCW) application develop-
ment that is taken for granted in single user applications:
support for live user testing. Anytime someone wants to test
a single user application, they can pose as the user and run
the application. It is difficult for a single person to perform
a live user test when multiple users are required [4]. State
of the art commercial and research testing systems do not
provide adequate guidance or support for a single person to
perform live multiuser verification. Existing methodologies
take a broad based approach to the evaluation of a CSCW
application. While acknowledging that technology plays a
role in a CSCW system, these methods give few details on
how its evaluation should proceed.

Our research has focused on improvements to execution
based testing of multiuser or CSCW software. We have de-
veloped CAMELOT [4], a technology-focused methodology
for testing CSCW software. Developers, user interface spe-
cialists, performance engineers and quality assurance per-
sonnel can use CAMELOT to evaluate software technology
that comprises a CSCW application. CAMELOT provides
an organized set of specific techniques that can be used for
technological evaluation. The methodology breaks the test-
ing process into two stages: single user and multi-user. In
the single user stage, General Computing and Human Com-
puter Interaction features are examined. During the multi-
user stage, Distributed Computing and Human-Human In-
teraction aspects are investigated. A unique code is associ-
ated with each technique. The code provides a classification
scheme for the tests used and problems uncovered during
application evaluation. We believe CAMELOT’s techniques
are inclusive of most of the technology tests an evaluator
would want to perform on a CSCW application.

We devised Rebecca [4], an architecture for an execution
based test system, motivated by the desire to support live
user participation in a CSCW test. The trigger subsystem de-
scribed in this paper plays a key role in this area. Test triggers
are similar in concept to database triggers. A database trigger
executes a set of instructions whenever a predefined condi-
tion is met. For example, a database trigger might recalcu-
late the weekly paycheck amount whenever an employee’s
yearly salary is changed. Rebecca’s trigger subsystem mon-
itors each CSCW user. When a user performs a predefined
action or sequence of actions, the trigger fires causing the
execution of test scripts by one or more virtual users. For
example, if a user types ”Hello” in a chat application, a test
trigger might execute a script causing a different user to re-
spond with ”Hi! How are you?”

Triggers radically change the concept of a test session by
giving virtual users the ability to react to live users. Instead
of being a prescribed process, multiuser testing becomes a
dynamic one. Triggers can be used to investigate a vari-
ety of problems common to multiuser applications including:
synchronization, performance, human-computer interaction,
and human-human interaction. These problems are difficult
to manually test with limited resources, and challenging or



impossible to test using existing execution based testing sys-
tems.

To determine the efficacy of our work, CAMELOT and a
Java based implementation of Rebecca were used to evalu-
ate a mature CSCW application. The evaluation uncovered
over twenty bugs in the application and provided valuable
feedback for future research.

2 RELATED WORK
Execution-based testing focuses on software evaluation in
later stages of the software life cycle. Prior work on
execution-based testing systems for applications with a
strong user interface component can be grouped into three
main categories: commercial, academic, and Computer Sup-
ported Cooperative Work.

Commercial systems like Platinum Technology’s Final
Exam C/S-Test [12], Mercury Interactive’s Test Suite [9],
Rational Software’s SQA Suite [14], and JavaStar [19] pro-
vide a complete software test environment that includes an
architecture for: test execution, test development, test failure
analysis, test measurement, test management, and test plan-
ning [15]. Recording user activity in a script creates a test.
The recording can be played back as a ”virtual user” to exe-
cute the test. Multiuser testing is supported by the ability to
execute several single user scripts in parallel. Virtual users
are coordinated using a combination of script synchroniza-
tion primitives and script execution control provided by the
test system’s session manager.

Academic research into execution based testing of GUI soft-
ware has focused on specific problems like script reusability
[7, 11], test case automation [1, ?], script analysis [10], vi-
sual program testing [18], and multi-modal record/playback
[6, 3]. MITRE’s Multi-Modal Logger (MML) improves mul-
tiuser testing by allowing the actions of multiple users to be
recorded and played back in a single script [3]. The record-
ing automatically imbeds multiuser coordination in the test
script.

With the exception of MML, CSCW testing has focused pri-
marily on evaluation methodologies rather than the devel-
opment of testing architectures. The methodologies take
a broad based view of CSCW software. Early work in
CSCW evaluation had a strong psychological component.
Researchers focused on the group dynamics generated by
the introduction of collaborative software into an organiza-
tion [13]. CSCW specific methodologies include PETRA
[17], SESL [13], and MITRE’s Evaluation Working Group
Methodology [3, 2]. These techniques integrate both the psy-
chological and technological aspects of a CSCW system into
the evaluation.

3 ARCHITECTURE
Rebecca is an execution based test system architecture mo-
tivated by our desire to support interaction between live and
virtual users during application tests. Our discussion of trig-

Figure 1: Rebecca’s General Architecture

gers begins with an overview of Rebecca’s architecture de-
picted in Figure 1.

