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Abstract

Internet topology generators aim at producing
graphs that have similar properties with the “ac-
tual” Internet. Each generator focuses on different
properties to define metrics and uses them to com-
pare its output graph to that of the Internet.

This paper shows that most of the metrics are
evasive: their exact values cannot be determined
without visiting all links in the Internet graph.
This indicates a fundamental difficulty with the
topology generators since (i) due to its size and
dynamics, a complete Internet graph cannot be
obtained, thus the comparisons are made under
incomplete information, and (ii) each generator
focuses on different metrics, thus comparison of
topology generators is not absolute.

This work provides a meta-metric called (v, o)-
evasiveness to determine if a metric can be esti-
mated with at least 1-o0 accuracy by using <y per-
centage of data. The (v, o)-evasiveness of the met-
rics considered in the literature is computed over
the actual internet data. It is shown that the data
collection method has impact on the values of the
metrics, thus motivating a through comparison of
the internet topology generators and their metrics.
Finally, based on these observations a greedy algo-
rithm is proposed for deciding on optimal amount
of data to be collected.
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1 Introduction

The Internet topology can be considered either at
the router level [13] or at the inter-domain level [2,
8, 11]. Obtaining an accurate map of the Internet
topology is a time consuming and non-trivial task.

Due to the immense size of the Internet, only a
limited amount of data can be collected within a
short time period. Furthermore due to its dynam-
ics, the data may become outdated in a short time.
Thus, many topology generators are proposed to
produce graphs that have similar topological prop-
erties with the actual Internet graph. Each genera-
tor focuses on different properties to define a set of
metrics to be satisfied by the output graph. Eval-
uation of the generators is based on comparing the
values of these metrics on the produced graphs to
that on the “actual” Internet graph obtained by
measurements. Therefore snapshots of the Inter-
net in different time periods are taken and they
are used to analyze its topology and to verify the
data generator models.

As the size of the snapshots determines the val-
ues of metrics, one must determine at least how
much data are enough to draw meaningful conclu-
sions. It is obvious that the metrics converge to
their actual values as the size of data increases.
However the complexity of collecting data from the
Internet, the memory requirements to store this
data, and the computational and space complexity
of the metric evaluation also increase with the data
size. For these reasons it is important to determine
minimum amount of data that must be collected so
that results will be to generalized to the whole In-
ternet.

In [7], Floyd and Paxson discuss the difficulties
in simulating the Internet. Multiple administrative
policies and variations of the traffic over different
periods of time make the topology of the Internet
heterogeneous and it becomes difficult to define a



typical Internet behavior. In this work we continue
with explaining the difficulties of simulating the In-
ternet from a topological perspective. In particular
we show that most of the metrics are evasive: their
exact values cannot be determined without visiting
all edges in the Internet graph. The evasiveness of
metrics can be a fundamental difficulty with the
Internet generators since the exact value of these
metrics on the Internet is not available and the gen-
erators try to produce graphs on which the metrics
have similar values to that of the Internet.

This paper provides a meta-metric called (v, o)-
evasiveness, to answer the following questions: (i)
can a metric be estimated with 1-0 accuracy by
using only 7 percentage of the total data? (ii) how
do the values of v and o change for different met-
rics? (iii) is the sampling method important in
this task? (iv) how do the (v, o)-evasiveness of the
metrics change over the graphs generated by inter-
net topology generators? Based on the answers to
these questions, a greedy algorithm is proposed for
data collection to address the cost-accuracy trade
off.

The rest of the paper is organized as follows:
In Section 2, we review different data generation
models, metrics to use in model evaluations, and
methods to compare a metric for different models.
We define (v, 0)-evasiveness in Section 3. Data col-
lection procedures and sampling processes are ex-
plained, and the observations on the changing be-
haviors of metrics on the “actual” Internet data are
discussed in Section 4. In Section 5, we compare
the data generated by different topologies in terms
of (v, 0)-evasiveness. We explain our greedy algo-
rithm that decides the network size dynamically
and its results in Section 6. Section 7 contains the
conclusion and discusses possible future work.

2 Background and Related Work

Internet topology generators can be categorized
into three groups— random, structural, and power
law degree generators. The first widely used ran-
dom model is developed by Waxman [18], in which
links are added with the probability depending on
the Euclidean distance of its vertices. After the
work of [6], many simulators have been proposed
for generating power law based topologies [1, 2, 9].
In contrast with the degree-based models, struc-

tural models connect smaller random graphs to
form the larger structures.

