
Using Type Theory as a Language for

Negotiation Objects in Online Exchanges

Rod Moten

July 26, 2002

In this paper, we present LpX, a type theory for agents to specify nego-
tiation objects in an online exchange. An online exchange is a multi–agent
system in which agents buy and sell. We have created LpX to study the use
of type theory in resolving semantic heterogeneity. By using type theory we
can formulate the entire process of resolving semantic heterogeneity in a single
framework. Resolving semantic heterogeneity involves merging independently
created ontologies into a single ontology and performing translation between
schemas. Using an expressive type theory, we can use a collection of types as an
explication of an ontology as well as represent schemas. As a result, we can use
proof rules of the type system to relate independently created ontologies and
use implicit coercion to perform schema translation between related types.

1 Introduction

An aspect of agent–mediated electronic commerce involves implementing elec-
tronic marketplaces as a multi–agent systems. An online exchange is a type of
these marketplaces. In an online exchange, agents negotiate contracts for requir-
ing some goods or services. Agents negotiate with each other by transmitting
negotiation objects to each other. The negotiation objects encode the issues of
a contract that agents use to make their decision to accept or reject a proposal
for a contract. Each agent uses it own local language for formulating negotia-
tion objects. A local language is a subset of terms of the language the online
exchange requires agents to encode negotiation objects. Semantic heterogeneity
occurs when two agents use different terms to have the same meaning.

Effective solutions for resolving semantic heterogeneity is important for the
growth of agent–mediated electronic commerce. Some vendors will not sell their
products at agent–mediated electronic marketplaces if price is the only attribute
agents use to base their decision to purchase a product [1, 4, 5]. Price wars—an
unfavorable position for vendors whose competitive advantage is quality—will
less likely occur when attributes other than price can be used in negotiations [8,
6]. However, semantic heterogeneity is a major obstacle for allowing online
exchanges to permit agents to negotiate on attributes of a good or service other
than price [2].

1

In this paper, we demonstrate how to use type theory for completely formal-
izing a solution for resolving semantic heterogeneity. In particular, we present
a type theory called LpX. LpX is intended to be a meta–language for formu-
lating negotiation objects in an online exchange that supports one–to–one or
one–to–many negotiations. A local language is a type. Semantic heterogeneity
is resolved using coercion between types related by LpX’s subtyping relation.
Using this approach assumes that the types representing local languages are
defined in such a manner so that conceptual relationships can be deduced from
the types.

1.1 Outline

This paper is organized as follows. In Section 2 we present LpX, the type theory
we use for resolving semantic heterogeneity. In Section 3, we describe the roles
polymorphism, subtyping, and coercion play in resolving semantic heterogene-
ity. In Section 4, we demonstrate by example how semantic heterogeneity is
resolved during negotiations in an online exchange that uses LpX. In Section 5,
we conclude the paper and briefly describe related work. We assume the reader
is familiar with category theory on an elementary level and with type theory.

2 LpX

In this section, we give an overview of LpX. LpX is a strongly–typed language for
agents to represent offers. The terms of LpX are constructed from a countable
set of atom symbols A, a countable set of type constant symbols C, and a
countable set of label symbols L. We assume that A contains the symbol ⊥.
Also, the terms of LpX are constructed from a countable disjoint sets of label
variables and type variables. A, C, L, the label variables, and type variables are
pairwise disjoint.

The terms of LpX are partitioned into two disjoint sets, types and objects.
The syntax of types is represented as the following grammar.

Kinds K ::= type | {T1, . . . , Tn}
Label types L ::= label | {l1, . . . , ln}
Types t :: πx : L . t | ΛX : K . t | T
Object types T ::= c | X | r1 : T1 × · · · × rn : Tn | T1 × · · · × Tn | (T)
Label expressions r ::= x | l

In the above grammar, x ranges over label variables, X ranges over type vari-
ables, c ranges over C, and l ranges over L. For all occurrences of n, n ≥ 1. We
call {l1, . . . , ln} an enumerated label type and {T1, . . . , Tn} an enumerated kind.
Intuitively, label represents the label type of all labels and type is the kind of
all ground object types. The object type r1 : T1× · · ·× rn : Tn denotes a record
type. Notice that the labels in a record type can be variables, a feature not
present in any other type theory we are aware of. We do not require the labels

2

Φ`Σ c
`(Φ;Ψ)a

c :c
`Σ e1 :T1, . . . ,`Σ en :Tn

`Σ (e1, . . . , en) :T1 × · · · × Tn

`Σ e1 :T1 · · · `Σ en :Tn
`Σ (l1 = e1, . . . , ln = en) : l1 : T1 × · · · × ln : Tn

Figure 1: Rules for Typing Objects

in a record type to be distinct so that we can represent offers in combinatorial
auctions [3, 7]. In combinatorial auctions, agents may negotiate on the sell or
purchase of bundles of the same good or service. Therefore, LpX needs the
capability to allow offers to have multiple attributes that are the same.

