Learning Significant Alignments: An Alternative
to Normalized Local Alignment

Eric Breimer and Mark Goldberg *

Computer Science Department, Rensselaer Polytechnic Institute, 110 Eight Street,
Troy NY 12180, USA, breime@cs.rpi.edu

Abstract. We describe a supervised learning approach to resolve dif-
ficulties in finding biologically significant local alignments. It was no-
ticed that the O(n?) algorithm by Smith-Waterman, the prevalent tool
for computing local sequence alignment, often outputs long, meaning-
less alignments while ignoring shorter, biologically significant ones. Ar-
slan et. al. proposed a O(n?logn) algorithm which outputs a normal-
ized local alignment that maximizes the degree of similarity rather than
the total similarity score. Given a properly selected normalization pa-
rameter, the algorithm can discover significant alignments that would
be missed by the Smith-Water algorithm. Unfortunately, determining a
proper normalization parameter requires repeated executions with dif-
ferent parameter values and expert feedback to determine the usefulness
of the alignments. We propose a learning approach that uses existing bi-
ologically significant alignments to learn parameters for intelligently pro-
cessing sub-optimal Smith-Waterman alignments. Our algorithm runs in
O(n?) time and can discover biologically significant alignments without
requiring expert feedback to produce meaningful results.

1 Background

Local sequence alignment is an essential technique for identifying similarity be-
tween biological sequences [6,8, 10]. The Smith-Waterman algorithm [15] is con-
sidered the standard tool for computing local sequence alignment. However, it
was noticed (see, [2,4]) that the algorithm has two essential flaws. It often com-
bines two or more segments of high similarity and aligns internal segments that
are not related; the mosaic effect, see Fig. 1 (ii). Occasionally, it finds long
alignments with a high score and misses shorter ones with a higher degree of
similarity; the shadow effect, see Fig. 1 (i).

A number of attempts have been made to correct the flaws of the Smith-
Waterman algorithm, including unsuccessful approaches that were abandoned
[11,14], approaches that are computationally expensive [12,17], and approaches
that require sensitive heuristics [18, 3]. Further attempts were made to consider
length in the computation of alignments [5, 13, 16]. The most recent and success-
ful approach was proposed by Arslan et. al. [4]. This approach seeks to maximize

* Supported by a grant from Rensselaer Polytechnic Institute.

4 % sequencel 9m Seq 1 { f 9 It g 19 f 13
a3 | sequencel an B Seq2| c| t| al t gl t|a
% Score | +3| +3| =3| +3| —4| +3| +3| +3
5|
2| 11 Lo 11
b, b, Sequence 2 b, g v Density = 5 1.375
Score > X| Score = -X| Score > X : Score
bn
0 Length 8
()] (i) (i)

Fig. 1. (i) Mosaic effect: Two high scoring segments are joined into a single alignment
that is not biologically significant. (ii) Shadow effect: Sub-optimal alignments with high
degree of similarity are ignored in favor of longer alignments. (iii) Alignment Density:
Alignment score divided by the length of the alignment.

the normalized score Sy defined by

S

NN

where S is the conventional alignment score, [is the sum of the lengths of the
two aligned segments, and N is the normalization parameter used to control the
degree of normalization. Arslan et. al. [4] designed an O(n?logn) algorithm for
computing normalized local alignment (nla) that uses the fractional program-
ming technique developed in [9]. Unfortunately, the algorithm is very sensitive
to the value of N. If N is too small, the algorithm is indistinguishable from an
exact matching algorithm, whereas if NV is too large, the algorithm suffers from
the same negative side effects of the Smith-Waterman algorithm. The useful
range for N is input-dependent and the relationship between the input and the
appropriate value of N is generally unclear [4]. Thus, applying the algorithm
requires guessing a preliminary value for N, and obtaining meaningful align-
ments may require repeated execution of the algorithm with a varying value of
N. Repeatedly executing the nle-algorithm and manually evaluating the results
is tedious and time consuming. For large scale applications, a more automated
and efficient process is still needed.