General Architecture
Rebecca’s centralized server coordinates one or more dis-
tributed testing agents. The server provides a user inter-
face that allows the tester manipulate agents, test scripts and
triggers. The server is also responsible for synchronization
management that allows coordinated execution of test scripts
across agents.

A Rebecca agent is activated for each CSCW user at startup.
This is accomplished by adding a small amount of instru-
mentation to the CSCW application being tested (e.g. two
lines of code in the Java-based implementation, Rebecca-J).
The agent resides on the CSCW user’s local machine. The
agent is responsible for responding to server commands, and
monitoring local application state.

Rebecca’s server commands to the agent include requests to
create, edit, save, load, execute, and synchronize test scripts.
For remote manipulation of an agent’s test script, the server
displays a VCR-like control panel and editing window. All
editing and control commands are forwarded to the agent that
owns the test script. Agent feedback about the state of the
test script is sent to the server and displayed in the control
panel.

The agent is also responsible for monitoring application state
in the form of components and component activity. Rebecca
creates virtual user behavior by feeding test script actions
into application components. Test script actions are created
by recording component activity.

Rebecca provides a flexible, object-oriented mechanism for
defining any portion of the CSCW application as a compo-
nent and any activity in a component as an event. By default,
where the implementation language permits, all UI compo-
nents are automatically defined. Rebecca-J, for example, au-

2



tomatically monitors all AWT and Swing components and
activity that occurs within those components.

Rebecca allows any application activity to be recorded and
replayed. A filtering system allows the tester to record spe-
cific application events. Integration with existing software
development environment is encouraged using the applica-
tion’s programming language as the test script language. Test
scripts are reusable as the software evolves through runtime
resolution of components and component-centric events. A
VCR-like user interface simplifies common record/playback
tasks. In addition to triggers, improvements to multiuser test
script synchronization include an orchestration metaphor,
simplified synchronization mechanisms, deadlock detection,
and deadlock recovery.

Trigger Architecture
Rebecca’s trigger subsystem executes test scripts for one or
more CSCW users in response to component activity. To
support trigger management, Rebecca’s server provides a
user interface to create, edit, load, save, and activate triggers.

Trigger creation involves interaction between the server and
one or more agents. Using the server’s user interface, the
tester selects a triggering agent, application component and
component event that will fire the trigger. The tester then
selects a test script and executing agent in response to the
trigger. The triggering agent and executing agent can be at-
tached to different CSCW users.

Figure 2 shows the trigger management architecture diagram
for Rebecca. A detailed discussion of the architecture is ori-
ented around trigger creation and activation. For examples
of how to use triggers see Section 4.

In step one, the triggering agent is selected from a list of
registered agents. One agent is added to this list for each
CSCW application user. As users enter and exit the applica-
tion, this list is updated automatically. The selection creates
a new trigger listener within the agent. The server is given a
remote handle to communicate with the trigger listener.

In step two, the tester selects an application component to
listen to. The server uses an MVC proxy design pattern to
present a remote component browser [5]. Using the browser,
the user selects the agent component that will generate the
triggering event. If the agent component model changes
while browsing, the server will be notified via the proxy
model. Because the agent and server execute in different pro-
cess spaces, the server retrieves the persistent store id of the
selected component, rather than its runtime id. The server
then passes the component id to the trigger listener using the
listener’s remote handle.

In step three, a filter for the triggering event is selected. The
filter is called a threshold model. The threshold model al-
lows the tester to specify precisely the characteristics of a
triggering event. For example, the triggering event might be
mouse activity inside a GUI push button. A threshold model

for mouse activity might be used to select a specific type of
mouse activity, such as double clicking the mouse button.

Threshold models register themselves with the server at ini-
tialization time. If necessary, the tester can add custom
threshold models to the server. Custom threshold models
must also register with the server at initialization time. Both
the server and the agent are informed of the model selection.
On the agent side, default parameters for the model are set.
These default values are used to filter component events if
the tester chooses not to edit the threshold model. Addition-
ally, the threshold model registers interest with the compo-
nent that will fire the trigger. On the server side, an editor for
the threshold model is configured.

In step four the tester edits the threshold model using the
model’s editor. The editor allows the tester to customize the
threshold for a specific event. Editors are model specific.
The editor can be as simple as a set of editable fields describ-
ing an event or as sophisticated as a graphical subsystem that
specifies the region of the application user interface where
event must occur. The result of the editing process is a set of
parameters that determine how the threshold will filter com-
ponent events. These parameters are sent from the server to
the threshold model residing in the agent.

In step five, the script executing agent is selected from a list
of registered agents. The tester’s selection creates a new
recording player within the executing agent. The trigger
agent is given a remote handle to communicate with the ex-
ecuting agent.