The scope of the binders π and Λ is the same as λ, ∀, and ∃. However, π
and Λ can bind variables in enumerated kinds. For example, y and Y are free in
ΛX : y : Y .X, but they are bound in πy : label .ΛY : type .ΛX : y : Y .X.
A type is closed if all variable occurrences are bound; otherwise its open. A
ground type is an object type with no variables. Because a Λ binder does not
bind anything in a label type, we assume for the rest of the paper all types are
written as

πx1 : L1 . · · · . πxn : Ln .ΛX1 : K1 . · · · .ΛXm : Km . T

where T is an object type and m,n ≥ 0.
The syntax of objects is represented as the following grammar rule.

e ::= ac | (e1, . . . , en) | (l1 = e1, . . . ln = en)

In the above rule, a ranges over A, c ranges over C, and each li ranges over L.
For all occurrences of n, n ≥ 1. We call the objects of the form ac atoms.

In addition to types and objects LpX contains signatures. Due to space
limitations, we omit defining a signature formally, but define them informally as
follows. A signature is a pair (Φ,Ψ) where Φ is a non-empty set of type constant
symbols and Ψ is a non-reflexive transitive relation between type constants in
Φ. We denote (c, c′) ∈ Ψ as c→c′ and say c is reachable from c′.

We type objects with respect to a signature. The rules for typing records
and tuples are similar to the typing rules pervasive in type theory. In LpX,
however, the order of fields in record types is significant. We give the type rules
in Figure 1. It is easy to see from our rules that each object has a unique type.

An interpretation of a signature is a category (S,F), where S is the objects
and F is the morphisms, and a valuation δ : C→S. S consists of subsets of
A. F is a set of coercion embeddings on subsets in A. A coercion embedding
is a function f : A→B such that f is an injection and given some equivalence
relation ≈ on A and equivalence ∼ on B, if a ≈ a′ then f(a) ∼ f(a′) ∀a, a′ ∈ A
. An interpretation I = ((S,F), δ) satisfies a signature Σ = (Φ,Ψ) if for each
c ∈ Φ, δ(c) ∈ S. Also if c→c′, there is a morphism f : δ(c)→δ(c′) ∈ F and there
is a morphism g : δ(c′)→δ(c) ∈ F .

3

3 Resolving Data Heterogeneity Using LpX

We use polymorphism and subtyping to relate local languages. Once we have
determined two local languages are related, we use coercion to convert objects
of one local language to objects of another local language.

The terms of a local language consist of tuples and records. Therefore,
semantic heterogeneity occurs when an object e of a local language β does not
equal an object e′ of a local language γ, but e and e′ are semantically the
same. Since e and e′ are semantically the same, then e and e′ encode the same
attributes of the same product on which the agents negotiate. However, they
may be unequal because of one or more of the following reasons.

1. e or e′ may have some additional fields that do not correspond to any
attribute in the product.

2. The fields can be ordered differently.

3. Either e or e′ may be a record and the other is a tuple.

4. e and e′ can use different names for the same attribute.

5. The type used for the value of the same attribute may be different.

We can resolve some of the difference between e and e′ caused by 1, 2 and 3 by
using subtyping, a topic of Section 3.1. We can resolve some of the differences
between e and e′ caused by 4 and 5 by using polymorphic types.

By using polymorphic types, an agent developer can specify a synonym set—
a range of equivalent names—for an attribute and a range of types that can be
used as the value of an attribute. For example, suppose an agent developer
wanted to specify that the names wt and weight refer to the weight attribute.
He can express this relationship as the polymorphic type

πw : {weight,wt} . w : g× price : usd.

An agent developer can specify that the values of the weight attribute can be
either grams or ounces as the type

ΛW : {g, ozs} .weight : W × price : usd.