To show the similarities and the differences be-
tween all these models as well as the “actual” In-
ternet, many metrics are defined on the data they
generate. In the literature, there are different ways
to make comparison of the same metric computed
for different models. One way is just to compare
their values and observe how close the metric val-
ues are. In [9], Jin et al. make such comparisons for
the power law exponents mentioned in [6]. In [11],
average path length and clustering coefficients are
also compared in this way.

Another way is to examine the correlations be-
tween different metrics for different models. Bu
and Towsley [2] examine the pairwise correlations
between clustering coefficient, characteristic path
length, and the maximum degree. Such a com-
parison is based on the observation that the In-
ternet graph shows the small world characteristics
discussed in [17]. Remember that the correlation
between the clustering coefficient and the median
shortest path length is an indicator of a small world
graph.

Zegura et al. use statistical methods to make
pairwise comparisons [20]. They use Kolmogorov-
Smirnov test to answer whether metrics that are
computed on data generated by different models
come from the same distribution or not. Moreover,
they define intermetric probability as a similarity
measure. They compare the diameter of different
graphs using this approach.

In [16], it is proposed to compare the metrics of
different models by using their growing quantities.
They compute the metrics (expansion, resilience,
and distortion) on different sized networks that are
formed by taking all nodes and edges within h hops
and distinguish different topologies by using the
changing curves of the metrics as a function of h.

In all these comparisons, it is important to deter-
mine the appropriate size of a network such that
the value of a metric should converge to its real
value. In [14], Riley and Ammar compute the met-
ric on a small graph initially. In each step, they
compare the current value of the metric with its
previous value and increment the size of the graph
unless these two values are the same. Our greedy
algorithm is similar to this approach but we com-



pare the current value of a metric with its prior
values computed in K steps. Note that we propose
to compare the metrics of different models by com-
paring the values of v with a fixed value of o in
their (v, o)-evasiveness properties.

2.1 Topology Generators

In this section, we review most commonly used
models briefly. First Waxman model and its varia-
tions are described, then transit-stub model as an
example of structural models is explained, and last
power based models are discussed.

2.1.1 Waxman Model

In this model [18], N nodes are randomly dis-
tributed in a plane and a link probability between
any two nodes u and v is defined as:

P(u,v) =a-e ¢/ (BL) (1)
where d is the Euclidean distance between nodes u
and v, and L is the maximum Euclidean distance
between any two nodes. « and 8 are parameters
such that 0 < «, < 1. In this equation, a con-
trols the number of edges. Increasing « results in
dense graphs and decreasing [ increases the ratio
of shorter edges over longer ones. Some variations
of Waxman model are also defined:

1. Doar and Leslie defines the link probability
between nodes u and v as:

k-e

P(u,v) = ca-e 4/ (BL) (2)
where N is the number of nodes, e is the de-
sired average node degree and k is a constant
which depends on « and . Additional term
(k - e)/N provides more control over the num-
ber of edges [4].

2. In the exponential model [19], the link prob-
ability depends on only one parameter which
has the effect on the number of edges and given
as follows:

P(u,v) =a-e ¢/ L=9

(3)

2.1.2 Transit-Stub Model

Calvert et al. point out that routing domains in
the Internet fall into either transit or stub domains.
In a stub domain, only traffic between two routers
that belong to that stub domain is carried. There
is no such restriction for transit domains. Transit-
stub model is proposed to reflect the differences
between these different domains [3]. In this model,
a random graph R is generated for all transit do-
mains. A node in the graph R corresponds to a
single transit domain and it is replaced by another
random graph R; at the second step. Next, each
node in the graph R; is connected to a number of
random graphs considered as stub domains. The
process is finished by adding extra edges between
the nodes of transit and stub domains and between
the nodes of different stub domains.

2.1.3 Power Law Graph Generators

The power law random graph model explained
in [2] generates data according to node outdegree
power law. This model first assigns degrees to N
nodes depending on f;  d, where f; is the fre-
quency of outdegree d and O is the outdegree expo-
nent. The degrees are matched with the nodes and
a graph is formed by connecting each node with
randomly selected m nodes, where m is the out-
degree of the corresponding node. After deleting
self loops and merging duplicate links, a giant con-
nected component is taken as the generated model.

Barabasi and Albert claim that incremental
growth and preferential attachment cause power
law distributions observed in the Internet and use
these properties in their proposed model [1]. In
their model, they begin with a small number of
nodes. At each time ¢, they add a new node n with
a specified number of links. The node n connects
to other nodes such that it connects to the nodes
with larger degrees with larger probabilities.