In step six, the trigger agent’s CSCW user begins using the
application. The user can be either a live or a virtual user
executing a test script. The trigger agent threshold model
filters events generated by the tester selected component. If
an event meets the threshold condition, the trigger fires.

Returning to the mouse event example, when the cursor is
inside the push button region, all mouse events are sent to the
threshold model. The model ignores the events until the user
presses the mouse button generating a double click event.
Once received, the mouse press event causes the trigger to
fire.

In step seven, the trigger is finally fired resulting in two ac-
tions. First, the trigger agent activates the execution agent’s
recording player. This will cause the player to replay its
recording. Second, the server side trigger counter is incre-
mented. The change is displayed in a counter field associated
with the trigger on the server. A check is performed to see if
the firing count is exceeded. If exceeded, the trigger agent is
disabled so that no more firings can occur.

Threshold Models
Selecting a threshold model is an important part of the trigger
process. Events generated by the selected component are
passed to the threshold model for filtering. If the event or
sequence of events passes the threshold filter, then the trigger

3



Figure 2: Rebecca’s Trigger Architecture

fires. The exact nature of the filter depends on the threshold
model selected. It can be as simple as ensuring that the event
is of a specific type like a mouse event in a push button, or as
complicated as a state machine that reaches its end state with
the correct sequence of events like keyboard strokes in a text
area producing the word ”Hello”. Rebecca-J implements a
number of threshold models (see Table 1).

Threshold Model Description
keyPressed KEY PRESSED event
keyReleased KEY RELEASED event
keyTyped KEY TYPED event
mouseClicked MOUSE CLICKED event
mouseEntered MOUSE ENTERED event
mouseExited MOUSE EXITED event
mousePressed MOUSE PRESSED event
mouseReleased MOUSE RELEASED event
mouseMoved MOUSE MOVED event
mouseDragged MOUSE DRAGGED event
propertyChange state change component generates a

PROPERTY CHANGE event
keySequence sequence of KEY PRESSED events
mouseRegion mouse event in designated GUI location

Table 1: Threshold Models implemented in Rebecca-J

Depending on the threshold model, an editor may be avail-
able for runtime customization. The editor may be as simple
as a set of form fields specifying characteristics of the event
or as sophisticated as a graphical editor indicating the area of
a GUI the event must occur.

mousePressed Threshold Model
Rebecca-J’s mousePressed model typifies a simple event
type threshold model. The threshold model examines all
mouse events generated by the selected component. If the
mouse event is of type MOUSE PRESSED, then the trigger
fires. Because of the simplicity of this threshold model, no
editor is necessary.

mouseRegion Threshold Model
Rebecca-J’s mouseRegion model is an example of a so-
phisticated threshold model. An editor, shown in Figure 3
provides runtime properties of the mouse event that must be
satisfied for the trigger to fire.

After the tester has used the remote component browser to
select a GUI component, the mouseRegion threshold edi-
tor is activated. The editor queries the remote component for
its dimensions and displays a facsimile in a graphical editing
window. The tester selects one or more geometric regions
and draws them on top of the facsimile. Finally, a specific
type of mouse event is selected from a pull-down list. Only
events that occur in the tester drawn regions with the speci-
fied type will fire the trigger.

Figure 3 gives an example of the mouseRegion editor in
use with an application. The JButton1 button compo-
nent is selected using the remote component browser. The
mouseRegion editor gets the dimensions of the button re-
motely and displays them in the graphical editing window.
The tester presses the Zoom In button several times to en-
large the push button facsimile. The rectangle geometric
region is selected. The tester draws a rectangle in the up-
per right quarter of the facsimile. The tester then selects the

4



Figure 3: mouseRegion threshold model editor

mousePressed event from the pull-down list and presses
the OK button to end the editing session. The threshold
model is now configured to fire whenever the CSCW user
presses the mouse button in the upper right corner of the
JButton1 push button.

Threshold Model Customization
Like most of Rebecca’s subsystems, the threshold model
subsystem is extensible. A tester can create new threshold
models that weren’t anticipated at the time Rebecca was im-
plemented. Threshold model customization requires three
steps: model registration, comparator definition, and editor
definition. The model must be registered with the system so
the user can select it from the server’s trigger panel user in-
terface. The comparator determines if an event received by
the trigger listener from the selected component is equivalent
to an event stored in the threshold model. The editor allows
runtime configuration of the threshold model.

Rebecca uses the MVC design pattern for threshold model
editors. The model is the threshold model itself. The
threshold view displays representation of the model and the
model’s configuration parameters. The threshold controller
converts user actions directed at the view into commands that
manipulate the model.