An agent developer can specify that any name could be used for the weight
attribute as long as the type of the value is g or ozs as the type

π : label .ΛW : {g, ozs} . w : W × price : usd.

An agent developer can specify that any type could be used for the value of the
identifier attribute as the type

ΛD : type . (id:D)× (weight :g× price :usd).

The need for such a type may arise if one agent requires a unique identifier to
accompany each offer, but an agent negotiating with it ignores the identifier.

4

`Σ T ≤ T
c→c′ ∈ Ψ
`Σ c ≤ c′

where Σ = (Φ,Ψ)

n ≥ m l1 = li `Σ T1 ≤ T ′i
`Σ l2 : T2 × · · · × ln : Tn ≤ l′1 : T ′1 × · · · × l′i−1 : T ′i−1 × l′i+1 : T ′i+1 × · · · × l′n : T ′n

`Σ l1 : T1 × · · · × ln : Tn ≤ l1 : T1 × · · · × lm : Tm
(rec-rec)

n ≥ m `Σ T1 ≤ T ′1 `Σ l2 : T2 × · · · × ln : Tn ≤ T ′2 × · · · × T ′m
`Σ l1 : T1 × · · · × ln : Tn ≤ T ′1 × · · · × T ′m

(rec-prod)

`Σ T1 ≤ T ′1 `Σ T2 × · · · × Tn ≤ T ′2 × · · · × T ′n
`Σ T1 × · · · × Tn ≤ T ′1 × · · · × T ′n

(prod-prod)

Figure 2: Subtyping Rules

3.1 Subtyping and Coercion

We resolve semantic heterogeneity between subtypes and supertypes via coer-
cion. The subtype relation is defined on object types. We indicate T is a subtype
of T with respect to a signature Σ as the judgment `Σ T ≤ T ′. When Σ is known
we write `T ≤ T ′. We use the rules in Figure 2 to prove these judgments. Sub-
typing between constant types is specified by a signature. The rec-rec and
prod-prod rules in Figure 2 support standard inheritance subtyping. Notice
that the rec-rec rule indicates that the order of fields is insignificant. In the
rec-prod rule, on the other hand, the order of fields is significant. Noticed that
subtyping is only defined on ground types.

Coercion can be performed to and from a supertype and a subtype. We
give the algorithm that an exchange uses to perform coercion as pseudo ML
functions in Figure 3. The functions are parameterized by a signature Σ and an
interpretation ((S,F), δ) that satisfies Σ. The functions use the morphisms of F
to convert atoms in one type to atoms in another type. Both algorithms take as
input an object e and two types T and T ′ where `Σ e : T . The function tosup in
Figure 3(a) assumes `Σ T ≤ T ′ and the function tosub in Figure 3(b) assumes
`Σ T

′ ≤ T . The result is an object e′ such that `Σ e
′ : T ′. (See Theorem 3.2

below.) The function ν in the last clauses of tosup and tosub is used to permute
the fields of the supertype in the same way the fields were permuted in a proof
of `Σ T ≤ T ′ or a proof of `Σ T

′ ≤ T . Notice in Figure 3(b) how tosub uses a
bottom element as the value for fields that are in the subtype, but are not in the
supertype. Each ground object type T has a unique bottom element, denoted
⊥T . A bottom element is an object in which all atoms in the object are of the
form ⊥c.

Theorem 3.2 indicates that tosub and tosup actually perform coercion be-
tween two types. To show that tosub and tosup are nontrivial, requires that we
show that tosub and tosup are coercion embeddings.

Our coercion algorithm is actually an encoding of a coercion embedding. To

5

tosup(ac, c, c′) = let b = [[c→c′]](a) in bc
′

tosup((e1, . . . , en), T1 × · · · × Tn, T ′1 × · · · × T ′n) = (tosup(e1, T1, T
′
1), . . . , tosup(en, Tn, T ′n))

tosup((l1 : e1, . . . , ln : en), l1 : T1 × · · · × ln : Tn, l′1 : T ′1 × · · · × l′m : T ′m) =
let ν : {1, . . . ,m}→{1, . . . , n} be an injection such that `Σ lν(i) : Tν(i) ≤ l′i : T ′i
in (l′1 = tosup(eν(1), Tν(1), T

′
1), . . . , l′m = tosup(eν(m), Tν(m), T

′
m))