In addition to incremental growth and preferen-
tial attachment, Medina et al. report that node
placement and connection locality are the other
reasons on the origin of power laws [11]. They
claim that nodes are skewed distributed in space,
which is referred as node placement, and nodes
have tendency to connect closer nodes, which is
referred as connection locality. Their generator,
BRITE, also makes use of these two findings to



generate the power law distributed networks.

In [9], Jin et al. show that the outdegree and the
frequency grow exponentially over time. Their gen-
erator, Inet 2.0, takes November 1997 as its origin
and generates data accordingly. First it computes
how many months are needed to reach N nodes
from November 1997. The number of months is
used in the computation of the outdegree-frequency
and the rank outdegree distributions. Then Inet
2.0 connects each node to its neighbors according
to these distributions.

2.2 Metrics

Metrics can be distinguished in terms of the range
of the information they provide. Local metrics,
which are extracted from individual nodes, give in-
formation about a single node whereas global met-
rics reflect the properties of a whole network. A
single global value can be extracted from the lo-
cal values by using simple statistics such as mean,
median, minimum or maximum.

2.2.1 Degree

Degree is the most simple and the trivial metric
and it is defined as the number of the connections
of a single node for an undirected graph. For di-
rected graphs, indegree and outdegree are also de-
fined. To evaluate the degree of node i, we should
check all other nodes whether they are connected
to node ¢ or not. Thus the complexity of the de-
gree computation for all graph is O(N?), where N
is the number of nodes in a graph.

Although degree of a node is a local property, the
statistics on it give connectivity information of a
whole graph. For example, the average node degree
gives the number of connections that a typical node
has. It is also possible to use the minimum and the
maximum of node degrees to obtain a global value.
All these statistics are computed in a O(N) time,
thus the complexity remains O(N?).

Faloutsos et al. state that metrics based on min-
imum, maximum and average values are not suffi-
cient to describe the skewed distributed data and
they propose to use the exponents of power laws as
new metrics [6]. The exponents measure the ten-
dency of a property. The exponents based on the
connectivity of the nodes are given as follows:

1. Outdegree exponent O: Faloutsos et al.

examine the frequency of the outdegrees. Fre-
quency fq of an outdegree d is defined as the
total number of nodes with degree d. They ob-
serve fq o< d9, where the outdegree exponent
O is the slope of f; versus d plot.

2. Rank exponent R: In [6], the rank expo-
nent R is defined as the slope of a d,, versus r,
plot, where d, and r, are the outdegree and
the rank of the node v respectively and it is
observed that d, o« rZ. In the computation
of rank values, degrees of all nodes should be
sorted first (there are sorting algorithms with
O(NlogN) complexity) and the overall com-
plexity still remains O(N?).

3. Eigen exponent £: The connectivity infor-
mation of a graph can be kept in an adjacency
matrix. In [6], it is observed that \; oc I¢,
where ); is an eigenvalue of the adjacency ma-
trix. All eigenvalues are sorted in decreasing
order and the value of 7 gives the order of A;.
We use Jacobi transformations for the compu-
tation of eigenvalues, with complexity O(N3).

2.2.2 Clustering Coeflicients
Clustering coefficients are the local metrics that

reflect the connectivity information in the neigh-
borhood environment of a node [5]. It can be also
thought that they provide the transitivity infor-
mation [12], since it controls whether two different
nodes are connected or not if they are connected
to the same node.

Clustering coefficient C; is defined as the per-
centage of the connections between the neighbors
of node ¢ and it is given as:

2. E

Y= o

(4)
where k is the number of neighbors of node ¢ and E;
is the existing connections between its neighbors.
Clustering coefficient D; is defined similar to C;
with an exception. It also considers node ¢ and its
connections in the computation of the clustering
coefficient [5]. The formula of D; is given as:

2-(Bi+k)

D= T mrn ®)



The global clustering coefficients of C' and D are
computed as the averages of C; and D; respectively.
In [2], clustering coefficient C(®) is computed by
taking average over the clustering coefficients of all
nodes, C;, except the ones whose degrees are one.

In the computation of the clustering coefficient
of a single node, we should check all edges in the
worst case. This gives O(F) for a single node and
O(E - N) for a whole graph, where F and N are
the numbers of the edges and the nodes in a graph
respectively.

2.2.3 Distance Between Nodes

The hop distance between nodes v and v is de-
fined as the shortest path between them, taking
the weight of each edge as a unit length. Note
that, it is also possible to define distances in terms
of physical distances between nodes [20]. In this
work, only the metrics based on hop distances are
considered. The diameter of a graph is the maxi-
mum of minimum distances between any two nodes
and it determines the effective size of a network.