Event Sequence Triggers
In addition to firing a trigger in response to a single event,
Rebecca provides the ability to fire after a sequence of
events. For example, instead of firing whenever a keyboard
event is generated, Rebecca can fire when a specific sequence
of keyboard characters is typed (e.g. ”Hello”). A runtime
configurable event state machine to supports this capability.
Events generated from the selected component are ignored
until one equivalent to the first input condition event in the
state machine is generated. The machine progresses through
states until it reaches a final state or until an event occurs
that does not satisfy a move to the next state. When the ma-
chine reaches its final state, the trigger is fired and it returns
to the start state. Rebecca-J implements this state machine in

the abstract class ThresholdModelmethod isThresh-
oldMet().

One Agent, Multiple Triggers
In some situations, a single threshold model is not suffi-
cient to express the conditions under which a trigger should
fire. For example, consider a trigger for a Property-
ChangeInt event that fires if the new state is less than ten
or greater than twenty. The PropertyChangeInt thresh-
old editor allows only one boolean condition to be specified
on the event. Rebecca allows the user to create multiple trig-
gers on the same component and event in the same agent.
This allows one trigger to be created for each boolean condi-
tion. In the state trigger example, one trigger would be cre-
ated for values less than ten and a second for values greater
than twenty. Both triggers would exist in the same agent, lis-
ten for the same events from the same state component, and
replay the same recording.

Multiple triggers allow the user to OR a set of threshold
model tests on an event, but what about other boolean op-
erations? Rebecca does not provide for any other boolean
operation. In order to provide complete a complete set
of boolean operations, a boolean algebra and would need
to be adopted. The operators in this algebra would con-
sist of AND, OR, and NOT. The variables in the algebra
would be a list of trigger names. Triggers specified in a
boolean expression would never fire. A boolean expres-
sion would be assigned its own trigger. If the boolean ex-
pression was satisfied, then its trigger would fire. Con-
sider an example where two state triggers, Trigger-
GreaterThan10 and TriggerLessThan20 are set on
the same PropertyChangeInt component. Trig-
gerGreaterThan10 fires when the new integer value is
greater than ten. TriggerLessThan20 fires when the
new value is less than twenty. The syntax for a boolean
expression trigger that fired for integer value changes
between ten and twenty would look like: (Trigger-
GreaterThanl0 AND TriggerLessThan20).

Timers
There are some situations where a virtual user script may
need to be activated by a timer, rather than application activ-
ity. For example, the tester may want virtual user to manip-
ulate a widget or type some characters every few seconds.
Periodic load like this is useful for observing performance
characteristics of the application under test. Rebecca’s trig-
ger architecture includes provisions for such time-based trig-
gers.

Unlike other triggers, timers are managed entirely by the
server so it is not necessary to select a remote agent com-
ponent and threshold model. The tester configures the timer
by double clicking on the timer widget that appears with ev-
ery trigger panel in the server. A timer selection window
appears and is used to manage timers once they have been
configured. The tester can add a new timer, delete existing

5



timers, edit an existing timer, or attach the selected timer to
the trigger panel.

Timer triggers are managed by the server, rather than by re-
mote agents. This allows multiple recording players to be
attached to the same timer. When the timer fires, all of the
recording players are activated near-simultaneously. Simul-
taneous replay of recordings creates realistic approximations
of application use. For example, periodic dialog between a
group of users in a chat application could be simulated.

True simultaneous replay of recordings, implemented with
networking techniques such as broadcasting, makes for un-
predictable testing. The tester can never be sure if the replay
started at exactly the same moment on each machine. Soft-
ware and hardware layers throughout the command’s path
from server to agent introduce delays that can keep it from
being processed immediately. The cause of these delays can
change during the test session making the replay order dif-
ferent each time the trigger fires. When a timer trigger fires
Rebecca iterates through an ordered list of players, activat-
ing each in turn. The server provides the tester with a user
interface to configure the ordered list.

4 USAGE CASES
Triggers are a powerful mechanism for testing distributed
applications. The principal advantage of triggers over tra-
ditional test systems is that a live user can be incorporated
into a test session. Virtual users react to events generated by
other users, live or virtual. This reactive approach creates test
sessions that are dynamic, rather than completely prescribed.
The next several sections present examples of trigger use.

Usage Case 1: Synchronization Problems
Race conditions are a common synchronization problem in
distributed systems. A race condition occurs when sys-
tem behavior is dependent on instruction ordering between
threads of execution. One way to test for the presence of a
race condition is to create a situation using parallel threads
varying the execution order.

Consider a simple distributed application with two buttons
+/- and a counter display. Whenever a button is pressed,
the counter is incremented/decremented by one and the new
value is displayed in the text field of all distributed copies of
the application. A potential race condition exists when users
press the count buttons near-simultaneously.

Triggers can help test for this race condition. A trigger could
be set up between the live user and a virtual user. Whenever
the live user presses the + button, the virtual user immedi-
ately reacts by pressing the - button. If the count field reads
0, then no matter how many times the live user presses the +
button, it should always read 0.