For the remainder of this paper, an alignment that captures biologically
significant similarity is called a motif. In practice, motifs are identified by ex-
pert biologists. Coincidental alignments without biological significance are called
padding. The training data consists of pairs of sequence segments where all mo-
tifs are known. Thus, given any alignment, we can identify the specific segments
that are motifs and those that are padding. Degree of similarity, also called den-
sity, refers to the alignment’s score divided by the alignment’s length (see Fig.
1 (iii)). Alignment density, although similar to normalized score, does not in-
clude a normalization parameter and defines length to be the number of aligned
symbol pairs.

while 4 < m4 and j < mp
if (A} == B})
if (AY == BY) Mark that A; and B; overlap

1=1+1

j=Jj+1
else if (A7 > Bf) j=j+1
elsei=1+1

Fig. 2. Algorithm for computing the overlap between two alignments A and B of
lengths m 4 and mp respectively. Each alignment is represented as a sequence of index
pairs {(z1,y1), (z2,¥2),- - - , (Tm,Yym)} where (x;,y;) indicates that the symbols a,, and
by; from input sequences @ = a1...a, and b = b1 ...b, are aligned.

2 Learning Approach

Our learning approach uses input sequences with known motifs to train an algo-
rithm to align and extract these motifs with high probability. It is expected that
the motifs possess certain generalizable characteristics that the trained algorithm
can use to perform well on similar inputs. This expectation is not unreasonable
for biological sequences given that the motifs arise from underlying processes of
mutation and conservation that are common among all inputs. We describe a
system that learns a strategy for exploring sub-optimal Smith-Waterman align-
ments and learns parameters for processing these alignments to identify motifs
and ignore padding. The main goals are to train an algorithm that is superior to
the Smith-Waterman algorithm in its ability to align biologically similar regions
and to improve upon the O(n?logn) runtime of the nla algorithm.

2.1 Sub-optimal Alignments

It is well known (see [2]) that the alignment’s degree of similarity is an important
measure in identifying biologically significant similarity. Alignments with the
highest degree of similarity may not be captured by the maximum scoring Smith-
Waterman alignment, but are often captured by sub-optimal alignments [19].
Given a training input, we use a modification of the Smith-Waterman algorithm
similar to that proposed in [7] to efficiently output the non-overlapping maximal
scoring alignments to see if a motif is discovered, i.e., contained within a sub-
optimal alignment. The precise locations of overlap between any two alignments
can be computed in linear time using the algorithm in Fig. 2.

In practice, alignments that arise from coincidence rarely score higher than
motifs. A Smith-Waterman alignment that contains a motif will naturally score
higher than the motif alone, otherwise the algorithm would have returned the
motif and ignored the lower scoring alignment. If a motif is embedded in a sub-
optimal alignment, it will typically be among the top k scoring alignments, where
k is the number motifs in the input. If the number of expected motifs is known,
we can limit the number of computed alignments to improve the efficiency of
training or the efficiency of the learned algorithm.

100 T T

padding
motif +

80 M B
s pommeeme
g eof L .
E
S 40
=

20 g

R 1+ r R % e
0 1 :*: 1 +
-2 -1 0 3

alignment densities

Fig. 3. Alignment densities: Given a training sample, we examine the top k Smith-
Waterman alignments using different sampling interval lengths. The left and right
clusters represent intervals contained within padding and motif respectively.

2.2 Alignment Density

Due to the mosaic effect, high scoring alignments often contain two or more
motifs separated by padding. A single motif may also be embedded in a large
alignment with padding to the left and right of the motif. In practical input, the
motifs have significantly higher alignment density compared to the padding. To
sample density, we choose two alignment indices 4 and j (i < j) and compute
density d defined by

_ s(j) —s(@)

i+l
where s(i) and s(j) are the alignment scores at position ¢ and j, and j —i+ 1 is
defined at the sampling interval length. Given an alignment with known motifs,
we can sample the density of the motifs and the padding to determine thresholds
for discriminating the two. However, this density difference is not evident if the
sampling interval length is very small. Small segments of the padding may have
high density; similarly, small segments of the motif may possess low density. A
large sampling interval may cover two or more motifs, which hinders the ability
to identify the start and end of individual motifs. To use density thresholds
effectively, one must carefully choose the sampling interval length.