Closeness and Betweenness are local metrics that
measure the connectedness of a network [12]. The
closeness of node i is the average distance from
node 7 to all other nodes. It reflects the centrality
property of a single node and smaller values indi-
cate that this node places close to the center of a
network. The average path length is one of the
global metrics defined as the average of the close-
ness values for all nodes [11]. In [2], the charac-
teristic path length is defined as the median of all
closeness values. Betweenness of a node i is the to-
tal number of the shortest paths that pass through
node i. The higher value of a node indicates that
the node has greater flow, thus it controls the traf-
fic in a network.

Eccentricity of node 4 is another local metric and
it is defined as the minimum number of hops re-
quired to reach at least 90 per cent of reachable
nodes from node i. By taking average over all
nodes, it also reflects the size of a network.

In [6], exponent P(h), which is the indicator of
connectiveness of the graph, is defined as the num-
ber of pairs within A hops. Faloutsos et al. state
that P(h) o< h™ h < &, where H is the hop-plot
exponent and d is the diameter of a network. In
that work, the effective hop diameter d.; is defined

as:
N2 1/H

 N+2-E (6)

In the computation of all these metrics, hop dis-
tances between all the nodes should be computed.
By using breadth-first search, hop distances from
node 4 to all other nodes can be computed in O(F)
time. Thus the computational complexity of each

metric is O(E - N).

et

3 (v,0)-Evasiveness

There are more than a dozen metrics proposed in
the literature along with several topology genera-
tors to model the Internet graph. Some of these
generators value some metrics more than the oth-
ers. In this work we examine which metrics are
hard to compute accurately by defining an approz-
imate evasiveness notion, and to compare the graph
generators with respect to this new metric.

Graph evasiveness (also known as elusiveness)
considers the following problem. Given an input
graph G suppose we are to decide if G has a cer-
tain property P by asking, to an oracle O, whether
or not edge (u,v) belongs to G. In a graph with
N nodes there are at most N(N —1)/2 edges that
can be used as a query to the oracle O. If the
decision about P can only be made using exactly
N(N —1)/2 queries then the property P is said to
be evasive. In other words if P can only be decided
by checking all the edges of G then it is an evasive
property. Thus, evasiveness of graphs is used for
determining the worst case complexity of comput-
ing some graph properties [10].

It is conjectured by Karp that every nontriv-
ial monotone graph property is evasive [15]. A
property is monotone if insertion of new edges to
a graph with property P does not destroy the
property and P is nontrivial if it holds for some
graphs with N nodes and it does not hold for some
other with the same number of nodes. Planarity,
2-connectivity, connectivity are examples of such
properties.

In this work we introduce a new concept called
(v, 0)-evasiveness by relaxing the strict or exact
evasiveness definition as follows:

Definition 1 Given a graph G with verter set V
and edge set E, a property P is called (v, o)-evasive



if it can be “computed” by making at least [v|E|]
queries with an error margin of at most o for
0<y<1lando >0.

Note that in this definition the graph is given but
computation of a property has (v,o)-evasiveness
The (7, 0)-evasiveness is an approximation to the
exact evasiveness with two differences: in exact
evasiveness (i) the next query can be chosen based
on the current answer from the oracle, and (ii)
there is no margin of error - the property P ex-
ists or not.

In (v, 0)-evasiveness a property (metric) P is
called monotone if for v/ > v property P still
holds. In other words additional information will
not change the fact that metric P can be computed
with an error margin of at most +¢. Similarly, if
the variance of a metric P, which is computed over
say K graphs G = (V, E) with v|E| queries with
an error margin of at most +o, is non-zero then P
is said nontrivial.

As we shall show later in this paper, evasive-
ness of the metrics used by the topology generators
varies significantly on the Internet graph from that
on the generated topologies !.

4 Emprical Observations

4.1 Actual Data Collection
Data collection procedure collects path information
between different IP addresses and constructs IP
router graph. We use TP addresses of the tracer-
oute gateways found in www.traceroute.org and
www.tracert.com. We obtained the pairwise paths
from the traceroute commands executed between
these servers. We processed these paths to elimi-
nate the redundancies in order to identify node and
edges sets of the graph.

Finally we constructed 10 different Internet
graphs at the router level, where the total node
count is 6-7K and the total edge count is 11-15K.

4.2 Sampling Methods

In this work, we take samples from each collected
data and observe the values of metrics on them,
depending on their sizes. To this end, we use two
different sampling methods. Hop sampling creates

'For the rest of this paper evasiveness will refer to (7y,o)-
evasiveness unless a distinction is made explicitly.

a subnetwork of the original topology by randomly
selecting an initial node at the edge of the network
and growing it from that node according to the
specified hop count h. All nodes and edges vis-
ited within A hops are taken to form a subnetwork.
This technique is called “ball growing” in [16]. In
our experiments, we select hop count value start-
ing with one and incrementing it until the sampling
graphs nearly converge to their original topology.