The probe for the race condition can be coupled with a stress
test by creating a second trigger. Stress tests help uncover
application flaws that aren’t exposed under normal use. The
new trigger presses the + button whenever the original virtual

user presses the - button. Now we have a situation where
two virtual users are reacting to each other. The maximum
trigger count field in the panel for the new trigger is set to
1000. The test begins with the live user pressing the + but-
ton. Assuming the count field begins with 0, at the end of
the test it should read 1. In addition to using duration to
stress test the system, stress can be increased by setting the
playback delay on the trigger recordings to NO DELAY.

Testing for race conditions is possible with a traditional test-
ing system. One advantage of prescribed testing over triggers
is the ability to test with scripts executing simultaneously on
separate machines. In contrast to the simplicity of triggers,
however, some effort is required to produce the test case. For
the test described in this section, the tester would be forced
to create two scripts, one for each virtual user. Some form
of synchronization primitive would have to be added so that
both scripts began execution at the same time. A looping
construct would be necessary so that the button presses could
be repeated. Finally, the modified scripts would have to be
saved, compiled, and loaded into the test system.

Usage Case 2: Performance Problems
Another vexing difficulty when developing synchronous
multiuser applications is investigating performance issues
like the responsiveness of the system under load. Response
time is particularly important for user interface portions of
the application. User anxiety rises when interactive compo-
nents, such as a slider bar or pull down list, do not respond
within milliseconds [19].

Consider another simple distributed application with a push
button and slider bar. The tester wants to investigate the per-
formance effect that pushing the button in one copy of the
application has on the moving the slider bar. Slider bars are
useful way to get a ”feel” for the responsiveness of the appli-
cation. If the cursor doesn’t track well with a slider bar, then
the user will notice it immediately.

The tester creates a trigger that activates a virtual user that
presses the push button. The trigger fires whenever the live
user moves the slider bar. During testing the slider bar does
move sluggishly indicating a performance problem. Curi-
ous about whether part of the problem is due to a backlog
of queued push button events, the tester resets the trigger’s
threshold model to use the mouseRegion model. The left
half of the live user’s slider bar is marked as the triggering
region for the virtual user. Now the tester can compare how
the slider bar behaves when inside and outside the triggering
region. If the slider bar is sluggish inside the region, but im-
mediately responsive outside it, then the user knows that an
event backlog is not the problem.

Compared to triggers, traditional testing systems only have
the ability to place a gross load on the system. This is ac-
complished by running one or more iterating scripts against
the application. A live user can participate in such a test ses-
sion, but only in an uncoordinated fashion with the scripts.

6



Figure 4: A shared drawing/chat application.

Using the example from this section, the tester executes a
script that repeatedly presses the push button in one copy of
the application. A live user interacts with the slider bar in
another copy of the application while this script executes.

Since live user-based script control is unavailable with tradi-
tional testing, all interactions occur while the script executes.
Script execution can be controlled from the test system, but it
would be difficult or impossible to implement the test cases
in this section. When the cursor nears the slider bar, inter-
action would stop while the tester configured and started the
push button script. Interaction would then continue and as
the slider bar’s behavior was observed under load. When the
cursor was about to leave the slider bar, interaction would
stop while the tester terminated the push button script. The
test cases would be impossible if the application and test sys-
tem were on the same machine because the cursor would
have to leave and re-enter the application to control the test
script. The mouseRegion trigger test case would be impos-
sible to imitate because by the time the tester had shut off
the test script and returned to the application, the backlog of
queued events would have been processed.

Usage Case 3: Simulating User Behavior
In some situations, the tester may desire one or more virtual
users to simulate ”normal” user behavior. This allows the
tester to observe how the application behaves under normal
use. The definition of normal is application specific. Gener-
ally, the tester assigns a profile to each virtual user consisting
of initiated and reactive behaviors. Initiated behavior con-
sists of actions performed by the virtual user without regard
to other activity in the application. For example, the virtual
user might perform a series of mouse movements culminat-
ing in a button press every couple of minutes. Rebecca can
model this behavior by replaying a test script continuously,
or using a timer trigger.

Reactive behavior consists of virtual user actions triggered
by other user activity. For example, when testing a chat pro-
gram, the virtual user might send the message ”Hello, your-

self!” in response the string ”Hello” being typed by another
user. Rebecca models this behavior using triggers that fire
based on the activity of other users.

Consider the shared drawing/chat application in Figure 4.
The tester wants to create a profile for a virtual user that will
interact with the live user during testing. For initiated be-
havior, the virtual user will draw several shapes every sixty
seconds. This behavior provides a periodic load on the sys-
tem typical of normal use. Using Rebecca, the tester creates
a recording that draws several shapes. A timer trigger that
fires once every sixty seconds is attached to the recording.