By sampling and plotting segment densities using different interval lengths
we can simultaneously detect the minimum interval length and density thresh-
olds that adequately discriminates motif from padding. Figure 3 shows align-
ment density plotted over interval length. The right cluster represents intervals
entirely contained within a motif, while the left cluster represents intervals en-
tirely contained within the padding. Intervals that overlap motifs and padding
are omitted from the plot. As the interval length increases the disparity between
motif density and padding density increases. Qur goal is to find the minimal
interval length L that adequately discriminates motif from padding. Since very
long intervals are undesirable, we can limit the length of the sampling intervals
so that this process is efficient.

length =1
Sort m in ascending order according to density
Sort p in descending order according to density
while (m$ < p{)
length = length + 1
For all m;, if m! < length then remove m;
For all p;, if pt < length then remove p;
j=Iml*(1=7)

k=1pl*(1—r)
L = length
M:m?
P =pj

Fig. 4. Algorithm for computing L, M, and P where r is the percentage of points that
must achieve the thresholds, m; and mg are the length and density of the ith motif
data point, and p; and pj; are the length and density of the ith padding data point.

Minimum interval length (L)
The minimum length L such that all motif points above L fall to the right
of some density threshold and all padding points fall to the left of that
threshold.

Maximum motif threshold (M)
The maximum density M such that all motif points above L fall to the right
of M.

Minimum padding threshold (P)
The minimum density P such that all padding points above L fall to the left
of P.

These thresholds are relaxed so that a small percentage of outlying points
can be ignored. Figure 4 shows the algorithm for computing L, P, and M. Pre-
liminary experiments indicate that the thresholds accurately identify the start
and end of the motifs. Moreover, these thresholds do not significantly change as
the motif lengths and padding lengths of the training data are varied, or if the
number of motifs or their relative positioning in the input sequences vary.

2.3 Learning

Our learning system uses the observations above to generate a local alignment
algorithm. To generate an algorithm, the system requires at least one training
sample and implements the following steps.

Learning Stage

1. Find the motifs: Given an input pair with k£ known motifs, output
k maximal scoring Smith-Waterman alignments in order of total align-
ment score. Search each alignment for the known motifs and label each
alignment accordingly.

2. Obtain density statistics: From the labeled alignments, scan each mo-
tif segment with varying intervals and obtain the motif density statistics.
Likewise, scan each padding segment and obtain the padding density
statistics.

3. Compute thresholds: Repeat steps one and two until the training data
is exhausted or until some time or computation limit has exceeded. After
training is complete compute L, M, and P accordingly.

Our algorithm requires O(n?) time and O(n + k) space to output the score
and the endpoints of k alignments. Each alignment can be generated using O(n?)
time and O(n;) space, where n; is the individual length of each alignment. If k
is reasonably small, i.e., k < 200, the total time to compute and sort all £ align-
ments is only 2 or 3 times longer than the basic Smith-Waterman algorithm.
Computing the overlap locations between the top k alignments and the known
motifs is linear with respect to the sum of the lengths of the alignments. After
labeling the sub-optimal alignments, the system samples the scoring densities
of all the contiguously labeled segments and computes the thresholds. Once ob-
tained, the thresholds define a customized algorithm for processing sub-optimal
alignments. Assuming that the learned thresholds generalize well over a broad
set of input, the new algorithm is expected to discover alignments that exhibit
the same characteristics as the motifs used for training.