In path sampling, we grow a subnetwork by us-
ing the paths between traceroute servers that are
used in data collection. Given the set of tracer-
oute servers S = {S; | i = 1,..., K} and an empty
subnetwork H, it works as follows:

1. Choose an initial source server S, randomly

2. Choose a destination server S, similarly, such
that v # v and S, — S, is not chosen before

3. Run traceroute to get path P(u,v) =S, — S,
4. H = H{ P(u,v)

5. Set S, as the new source (new S,) and go to
step 2 unless all paths are visited

In step 3, we need to get path P(u,v) = S, — S,
and this run has been already done during data
collection. In step 5, we make the selection of the
source server deterministic while keeping the desti-
nation server still randomly chosen to ensure con-
nectivity. In this algorithm, in each iteration a
new path is added, therefore a new subnetwork is
formed. On the other hand, we compute the met-
rics on these subnetworks only at certain points, at
the first time that the following percentages of the
total nodes 5%, 10%, ..., 95% are covered.

4.3 Metrics Used
We select less costly metrics to make them effi-

ciently computable in terms of time and memory.
For example we discard the eigenvalue exponent
since increasing the size of networks increases the
eigenvalue computational time rapidly and requires
larger amount of memory. We do not compute the
outdegree exponent and the rank exponent, since
they are defined on directed graphs and we keep
our graphs as undirected.

In this work, the following metrics are used: (i)
the average node degree (ii) the average clustering



coefficients C, C and D (iii) the hop diameter of
a graph (iv) the hop-plot exponent (v) the effective
hop diameter (vi) the maximum betweenness (vii)
the minimum closeness, the average path length
and the characteristic path length (viii) the average
eccentricity

4.4 Observations on Metrics

For each one of the 10 graphs we run both sampling
methods 20 times to compute the metrics over a
data set of 200 runs.

In Figures 1-6, we plot the changing behaviors
of the metrics for both sampling methods. In these
graphs, x-axis indicates how many percentage of
data are visited in each iteration. The y-axis in
these plottings gives the ratio between the values
computed in each iteration and the exact metric
values. For each iteration, a boxplot is given. In
the boxes, the lower quartile, median, and upper
quartile values of data are shown as lines. The
extent of the rest of the data is also shown at the
lines extending from each end of the box.

In all these graphs, we check the first point where
the median values shown in boxes lie within the
+10 per cent error margin for this point and all
its successor points. This gives us at least how
many percentage of data are visited when the met-
rics converge to their exact values within £10 error
margin, in other words this gives us the v values for
(7, 0.10)-evasiveness. In the x-axis, these points are
also given with their percentage values. For exam-
ple, in the average degree graph in Figure 1, 21%
shows that the average degree is computed with 10
per cent error first with 21 per cent of data. At
all the successor of this point, error margin gets
smaller.

Moreover, in all these graphs, we also check the
variances. The longer boxes and lines indicate the
greater variability of data.

In Figures 1 and 2, we give the metrics related to
the connectivity of a node and its neighbors. From
these graphs, we see that path sampling method
causes metrics to change linearly as subnetworks
grow. This means that these metrics do not con-
verge their exact values unless all nodes are visited.
For example, the average degree and the clustering
coefficient C are (0.85,0.10) and (0.90,0.10)-evasive
respectively. On the other hand, the metrics that

are computed on subnetworks created by hop sam-
pling, “converge” faster than are those computed
by path sampling. The average degree and the clus-
tering coefficient C are (0.21,0.10) and (0.57,0.10)-
evasive respectively. These values are more tolera-
ble compared to those for path sampling. We con-
clude that to have the connectivity information, it
is better to use hop sampling in data collection. In
these graphs, we also see that clustering coefficient
C®) is not as computationally efficient as the other
two clustering coefficients in both sampling meth-
ods. Thus it is better to use clustering coefficients
C and D instead of C® to obtain the connectiv-
ity information between the neighbors of a typical
node.
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Figure 1: The changing behaviors of the average
degree and the clustering coefficient C.

Another observation on the graphs in Figures 1
and 2 is that, the values of clustering coefficients of
C and C® are increasing when a subgraph grows
by using path sampling but they are decreasing
when it grows by using hop sampling. The rea-
son is that we begin with a sparse network with
path sampling, and it becomes denser as increas-
ing the size. On the other hand subnetworks of
smaller sizes are denser and they become sparser
in hop sampling.