(a) Converting to Supertype

tosub(ac, c, c′) = let b = [[c→c′]]−1(a) in bc
′

tosub((e1, . . . , en), (T1 × · · · × Tn), (T ′1 × · · · × T ′m)) = (tosub(e1, T1, T
′
1), . . . , tosub(en, Tn, T ′n))

tosub((l1 = e1, . . . , ln = en, l1 : T1 × · · · × ln : Tn, l′1 : T ′1 × · · · × l′m : T ′m) =
let ν : {1, . . . , n}→{1, . . . ,m} be an injection such that `Σ l

′
i : T ′i ≤ lν(i) : Tν(i)

let E be the set of all objects

let G : {1, . . . ,m}→E such that G(j) =
{

tosub(ei, Ti, T ′j) if j = ν(i) for some i
⊥Tj otherwise

in (l′1 = G(1), . . . , l′m = G(m))

(b) Converting to Subtype

Figure 3: Coercion Algorithm for LpX

prove this, we have to define a model of product and record types and show
that our coercion algorithm behaves the same as a coercion embedding on the
entities that model product and record types.

We model product types and record types as set Cartesian products and
record sets, respectively. A record set is the set Cartesian product of a singleton
set containing a tuple of labels and a set Cartesian product. To create a model
for product types and record types we extend S of an interpretation ((S,F), ε).
We denote the extension of S as S+. We define S+ inductively as follows.
S ⊂ S+. If S1, . . . , Sn ⊂ S+ then S1 × · · · × Sn ⊂ S+ and {(l1, . . . , ln)}× (S1 ×
· · · × Sn) ⊂ S+. If ((S,F), ε) is an interpretation of Σ, then S+[[·]] is a map
from object types to sets in S+ and a map from objects to elements of sets in
S+ defined as follows.

S+[[ac]] = a if Φ`c for Σ = (Φ; Ψ)
S+[[(e1, . . . , en)]] = (S+[[e1]], . . . ,S+[[en]])

S+[[(l1 = e1, . . . , ln = en)]] = ((l1, . . . , ln), (S+[[e1]], . . . ,S+[[en]]))
S+[[c]] = 〈c〉 (1)

S+[[T1 × · · · × Tn]] = S+[[T1]]× · · · × S+[[Tn]]
S+[[l1 : T1 × · · · × ln : Tn]] = {(l1, . . . , ln)} × (S+[[T1]]× · · · × S+[[Tn]]

Notice that (1) requires that we have access to the binary relation on A and C
used to create the elements of S. When S+ is known we omit it from S+[[·]].

6

Theorem 3.1 Let Σ be a well–formed signature and ((S,F), ε) an interpretation
that satisfies Σ. Let T and T ′ be ground object types where `Σ T : type and
`Σ T

′ : type. Let e be an object where `Σ e : T . Suppose `Σ T ≤ T ′ and
tosup(e, T, T ′) = e′ or `Σ T

′ ≤ T and tosub(e, T, T ′) = e′. Then there exists a
concept embedding f : [[T]]→[[T ′]] such that f([[e]]) = [[e′]].

Proof: The proof is by induction on the structure of e, T , and T ′.
�

In the next section, we give an overview of how an online exchange makes
use of LpX and properties about it to resolve semantic heterogeneity.

Theorem 3.2 Let Σ be a signature and T and T ′ be ground object types. Let
e be an object such that `Σ e : T . If `Σ T ≤ T ′ and tosup(e, T, T ′) = e′ then
`Σ e

′ : T ′. If `Σ T
′ ≤ T and tosub(e, T, T ′) = e′ then `Σ e

′ : T ′.

3.2 Subtype Unification

Subtyping deduces relationships between object types, but how do we deduce
relationships between polymorphic types? We use subtype unification to deduce
relationships between polymorphic types. Subtype unification is the process
of determining the satisfiability of subtype constraints. A subtype constraint
t � t′ with respect to a signature Σ is satisfied by a valuation ρ, denoted
ρ |=Σ t � t′, if `Σ ρ(t) ≤ ρ(t′). A valuation is an assignment of label variables
to label expressions and type variables to object types. The result of applying a
valuation ρ to a term t, denoted ρ(t), is always an object type. More specifically,
if

t = πx1 : L1 . · · · . πxn : Ln .ΛX1 : K1 . · · · .ΛXm : Km . T

where n,m ≥ 0 and T is an object type, then ρ(t) = ρ(T).
Subtype unification is a procedure for finding a valuation ρ that satisfies a