Figure 5 shows the post-processing algorithm for labeling alignments. The
algorithm scans the alignment until the score begins increasing. From the start
position of the increase j, the algorithm marks each successive position i as a
motif if one of two conditions is satisfied: (i) the alignment density from 4 to
i+ L exceeds the motif threshold M, or (ii) the alignment density from i to ¢+ L
exceeds the padding threshold P and the alignment density from j to i exceeds
the motif threshold M. The first condition indicates that 7 is the beginning
of a significantly long alignment that satisfies the motif threshold. The second
condition indicates that i is towards the end of a motif but is not yet at the
beginning of a significantly long alignment that satisfies the padding threshold.
We mark the position m where the maximum score occurs so that when the two
conditions are violated we can mark every position from m to i as padding, since
this segment decreases the score. Other post-processing algorithms were tested
but were not as effective or efficient.

j=0i=1
while (i < ma)
while (A < A7)
Mark A; as padding; j=j5+1;i=i+1
m = 0; dmn =0.0; w=min(i + L,ma — 1)
dy = (A — A3)/(w — i) dy = (A7 — A2)/(i —)
if (df > M)
while (df > M or (df > P and dp > M))
Mark A; as motif
if (A > dn)
dm = Ai; m=1
i=i+1; w=min(i+ L,ma — 1)
dy = (A — A3)/(w — i); dy = (A — A2)/(i — j)
z=1—1
while (z > m)
Mark A; as padding; z =2z — 1
j=ut=7+1

Fig. 5. Algorithm for processing sub-optimal alignments where m4 is the length of
alignment A and Aj is the alignment score at position 3.

3 Experiments

We experimented on specific regions of the human® and mouse ? genome where
there exist highly conserved segments that have been identified as significant by
biologists. We extracted a pair of sub-regions, one from the human and one from
the mouse, which shared k motifs ranging in length from n; to ny. We train on
several samples, compute the thresholds, and cross-test to verify that the post-
processing algorithm accurately identifies the known motifs of the training data.
We then apply the learned thresholds to unseen samples with known motifs.

To discover a motif the algorithm must compute a contiguous alignment that
contains 90% of a particular motif (called the accuracy requirement). To extract
a motif the post-processing algorithm must identify a contiguous segment such
that the length of overlap between the segment and the true motif is greater
than 90% of the length of the segment (called the precision requirement).

We compare the output of our algorithm before and after post-processing.
Before post-processing, our algorithm outputs the top k scoring alignments and
computes how many motifs were discovered according to the accuracy require-
ment. After post-processing, zero or more segments may be identified as potential
motifs. For each of these segments, we test to see if they satisfy both the accuracy
requirement and the precision requirement. QOur expectation is that every motif
discovered before post-processing is precisely extracted by the post-processing
algorithm. Table 1 summarizes the results of these experiments. In both train-

! Homo sapiens ATP-binding cassette, sub-family B (MDR/TAP), member 11
2 Mus musculus ATP-binding cassette, sub-family B (MDR/TAP), member 11

Table 1. Training and Testing

Training Testing
Trial|k |n1—ng |Discovered|Extracted| |Trial|k [ni—m2 |Discovered |Extracted

1 |3 |112-218 3/3 3/3 1 |3 |118-204 3/3 3/3
2 |4 |103-147 4/4 4/4 2 |4 |114-185 4/4 4/4
3 |5]99-123 5/5 5/5 3 |6 [103-157 6/6 6/6
4 |7 |64-111 6/7 6/6 4 |8 |66-128 7/8 7/7
5 [10(52-106 8/10 8/8 5 [10({64-105 9/10 8/9

Summary| 26/29 26/26 Summary| 29/31 28/29

ing and testing combined, the post-processing algorithm extracted 54 out of 55
motifs that were discovered by the Smith-Waterman algorithm. It is important
to note that the majority of these motifs (30 out of 55) were embedded into very
long alignments that contained more than one motif.

4 Discussion

When the normalization parameter N is carefully selected, the nla algorithm
can potentially output significant alignments that would not be contained in
any of the sub-optimal alignments produced by the Smith-Waterman algorithm.
This occurs when significant alignments partially overlap the padding of two
adjoined motifs (a result of the mosaic effect) or when significant alignments
partially overlap a very long, insignificant alignment (a result of the shadow
effect). By isolating padding and recomputing the alignment, it may be possible
to discover alignments hidden in the padding between adjoined motifs. Adding
another stage that identifies and isolates padding for further motif discovery may
prove to be useful. It is important to note that such a stage would be impossible
without an approach for discriminating motifs and padding.