It is also interesting to observe that the average
degree and the clustering coefficients computed on
the subnetworks obtained by hop sampling show
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Figure 2: The changing behaviors of the clustering
coefficients, D and C2).

greater variability than are those obtained by path
sampling. It indicates that the randomness of se-
lecting the initial nodes has greater effects when
we use hop sampling, and one must consider this
effect in analyzing these metrics. As subnetworks
converge to their original graph, variance decreases
as expected.

In Figures 3-6, the metrics related to the short-
est paths between every two nodes are shown. In
Figure 3, we see that path sampling performs bet-
ter than hop sampling on the diameter of the net-
work, since hop count value determines the size of
the network in hop sampling. For the maximum
betweenness, we see that both sampling methods
do not perform well, it is (0.95,0.10)-evasive and
cannot be estimated within error margin +10 un-
less 95 per cent of the graph is visited. Thus we
draw a conclusion that maximum betweenness is
not a good metric in characterizing the network
topology, it changes as the network changes and
its exact value cannot be approximated.

Figure 4 again shows that it is better to use hop
sampling to approximate the exact values closer.
From the graphs of both the hop diameter and
the effective hop diameter, one can say that in
hop sampling the length of the shortest paths are
shorter than are those obtained by path sampling.
Note that the effective hop diameter show small

hop sampling: 94% path sampling: 95%
Figure 3: The changing behaviors of the hop diam-
eter and the maximum betweenness.
variability in both sampling methods. This is a
plus for the effective hop diameter.
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Figure 4: The changing behaviors of the hop plot
exponent and effective hop diameter.

In Figures 5 and 6, the statistics on the closeness
values and the average eccentricity are given and
their changing behaviors are very similar. In hop
sampling, they are (0.57,0.10)-evasive and show
smaller variability, which make advantageous to
use them.

In summary, to approximate the exact values of



Hop sampling

Path sampling

1. Average degree (21%)

2. Effective hop diameter (40%)

3. Clustering coefficient C (57%)
Clustering coefficient D (57%)
Hop plot exponent (57%)
Characteristic path length (57%)
Average path length (57%)
Minimum closeness (57%)
Average eccentricity (57%)

4. Clustering coefficient C® (71%)

5. Maximum betweenness (94%)

6. Hop diameter (100%)

1. Clustering coefficient D (70%)
Hop plot exponent (70%)

Hop diameter (70%)

2. Characteristic path length (80%)
Average path length (80%)
Average eccentricity (80%)

3. Average degree (85%)

Minimum closeness (85%)

4. Effective hop diameter (90%)
Clustering coefficient C (90%)
Clustering coefficient C® (90%)

5. Maximum betweenness (95%)

Table 1: Ranking of metrics for two different data collection methods. The values in parenthesis indicate
the 7y values (i.e. percentage of the actual data had to be used) for computing each metric with o = 0.10.
The values are average values computed over 200 runs.
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Figure 5: The changing behaviors of the character-
istic and the average path lengths.

the metrics on a small portion of data, we should
use the data collection procedure similar to hop
sampling instead of path sampling. The only ex-
ceptional case is the hop diameter. This obser-
vation is actually inconsistent with the data col-
lection procedure, where networks grow by adding
paths between two traceroute servers. We conclude
that collecting data by crossing different traceroute
servers is not efficient and the exact value of a met-
ric cannot be obtained on these sampled data.

Average eccentricity
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Figure 6: The changing behaviors of the minimum
closeness and the average eccentricity.

Secondly, we see that most useful metrics in
terms of computational efficiency are the average
node degree and the effective hop diameter, which
are (0.21,0.10) and (0.40,0.10)-evasive. Thus we
can say that these metrics are superior to the oth-
Similarly, we can say that all metrics are
superior to the maximum betweenness since it is
(0.95,0.10)-evasive for both methods and it does
not provide any information of its real value unless
almost all of the graph is visited.

ers.



Finally, we observe that subnetworks created by
different sampling methods show different proper-
ties. The graph formed by path sampling is initially
sparser and contains longer paths and it becomes
denser and contains shorter paths as the data size
increases. However, the graph formed by hop sam-
pling begins with a denser graph and has shorter
paths and it becomes sparser and contains longer
paths as it grows. In Table 1 we show a sum-
mary and comparison of the metrics and the sample
methods.