subtype constraint t � t′. Either t or t′ has to be a ground object type. We give
the algorithm for subtype unification as a collection of rules in Figure 4. Sub-
type unification takes as input a subtype constraint and a list of declarations.
When subtype unification begins, the list of declarations is empty. If subtype
unification terminates without aborting, then the result is a valuation that sat-
isfies the subtype constraint. In the rules in Figure 4, ρ[X 7→ T] is the valuation
that is the same as ρ everywhere except on X. On X, the valuation assigns X
to T . ρ1 ◦ρ2 is composition of valuations. Therefore, ρ1 ◦ρ2(t) = ρ1(ρ2(t)). The
valuation ρι assigns each variable to itself. Therefore, ρι(t) = t.

Merely determining that a subtype constraint t � t′ is satisfiable is not suf-
ficient for relating two types to resolve semantic heterogeneity. We need the
valuation to be consistent with the declaration of variables specified within
the type. For example, the valuation ρ0 that assigns all label variables to
the label l and all type variables to the type real satisfies the subtype con-
straint ΛX : {string} . X � real with respect to all signatures (Φ,Ψ) in which
real ∈ Φ. However, real is not a member of the family of types represented

7

`Σ c ≤ c′
(Γ; c � c′) =⇒Σ ρι

(Γ;X � T) =⇒Σ ρ
(Γ, Y : K;X � T) =⇒Σ ρ

Y 6= X

(Γ′;Ti � T) =⇒Σ ρ
(Γ′, X : {T1, . . . , Tn};X � T) =⇒Σ [X 7→ ρ(Ti)]

(Γ′;T � Ti) =⇒Σ ρ
(Γ′, X : {T1, . . . , Tn};T � X) =⇒Σ [X 7→ ρ(Ti)]

(Γ′, X : type;X � T) =⇒Σ ρι[X 7→ T] (Γ′, X : type;T � X) =⇒Σ ρι[X 7→ T]

(Γ;T1 � T ′1) =⇒Σ ρ1 (Γ; ρ1(T2, . . . , Tn) � ρ1(T ′2, . . . , T
′
n)) =⇒Σ ρ2

(Γ;T1 × · · · × Tn � T ′1 × · · · × T ′n) =⇒Σ ρ2 ◦ ρ1

(Γ;T1 � T ′1) =⇒Σ ρ1 (Γ; ρ1(T2, . . . , Tn) � ρ1(T ′2, . . . , T
′
n)) =⇒Σ ρ2

(Γ; r1 : T1 × · · · × rn : Tn � T ′1 × · · · × T ′n) =⇒Σ ρ2 ◦ ρ1

(Γ; ri ≡ r′) =⇒ ρ1 (Γ;Ti � T ′) =⇒Σ ρ2

(Γ; r1 : T1 × · · · × ri−1 : Ti−1 × ri+1 : Ti+1 × · · · × rn : Tn � r′ : T ′) =⇒Σ ρ2 ◦ ρ1

(Γ; ri ≡ r′1) =⇒ ρ1 (Γ;Ti � T ′1) =⇒Σ ρ2

(Γ; r1 : T1 × · · · × ri−1 : Ti−1 × ri+1 : Ti+1 × · · · × rn : Tn � r′2 : T ′2, . . . , r
′
m : T ′m) =⇒Σ ρ3

(Γ; r1 : T1, . . . , rn : Tn � r′1 : T ′1 × · · · × r′m : T ′m) =⇒Σ ρ3 ◦ ρ2 ◦ ρ1

Figure 4: Rules for Solving Subtype Constraints

by ΛX : {string} . X. Only string is in the family of types represented by
ΛX : {string} . X. Subtype unification produces a valuation such that the as-
signment of variables to labels and ground object types is consistent with the
declarations of the variables in the type. In particular, suppose for some signa-
ture Σ, (; t � T) =⇒Σ ρ or (;T � t) =⇒Σ ρι. If ρ assigns a type variable X to
T , then X is bound in t by ΛX : type or ΛX : {T1, . . . , Tn} where T = ρ(Ti)
for some i. If ρ assigns a label variable x to l, then x is bound by πx : label

or πx : {l1, . . . , ln} where l = li for some i.
The properties of subtype unification are summarized in the following theo-

rem.