The virtual user also has three reactive behaviors in its pro-
file. The first behavior is a friendly attitude when the live
user types ”Hi”, ”Hello”, or ”Hey” in the chat window. The
virtual user responds with ”Welcome. I’m drawing in the up-
per right corner and using blue!” The tester sets up this be-
havior by recording the welcome message and copying the
recording to keySequence triggers for each possible live
user greeting.

The second behavior is a protective attitude about the upper
right hand quarter of the drawing area. Whenever the live
user’s mouse enters this area and begins drawing, the virtual
user sends the angry message ”Hey! I’m drawing in this area,
draw somewhere else!” This behavior is set up by recording
the angry message and attaching a mouseRegion trigger
to the recording. The mouseRegion’s editor is configured
to fire to mousePressed events in the upper right quarter
of the drawing area. The live user’s agent is selected as the
trigger listener.

The third behavior is another protective attitude towards the
drawing color used by live user. The virtual user only draws
with the color blue. If the live user chooses blue as well,
the virtual user sends the angry message ”Hey! Blue is my
color. You’ve ruined the picture and we are starting over
again.” and clears the drawing area. If the live user chooses
a different color, the virtual user sends the message ”Great
choice! That will complement my blue very nicely.” In or-
der to describe this behavior to Rebecca, a new component,
event, and threshold model for propertyChangeColor
must be written.

The specifications for the propertyChangeColor are
as similar to propertyChangeInt. The component is a
state change component. It contains the current value of the
local user’s drawing color. The event is a property change
event. It is generated by the component when the user’s
drawing color changes. The value transmitted in the event
is the new drawing color. The threshold model tests for
changes to the drawing color component. An editor config-
ures the model by allowing the user to select a drawing color
from a list in combination with a ”this” or ”all-but-this” op-
tion. If this is chosen, then the trigger will fire when the
drawing color is selected. If all-but-this is chosen, then the
trigger will fire when any other color is selected.

7



The virtual user’s color selection behavior is created with
two triggers. The first trigger is attached to a recording that
sends the angry message and erases the drawing area. A
properyChangeColor threshold model is configured to
fire when the live user selects the color blue. The second
recording sends the friendly message. It is attached to a
propertyChangeColor trigger that fires when the live
user selects any color except blue.

Rebecca’s support for reactive behavior in virtual users
greatly expands the possibilities for simulating user activity.
Traditional testing systems do not have this capability. For
initiated behavior, Rebecca’s continuous replay and trigger
timer mechanisms offer a simple alternative to the labor in-
tensive task of adding wait commands and loop constructs,
compiling, loading and running a traditional test script.

Usage Case 4:A Flurry of Activity: Trigger Chaining
The usage cases discussed in this section have dealt with
virtual users reacting individually to live user actions. Re-
becca’s trigger subsystem also supports trigger chaining.
Trigger chaining allows virtual users to react to each other
in a coordinated fashion. A trigger chain is created when a
trigger is fired in reaction to event generated from a virtual
rather than a live user. Triggers can be strung together across
many virtual users to create a chain reaction to a single event.

Consider the following scenario. Three triggers are regis-
tered with the live user’s agent. Any one of these triggers
will cause the same recording in VirtualUser0’s agent to ex-
ecute. Two triggers, TriggerD and TriggerE, registered with
VirtualUser0 fire because of an event in this recording. Trig-
gerE causes the replay of a recording in VirtualUser2, where
a branch of the chain terminates. TriggerD activates a record-
ing in VirtualUser1 that fires TriggerF. TriggerF replays a
recording in VirtualUser3 where the last branch of the chain
terminates.

Figure 5 shows how trigger chaining can be used to extend
the shared drawing area test from the previous use case. A
second virtual user is added to the test. As in the original test,
when the live user types a greeting in the chat window, the
original virtual user, VirtualUser0, responds with ”Hello”.
This response, however, is chained to another trigger that
causes VirtualUser1 to type ”Don’t be fooled by the friendly
greeting. VirtualUser0 is actually very testy. If you want I
can prove it to you. Just say ’show me’” in the chat window.

If the live user types any phrase containing ”show me” in
the chat window, VirtualUser1 replays a recording of mouse
movements in the upper right corner of the drawing area.
Chained to these mouse events is VirtualUser0’s angry re-
sponse ”Hey! I’m drawing in this area, draw somewhere
else!” This triggers a retort from VirtualUser1 ”See, I told
you! I’ll tell you something else. Don’t even think about
drawing in blue. VirtualUser0 really hates that.” Virtu-
alUser0 gets in the last word with ”I heard that!” triggered
by the key sequence ”hates that” from VirtualUser1.