While it is unclear how to discover significant alignments hidden by the
shadow effect, it is important to consider the likelihood of such alignments in
practical data. Although the nla algorithm appears promising, determine the
proper range and granularity of N-values to compute these alignments is also
unclear. One approach might be to apply supervised learning to automatically
determine an appropriate range for N. Unfortunately, training on one sample
requires the repeated execution of the O(n? logn) nla algorithm. In our approach,
training on one sample requires only a single execution of our algorithm followed
by post-processing, which together requires O(n?) time in practice.

While our algorithm does not eliminate all the flaws of the Smith-Waterman
algorithm, it improves its discovery capabilities without adding severe compu-
tational costs. Qur approach uses supervised learning to automatically generate
thresholds for post-processing. We provide a system where existing knowledge of
biological similarities can be used to automatically generate effective heuristics.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Alexandrov, N., Solovyev, V.: Statistical significance of ungapped alignments. Pa-

cific Symp. on Biocomputing (1998) 463-472

Altschul, S., Erickson, B.: Significance levels for biological sequence comparison
using nonlinear similarity functions. Bulletin of Mathematical Biology 50 (1988)
77-92

Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.:
Gapped Blast and Psi-Blast: a new generation of protein database search programs.
Nucleic Acids Research 25 (1997) 3389-3402

Arslan, A., Egecioglu, 0., Pevzner, P.: A new approach to sequence comparison:
normalized sequence alignment. Proceeding of the Fifth Annual International Con-
ference on Molecular Biology (2001) 2-11

Arslan, A., Egecioglu, O.: An efficient uniform-cost normalized edit distance algo-
rithm. 6th Symp. on String Processing and Info. Retrieval (1999) 8-15

Bafna, V., Huson, D.: The conserved exon method of gene finding. Proc. of the 8th
Int. Conf. on Intelligent Systems for Molecular Bio. (2000) 3-12

Barton, G.: An efficient algorithm to locate all locally optimal alignments between
two sequences allowing for gaps. Computer Applications in the Biosciences 9 (1993)
729-734

Batzoglou, S., Pachter, L., Mesirov, J., Berger, B., Lander, E.: Comparative anal-
ysis of mouse and human DNA and application to exon prediction. Proc. of the
4th Annual Int. Conf. on Computational Molecular Biology (2000) 46-53
Dinkelbach, W.: On nonlinear fractional programming. Management Science 13
(1967) 492-498

Gelfand, M., Mironov, A., Pevzner P.: Gene recognition via spliced sequence align-
ment. Proc. Natl. Acad. Sci. USA 93 (1996) 9061-9066

Goad, W., Kanehisa, M.: Pattern recognition in nucleic acid sequences: a general
method for finding local homologies and symmetries. Nucleic Acids Research 10
(1982) 247-263

Huang, X., Pevzner, P., Miller, W.: Parametric recomputing in alignment graph.
Proc. of the 5th Annual Symp. on Comb. Pat. Matching (1994) 87-101

Oommen, B., Zhang, K.: The normalized string editing problem revisited. IEEE
Trans. on PAMI 18 (1996) 669-672

Seller, P.: Pattern recognition in genetic sequences by mismatch density. Bull. of
Math. Bio. 46 (1984) 501-504

Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of Molecular Biology 147 (1981) 195-197

Vidal, E., Marzal, A., Aibar, P.: Fast computation of normalized edit distances.
IEEE Trans. on PAMI 17 (1995) 899-902

Zhang, Z., Berman, P., Miller, W.: Alignments without low-scoring regions. J.
Comput. Biol. 5 (1998) 197-200

Zhang, Z., Berman, P., Wiehe, T., Miller, W.: Post-processing long pairwise align-
ments. Bioinformatics 15 (1999) 1012-1019

Zuker, M.: Suboptimal sequence alignment in molecular biology: alignment with
error analysis. Journal of Molecular Biology 221 (1991) 403-420