Theorem 3.3 Let t be a closed type and T be a ground object type. Let ρl,c be
the valuation that assigns all label variables to l and all type variables to c where
c ∈ Φ for some signature Σ = (Φ,Ψ). If (; t � T) =⇒Σ ρ then `Σ ρ(t) ≤ T . If
(;T � t) =⇒Σ ρ then `Σ T ≤ (ρl,c◦ρ)(t). Furthermore, ρ and ρl,c◦ρ are consistent
with the declaration of variables in t.

8

4 Example

To use our approach, an online exchange implements LpX including the func-
tions tosup and tosub. The implementation requires that an online exchange
specify a language for atom symbols. This language could be the set of all
non-empty finite binary strings or XML terms. For our example, the atoms
symbols consist of the rationals, the finite strings of printable ASCII characters
enclosed in single quotes, and ⊥. Also, the online exchange has to specify a
signature that it will use. An online exchange could technically support more
than one signature. For each signature the online exchange has to provide an
interpretation that satisfies the signature. We omit describing the signature and
interpretation fully due to space limitation. We assume that all type constant
symbols that occur throughout our example are in the signature unless other-
wise stated. We will mention the relationship between constant symbols and
their interpretation, if they are not obvious from the context.

When an agent enters the online exchange, it tells the online exchange its
input type. The input type is a closed type and specifies the family of types of
negotiation objects that the agent can consider as offers. The input type may
specify relationships with the agent’s local language and other local languages
if it is polymorphic.

Negotiations between two agents are performed by the online exchange tak-
ing an offer produced by an agent and giving it to another agent to consider.
For this example, we assume negotiations are one–to–one. One–to–many and
many–to–many negotiations can be implemented by extending the one–to–one
negotiation process so that an agent sends an a single offer to multiple agents
to consider or taking multiple offers from several agents to evaluate collectively.
The online exchange can use the input types to match agents or some other
mechanism. Matching agents is beyond the scope of this paper, so we omit
discussing it in this example.

Suppose the online agent matches an agent for a same–day courier and an
agent of a law firm to negotiate the courier’s delivery services. The courier uses
as its local language records belonging to the type

wt : lbs× time :hrs× cost :usd× from :num× to :num. (1)

The local language is used by a group of same–day couriers that operate in
NYC. Suppose the group of couriers interpret the fields of (1) as follows.

field semantics
wt weight of freight in pounds
time delivery time in hours
to district of sender
from district of receiver
cost amount to charge customer to ship freight in US dollars

Suppose an organization of U.S. law firms develops software to allow members
of its organization to buy courier services on the online exchange. The local

9

language it uses is intended to represent negotiation objects for purchasing ser-
vices from same–day couriers as well as multiple–day couriers. As a result, the
local language of this organization consists of records of the type

weight : lbs× from :A× to :A× time :days× cost :usd. (2)

where

A = string× string× string× zipcode

Suppose the law firm uses the following interpretation of the fields of (2) as the
semantics of its local language.

field semantics
weight weight of freight in pounds
from street, city, state, and zip code of sender
to street, city, state, and zip code of recipient
time delivery time in days
cost amount courier charges to ship freight in US dollars

If a courier’s agent uses the type in (1) as its input type and a law firm’s
agent uses the type in (2) as its input type, then semantic heterogeneity can
occur. For example, the offer to deliver a four pound package for $100 within
eight hours from 777 51st St.,NY, NY, 10023 to 126-34 178th St., Queens, NY
11411 is represented as

(wt = 4, time = 4, cost = 100, from = 23, to = 191)

in the courier’s local language and as

(weight = 4, time = 0.167, from = (’77 51st St.’, ’NY’, ’NY’, 10023),
to = (’126-34 178th St.’, ’Jamaica’, ’NY’, 11413), cost = 100)

in the law firm’s local language. Semantic heterogeneity can be resolved if the
courier’s agent used

πw :{wt,weight} .ΛP :{A, num} .
w : lbs× time :hrs× cost :usd× orig :P × dest :P (3)

as its input type. We describe how semantic heterogeneity is resolved during
negotiation if the courier’s agent input type is (3) and the law firm’s agent input
type is (2).