5 Comparison of Generators

In this section, we examine the evasiveness proper-
ties on different data generated by different models
and compare them with those of the “actual” In-
ternet. We use three different topologies to model
the power law data generators. The first one is the
first explained model in Subsection 2.1.3. The out-
degree exponent is taken as —2.48, which is stated
as the exponent for router level data in [6]. In this
paper, we call this model as Power model. The
second one is Inet 2.0 [9] that generates data at
inter-domain level.

BRITE topology generator [11] provides us to
generate data based on Barabasi-Albert model as
well as to model Waxman topology. We use default
values set by BRITE in our data generation. For
Barabasi-Albert model, incremental growth type
is set and two is selected as the number of links
added per new node. For Waxman model, BRITE
topology generator selects the parameters as a =
0.15, 8 = 0.2. For both model, router level data
generation option is selected.

We compare these models and the “actual” In-
ternet data regarding evasiveness. We generate
50 different graphs with node count 6K. For each
graph, we run hop sampling method three times
to create subnetworks. The hop count values, at
which the whole graphs are covered are given in
Table 2. In this table, it is obvious that the maxi-
mum hop count value for the Internet data differs
from those of the model generators.

In Figures 7 and 8, the changing behaviors of
the average degree and the clustering coefficients
are compared for different models. In these fig-
ures, we see that the average degree and the clus-
tering coefficient D for data generators are at

“Actual 20
Power 10
Barabasi 7
‘Waxman 8
Inet 5

Table 2: The hop count values, at which subnet-
works nearly converge to their original networks

least (0.90,0.10)-evasive. However these metrics
are (0.21,0.10) and (0.57,0.10)-evasive on the “ac-
tual” Internet data. Therefore the average degree
and the clustering coefficient D can be used to dis-
tinguish the data generators from the “actual” In-
ternet data. Moreover it is not appropriate to com-
pute the clustering coefficient C(?), since neither it
distinguishes any graph among the others nor it
converges its real value when a small portion of
data is used.
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Figure 7: The changing behaviors of the average
degree and the clustering coefficients C on different

models.

In Figure 9, we see that although the hop diam-
eter cannot be approximated using a small portion
of data for both Power and Inet models, it is nearly
(0.30,0.10)-evasive for Barabasi and Wazman mod-
els. Thus latter models are distinguished regarding
to their v values for the hop diameter.

In Figure 10, we see that effective hop diameters
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Figure 8: The changing behaviors of the clustering
coefficients D and C® on different models.

for both the Internet and all the models are at most
(0.50,0.10)-evasive. Thus it is possible to com-
pute this metric effectively for all models. More-
over, the effective hop diameters are (0.02,0.10) and
(0.05,0.10)-evasive for Power and Wazman models
and it can be used to distinguish these metrics from
the others.

In Figure 10, we see that the hop plot expo-
nent and the effective hop diameter are (0.49,0.10)-
evasive for Inet graphs, where all other metrics
for Inet graphs are (0.91,0.10)-evasive. Remem-
ber that Inet model differs in all other models such
that it generates data at inter-router level, where
all others produces router level data. The hop plot
exponent and the effective hop diameter for this
model has smaller v values like the other models
regardless of this difference.

In Figures 11 and 12, metrics related to the close-
ness property and the average eccentricity are ex-
amined. We see that the Inet model can be distin-
guished among others regarding to all these met-
rics. The other generation models are distinguished
from the “actual” Internet data in terms of v val-
ues, the metrics for these models converge more
quickly than those for the “actual” Internet data.
Although the actual data show very similar curves
for all these four metrics, the generated models
have similar values for only the characteristic and

AC 94% PO B‘A 98% WA 65% IN  91%
Figure 9: The changing behaviors of the hop di-
ameter and the maximum betweenness on different

models.

the average path length (the median and the mean
of the closeness values). For Power, Barabasi, and
Wazrman models, the minimum closeness and the
average eccentricity graphs are different for the
ones shown in Figure 11. In Table 3 we provide
a summary of the comparision.

6 Greedy Algorithm

As the results in Section 4.4 show, some metrics
can be estimated by using only small portion of
the network if hop sampling is used to form the
subgraphs. This is motivated us to implement an
algorithm that automatically decides the minimum
size of the data, on which a given metric is com-
puted accurately within some error margin.

Initially, our algorithm randomly selects an ini-
tial node Ny as a starting point. In each iteration,
hop sampling is performed, (i.e., the subgraph is
expanded by taking all nodes within the distance
of specified hop count from the starting point Ny).