Although unimplemented in Rebecca-J, Rebecca has a sec-
ond form of chaining: trigger state chaining. Trigger state
chaining allows the tester to construct a non-deterministic fi-
nite automaton from a set of triggers. The input grammar
for the automaton is quadruple of component, event, thresh-
old model, and trigger count for each trigger in the chain.
State transitions occur when the input condition for the cur-
rent state is satisfied (the trigger fires).

State change triggers are useful in situations where the tester
would like a trigger to replay different recordings as the test
session progresses. Consider the VirtualUser0’s response
when the live user selects the color blue. Instead of sending
the message and erasing the graphics in a single recording,
the virtual user’s response could be broken up into a collec-
tion of smaller responses. The first time the live user selects
the color blue VirtualUser0 issues a warning: ”Hey! Blue
is my color, you’ll ruin the picture if you use blue too.” If
the live user selects another color, then the state machine re-
turns to the start-state. If, however, the live user begins to
draw with the color blue, VirtualUser0 issues another warn-
ing: ”Stop drawing in blue or I’ll erase the whole picture!”
If the live user selects another color, then the state machine
returns to the start-state. However, if the user continues to
draw VirtualUser0 sends the message ”I’m going to keep
erasing the drawing area until you change your drawing color
from blue.” and clears the drawing area. This message/erase
recording is triggered by live user drawing activity until an-
other drawing color is selected.

Although Rebecca-J has not implemented trigger state chain-
ing, what would the implementation look like? Each trigger
panel would include a state chaining button. When the button
is pressed the user would see a dialog box listing all regis-
tered triggers. The user selects one or more of the registered
triggers and adds them to the next state list. All triggers in
the next state list are disabled until the trigger being edited
has fired the maximum firing amount of times. The tester
can check the ”Reset Count” box for triggers in the next state
list. This resets the trigger fired count for that trigger to zero
when the trigger is enabled. The ”Reset Count” box allows
movement to a previous state in the trigger state chaining di-
agram.

5 EVALUATION
Our triggering architecture and implementation was included
in an overall evaluation of CAMELOT and Rebecca [4].
The Reconfigurable Collaboration Network (RCN), a mature
CSCW shared windowing application was the application
under test [16]. RCN allows multiple users to share control
of a single public machine using a remote machine with only
one user in control of the public at a time. Race condition
and response under load triggers were particularly effective.

From early testing, it appeared that the public machine was
maintaining state information about the controlling remote
machine’s keyboard. We were concerned that a race condi-

8



Figure 5: Trigger chaining extends shared drawing area test.

tion might arise when one user took unexpected control of
the public machine from another user. To see if this cre-
ated a race condition, a recording for a virtual user taking
control of the public machine and typing ”aaa” was made
and connected to a trigger. The trigger fired whenever the
live user was in control of the public and pressed the SHIFT
key. During the tests, the public machine interpreted UserB’s
keyboard presses as ”AAA”. Additional trigger test using the
ALT and CTRL keys indicated the same problem.

A similar trigger test determined that if the live user did not
release the mouse button before the virtual user took over the
public, then all virtual user mouse events were interpreted as
mouse button press events. The test also discovered that the
live user could still control the public machine’s screen cur-
sor as long as the mouse button stayed pressed. Only the
ability to integrate live and virtual users in a single test ses-
sion made this discovery possible.

Several other race conditions were exposed using triggers in-
cluding problems joining sessions, users, teams, and public
machines.

We were also able to user triggers and threshold models to
explore the response time of the application under load. We
were particularly interested in the effect that RCN’s ghost
cursors would have on the public machine’s system cursor
and vice-versa. Because all mouse events had to be trans-
mitted across the network to a central server on the public,
this centralized design had the potential to cause a perfor-
mance bottleneck. The mouse region threshold editor was
used to create a trigger that would fire when the public’s sys-
tem cursor entered the top half of the screen. The trigger

was attached to the recordings of ghost cursor movement for
several virtual users. Several tests were conducted using a
trigger based on the mouse region threshold editor, the pub-
lic system cursor, and RCN’s ghost cursor. Results from this
testing showed the system did not scale well and uncovered
memory leaks on both the public and private machines.

6 CONCLUSION
Commercial and academic testing systems that provide mul-
tiuser support completely prescribe the test session from start
to finish precluding live user participation. Virtual user or-
chestration is specified using a combination of script syn-
chronization primitives and session manager scheduling.

Triggers radically change the concept of a test session by giv-
ing virtual users the ability to react to live users. Instead of
being a prescribed process, multiuser testing becomes a dy-
namic one. Triggers operate on any application activity that
can be recognized by the test system. A set of triggers can
be defined on the same event or chained together to provide
complex virtual user behavior.

Threshold models provide sophisticated control over the fir-
ing of a trigger. If an event or sequence of events passes
the threshold condition, then the trigger fires. Several mod-
els were introduced for user interface events (e.g. mouse-
Pressed,mouseRegion), application state change (e.g.
propertyChangeInt), and timers. Threshold models
range in sophistication from the simple (e.g. a mouse but-
ton press) to the complex (a specific type of mouse button
press in a specific region of a user interface component) and
are completely customizable.