Negotiation begins by the online exchange selecting one of the agents to
generate a negotiation object representing an initial offer. Suppose, for example,
that the law firm’s agent generates the initial offer

e′0 = (weight = 2, to = a, from = b, time = 2, cost = 20)

where a = (’13 Grand St.’, ’Brooklyn’, ’NY’, 11211) and b = (’19 Rector St’, ’NY’,
’NY’, 10006). Then the exchange deduces that its type is (2). Next the online

10

exchange will seek to convert e′0 into an object that belongs to a type produced
from applying a valuation to t that is consistent with t. The online exchange
begins this process by using subtype unification to create a consistent valuation.
In particular, the online exchange attempts to subtype unify t � T ′ or T ′ � t,
where T ′ is (2) and t is (3). Using the subtype unification procedure specified
by the rules in Figure 4 and hours→days, the online exchange will deduce that
t � T ′ is satisfied by ρ0 = ρι[w 7→ weight, P 7→ A]. Afterward, the exchange
applies ρ0 to t to produce the type

weight : lbs× time :hrs× cost :usd× from :A× to :A.

which we denote as T0. By Theorem 3.3 `T0 ≤ T ′ , the exchange can use tosub
to convert e′0 to an object with type T0. Suppose tosub(e′0, T0, T) = e0. After
obtaining e0, the exchange gives it to the courier’s agent to consider. After
considering e0, suppose the courier’s agent generates e1. The type of e1 may or
may not be T0. For example, e1 may have more fields than e0. The additional
field may indicate that the recipient also intends to have the courier transport
a package for it on the same day. The courier may give a discount when this
scenario occurs. For this example, we will assume that type of the offer generated
by the courier’s agent has the same type as the offer that it received as input. In
any case, The exchange performs the same process of inferring the type of the
offer, performing subtype unification, using the valuation produced by subtype
unification to construct a type, and converting an object to an object of the
type produced from applying the valuation. This process continues until one
of the agents accepts an offer, rejects an offer, or a time limit for performing
negotiations expires. An agent accepts an offer by returning the same offer given
to it to consider. An agent rejects an offer by returning a bottom element.

To illustrate how a user can change a local language without involvement of
the administrators consider the following. Suppose the group of NYC same–day
couriers want to make agents that can be used to sell same–day courier services
in major cities in the US and Canada. As a result, they extend their local
language to consist of records of the type

wt :g× time :hrs× cost :cad× from :num× to :num. (4)

All the fields have the same meaning except wt is the weight of the freight in
grams and cost is the price to charge the customer in Canadian dollars. To
allow this agent to participate in negotiations with an agent that uses (2) as its
input type, we need to change the input type of the courier’s agent to

πw :{wt,weight} .ΛP :{A, num} .ΛC :{usd, cad} .ΛW :{lbs, g} .
w :W × time :hrs× cost :usd× orig :P × dest :P.

Also the agent has to be changed to handle objects that can have the weight
field in grams and the cost in dollars and the address in some city other than
NYC.

11

5 Conclusion

In this paper we have presented LpX, a type theory that could be used as a
language for negotiation objects in an online exchange LpX is to a first step
in trying to demonstrate the use of type theory as a framework understanding
and analyzing solutions for resolving semantic heterogeneity. We have chosen
type theory as a framework because type theory allows one to integrate the
formalize a conceptualization with a procedure for performing schema matching
and translation. As a result, type theory can be used to formulate the entire
process of resolving semantic heterogeneity.

References

[1] Y. Bakos. The emerging role of electronic marketplaces on the Internet.
Communications of the ACM, 41:35–42, Aug 1998.

[2] M. Bichler. Future of E-markets: Multi-dimensional Market Mechanisms.
Cambridge University Press, Cambridge, 2001.

[3] S. de Vries and R. Vohra. Combinatorial auctions: A survey. Unpublished
manuscript, 2000.

[4] M. M. Handling. Working on the B2B and B2C chain gang: An executive
roundable (Part 1). Mordern Materials Handling, 55(7):70–75, Feb. 2000.

[5] M. M. Handling. Working on the B2B and B2C chain gang: An executive
roundable (Part 2). Modern Materials Handling, 55(8):47–52, June 2000.

[6] J. O. Kephart, J. E. Hanson, and J. Sairamesh. Price and niche wars in a
free market economy of software agents. Artificial Life, 4(1):1–23, 1998.

[7] N. Nisan. Bidding and allocation in combinatorial auctions. In ACM Con-
ference on Electronic Commerce, pages 1–12, 1999.

[8] J. Teich, H. Wallenius, and J. Wallenius. Multiple issue auction and market
algorithms for the world wide web. Decision Support Systems, 26:49–66,
1999.

12