At time ¢, our algorithm computes a metric M;
on the subgraph and decides to stop according to
the absolute difference between the current value
of a metric, My, and the average of its previous K
values, M; g --- M; 1. The difference D; is given
in the following equation:

11



Actual (Measured) Power Law | BRITE(Barabasi-Albert) | BRITE(Waxman) | Inet
Average degree (21%) 91% 98% 92% 91%
Effective hop diameter (40%) 5% 33% 2% 49%
Clustering coefficient C (57%) 1% 7% 65% 91%
Clustering coefficient D (57%) 91% 98% 92% 91%
Hop plot exponent (57%) 1% 33% 65% 49%
Characteristic path length (57%) | 16% 33% 8% 91%
Average path length (57%) 16% 33% 8% 91%
Minimum closeness (57%) 41% 33% 27% 91%
Average eccentricity (57%) 5% 7% 8% 91%
Clustering coefficient C® (71%) | 77% 98% 92% 91%
Maximum betweenness (94%) 1% 98% 65% 91 %
Hop diameter (100%) 91% 33% 28% 91%

Table 3: Summary of comparison of Internet topology generators to actual Internet topology with re-
spect to evasiveness. The numbers indicate the average -y values (computed over 200 runs) for computing

each metric with o = 0.10.
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Figure 10: The changing behaviors of the hop plot
exponent and effective hop diameter on different
models.

it My

Dy = ‘Mt — &=L (7)

where K is the user parameter. Our algorithm con-

tinues iteratively and stops if
D,
—<T 8
M, ®)

where T is the threshold parameter. When our
algorithm stops, the final subgraph is assigned as
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Figure 11: The changing behaviors of the charac-
teristic and the average path lengths on different
models.

the sufficient data to compute the metric M ac-
curately. Note that increasing T' reduces the data
size, at which our algorithm stops.

6.1 Results of Greedy Algorithm

We apply our greedy algorithm on data obtained
by hop sampling, but note that our proposed al-
gorithm can be also applied on different sampling
algorithms as well as synthetic data generators. To
test our algorithm we create ten different subnet-
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Figure 12: The changing behaviors of the minimum
closeness and the average eccentricity on different
models.

works by using hop sampling for each graph and
our results are given as the averages over them.
We run our algorithms for different parameters, K
and T, and the results for each metric are given in
Table 4. In this table, computed/actual is the ratio
of the estimated and the exact metric values and
nodes% is the percentage value, where our algo-
rithm stops and reports the estimated metric value.
In this table, we see that decreasing the threshold
parameter 1" results in more accurate but costlier
results. We observe that our algorithm stops in ap-
propriate points such that the results are similar to
our observations in Section 4.4. The only exception
is the maximum betweenness, our algorithm stops
earlier although the value of this metric does not
converge. From Table 4, we see that the average
degree can be estimated with 86 per cent accuracy
only by using 23 percent of data and it is very effi-
cient to use this metric. If we want to use at most
50 per cent of data to compute a metric, even the
most clustering coefficient gives at most 70 per cent
accuracy (when K =2 and T = 0.01). When our
algorithm determines to stop for the hop diameter
metric, nearly 90 per cent data are covered, which
is similar to our observations. For the other met-
rics based on the shortest paths between nodes, our
algorithm stops when 40-50 nodes are visited and

metrics are computed with 80-90 per cent accu-
racy. Note that the results show large variability.
This means that the selection of the initial point
is very important and this is consistent with our
observation in Section 4.4.

7 Conclusion

For analyzing the Internet and comparing it with
different models, it is important to define proper
metrics. The metrics converge to their actual val-
ues as the data size increases. But it is not possible
to collect the whole Internet data and the cost of
the computation becomes high, increasing the data
size. Thus the exact values of the metrics must be
estimated by using only a small portion of data.
In this work, we define (v, o)-evasiveness to assess
whether it is possible to estimate the real value of
a metric in +o error margin or not. The 7 value
indicate the percentage of data and it gives us a
measure to compare different models.

e Our experiments on the “actual” Internet data
show that sampling method is very important in
approximating the values of metrics with a small
portion of data. We propose to use hop sam-
pling method in data collection. We also see that
the most appropriate metrics in terms of computa-
tional efficiency are the ones that converge their ex-
act values quickly, in other words they have smaller
«y values in (v, o)-evasiveness and we propose to use
v value to assess the metrics.

e In this work, we also compare different data
generators, namely Power, Inet, Barabasi, and
Wazman models, regarding the evasiveness prop-
erty of the metrics. v values of a metric for dif-
ferent models with a fixed o value provides us to
distinguish different models.

e All the observations in our experiments mo-
tivates us to implement our greedy algorithm. It
determines the minimum size of the network for a
specified metric by checking its rates of changes. It
is seen that, it gives promising results in the aver-
age but it shows great variability and one must be
aware of this variability.
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