Usage cases were presented to demonstrate the capabilities

9



of triggers. These included detecting race conditions, deter-
mining response time under load, simulating realistic user
behavior, and the ability of virtual users to react other virtual
users.

An evaluation of triggers was conducted on RCN, a mature
shared windowing CSCW application. Serious flaws in RCN
were uncovered prompting the following comment when Re-
becca uncovered one troublesome race condition:

i don’t think any tester would
have ever discovered that. sim-
ply for discovering that, i con-
sider rebecca a success. J.J. Johns,
RCN Developer

7 ACKNOWLEDGMENTS
This research was supported in part by the National Science
Foundation under awards CDA-9634485 and CCR-9527151.
The authors would also like to thank Professor Edwin H.
Rogers and software developer J.J. Johns for their support
and advice during the evaluation of RCN using Rebecca-J.

REFERENCES

[1] D. Cohen, S. Dalal, A. Kajla, and G. Patton. The au-
tomatic efficient test generator (aetg) system. In In-
ternational Conference on Testing Computer Software,
Washington, DC, 1994.

[2] J. Drury, L. Damianos, T. Fandercla, L. Hirschman,
J. Kurtz, and B. Oshika. Scenario-based evaluation of
loosely-integrated collaborative systems. In Proceed-
ings of Conference on Human Factors in Computing
Systems (CHI ’00). ACM Press, 2000.

[3] J. Drury, L. Damianos, T. Fanderclai,
L. Hirschman, J. Kurtz, and B. Oshika. Method-
ology for evaluation of collaborative systems,
http://www.mitre.org/support/papers/tech papers99 00
/damianos evaluating/index.shtml, 1999.

[4] R. F. Dugan Jr. A Testing Methodology and Architec-
ture for Computer Supported Cooperative Work Soft-
ware. Doctoral thesis, Rensselaer Polytechnic Institute,
Department of Computer Science, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, Reading, Mas-
sachusetts, 1995.

[6] M. L. Hammontree, J. J. Hendrickson, and B. W. Hens-
ley. Integrated data capture and analysis tools for re-
search and testing on graphical user interfaces. In Pro-
ceedings of Conference on Human Factors in Comput-
ing Systems (CHI ’92), pages 431–432. ACM Press,
1992.

[7] L. R. Kepple. The black art of gui testing. Dr. Dobb’s
Journal, 19(2):40–42, 1994.

[8] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using
a goal-driven approach to generate test cases for guis.
In International Conference on Software Engineering,
pages 257–266, Los Angeles, California, 1999. ACM
Press.

[9] MercuryInteractive. Testdirector: Scalable test man-
agement. User’s guide, Mercury Interactive Corpora-
tion, 1997.

[10] H. Okada and T. Asahi. Guitester: A log-based us-
ability testing tool for graphical user interfaces. IE-
ICE Transactions on Information and Systems, E82-
D(6):1030–1041, 1999.

[11] T. Ostrand, A. Anodide, H. Foster, and T. Goradia. A
visual test development environment for gui systems.
In ACM SIGSOFT Internation Symposium on Software
Testing and Analysis, volume 23, pages 82–92, Clear-
water Beach, Florida, 1998. ACM Press.

[12] PlatinumTechnology. Final exam c/s-test. Tutorial,
Platinum Technology, Incorporated, 1997.

[13] M. Ramage. How to Evaluate Cooperative Systems.
Doctoral thesis, Lancaster University, Department of
Computing, 1999.

[14] RationalSoftware. Sqa manager user’s guide. User’s
guide, Rational Software Corporation, 1997.

[15] D. Richardson and N. Eickelman. A framework for
software test environments. In Eighteenth International
Conference on Software Engineering (ICSE-18), 1996.

[16] E. H. Rogers, C. Geisler, J. Farley, J. Johns, and
C. Parker. The reconfigurable collaboration network,
a demonstration of collaborative system sharing. In
Proceedings of the European Computer Supported Co-
operative Work Conference 1999, Amsterdam, Nether-
lands, 1999.

[17] S. Ross, M. Ramage, and Y. Rogers. Petra: Participa-
tory evaluation through redesign and analysis. Interact-
ing with Computers, 7(4):335–360, 1995.

[18] G. Rothermel, L. Li, C. DuPula, and M. Burnett. What
you see is what you test: A methodology for test-
ing form-based visual programs. In 20th International
Conference on Software Engineering, pages 198–207,
1998.

[19] SunMicrosystems. Javastar overview, 2000.

[20] L. J. White. Regression testing of gui event interac-
tions. In International Conference on Software Main-
tenance, pages 350–358, Monterey, California, 1996.
IEEE Computer Society Press.

10


