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Abstract

Let f be a monotonic function on R?. There are 2¢ possible assignments to the directions
of monotonicity (two per variable). We provide sufficient conditions under which the optimal
linear model obtained from a least squares regression on f will identify the monotonicity
directions correctly. We show that when the input dimensions are independent, the linear fit
correctly identifies the monotonicity directions. We provide an example to illustrate that in
the general case, when the input dimensions are dependent, the linear fit may not identify
the directions correctly. However, when the inputs are jointly Gaussian, as is often assumed
in practice, the linear fit will correctly identify the monotonicity directions, even if the input
dimensions are dependent. Gaussian densities are a special case of a more general class of
densities (Mahalanobis densities) for which the result holds. Our results hold when f is a
classification or regression function.

If a finite data set is sampled from the function, we show that if the exact linear regression
would have yielded the correct monotonicity directions, then the sample regression will also
do so asymptotically (in a probabilistic sense). This result holds even if the data are noisy.

1 Introduction and Results

A function f : R? — R is said to be monotonic with positive direction in dimension i if

f($1, ey i1, T4 + A,$Z‘+1, . ,l'd) 2 f(xl, cee s Li—15Ljy Ljt1y - - - ,xd), (].)

for all A > 0 and all x € R?. When the context is clear, we will use the notation f;(z;) to denote the
function f of z; with all other variables held constant. We assume throughout that we are in RY.
The direction of monotonicity is negative if the condition A > 0 is replaced by A < 0. A function
is monotonic if it is monotonic in every dimension. If f is only defined on some subset of R¢,
then the monotonicity conditions need hold only in this subset. We can represent the monotonicity
directions of such a function by a d dimensional vector m of +1’s. There are 2¢ possible choices



for m. A classification function, f : R¢ — {+1,—1} is monotonic if it can be represented as
f(x) = sign(g(x)), where g is a monotonic function. Condition (1) can now be more compactly
written as fij(z; + m;A) > fi(x;), for all A > 0.

Monotonicity is a property that might be true of a function that one might like to determine on
the basis of some data. For example, the credit worthiness of an individual would be a monotonic
function of variables such as income, [13]. The severity of a heart condition should be a monotonic
function of cholesterol level. One might wish to learn such a function from a finite data set, for
predictive purposes. In such cases, incorporating the monotonicity constraint can significantly
enhance the performance of the resulting predictor, because the capacity of monotonic functions
can be considerably less than the capacity of an unrestricted class, which has consequences on the
generalization ability of the learned function, [11, 13, 14]

Some tests for the monotonocity of a regression function have been considered in the literature,
see for example [3, 10]. Algorithms for enforcing monotonicity have also been considered, for
example [1, 5, 6, 7, 8,9, 12, 13]. Most of these (especially the nonparametric regression approaches)
focus on the single variable case, and it is always assumed that the monotonicity direction is known
(usually positive). For the credit and heart problems above, it is reasonable to guess that the
direction of the monotonicity is positive. However, it can often be the case that while monotonicity
is known to hold, the direction is not known, and needs to be determined. An example is when the
identity of the variables is kept secret for privacy or propriety reasons. Exactly such a problem was
encountered in [13]. It can also be argued that the general multilevel classification problem admits
a monotonicity constraint, even though the directions are not known apriori [5]. In such cases, it is
not practical to enforce monotonicity in one of the 2¢ possible directions, especially when d is large.
Rather, one would like to determine a specific direction in which to enforce the monotonicity.

A linear function [ is defined by I(x; w, wy) = wlx +wjy. Since a linear model is monotonic, one
approach would be to fit a linear model to the data, and use the monotonicity direction implied by
the optimal linear model as an estimate of the monotonicity direction of f. Such an approach was
used in [13]. The purpose here is to show that such an approach is valid.

Assume that the inputs are distributed according to px(x). The expected mean square error £
of the linear function I(x; w, wy) is given by

E(w,wy) = /dx px(x) (Wix +wy — f(x))2 (2)

The optimal linear fit (which we will refer to more simply as the linear fit) is given by the choice of
w and w, that minimize £(w, wq). We will assume throughout that the linear fit exists. Without
loss of generality, we can also assume that F[x] = 0 (Lemmas 2.1, 2.2). In general we will postpone
proofs to Section 2. First we state how to obtain the linear fit.

Lemma 1.1 (Linear fit.) Let ¥ = [ dx px(x) xx” be invertible. The linear fit is then given by

wh=x / dx pu(x) f)x,  wh= / dx py(x) f(x) 3)

PROOF: We refer to any standard book on statistics for a proof, for example [4]. n

The main content of this paper is to determine conditions under which the linear fit in (3)
will produce the correct monotonicity directions for the function f(x). First we give the result for
independent input densities.



Theorem 1.2 (Independent densities.) Let f(x) be monotonic with monotonicity direction m,
and let the input probability density be any independent density '. Let w' w be given by the linear
fit. Then m; = sign(w!) for all i such that w! # 0. Further, if f;(x;) is non-constant for all x in a
compact set of positive probability, then w! # 0.

Thus, when the inputs are independent, the linear fit deduces the correct monotonicity directions
for f, even though f may not resemble a linear function in any way. Further, note that the theorem
does not differentiate between classification or regression functions, and thus the optimal linear fit
for a classification problem will also yield the correct directions of monotonicity. An immediate
corollary of this theorem is that when the input dimension is d = 1, the linear fit will always yield
the correct monotonicity direction. An important special case is when the function is defined on a
hyper-rectangle. In this case, we can take the measure to be uniform on the rectangle.

Independence in the input dimensions is quite a strong restriction, and much of the benefit of
the monotonicity constraint is due to the fact that the input dimensions are not independent. This
is evident from the fact that the VC-dimencion of the class of monotonic classification functions is
oo, but the capacity of this class is heavily dependent on the input distribution. When the input
dimensions are independent, the capacity of the class of monotonic functions grows exponentially
in N, but when the input dimensions are dependent, the capacity can be a much more slowly
growing function. Such issues are discussed in greater detail in [11]. Unfortunately, if we remove
the independence requirement, then we cannot guarantee that the optimal linear fit will induce
the correct monotonicity directions. The following proposition establishes this fact, and an explicit
example is constructed in the proof in Section 2.

Proposition 1.3 There exist monotonic functions f and input densities px(x) for which the opti-
mal linear fit induces the incorrect monotonicity directions.

The essential idea is to choose a function like f(x) = 23 — 5. By suitably choosing the correlation
between z; and x5, the linear regression can be “tricked” into believing that the function is increasing
in the x5 dimension, because the z; behavior of the function dominates. The details are given in
the proof.

We cannot remove the independence restriction in general, however, for certain special cases we
can. In particular, a common assumption is that the inputs are jointly Gaussian. In this case, the
linear fit will correctly induce the monotonicity directions. This result is a special case of a more
general one dealing with a class of input densities which we call Mahalanobis densities.

Definition 1.4 A density px(x) is a Mahalanobis density if it can be written as

px(x) =g ((x— )" (x— p)).

The mean vector and covariance matriz are given by p and X respectively. g(x) is a function defined
on R, that is the derivative of a non-decreasing function G(z) < 0, i.e., g(x) = G'(x). By definition,
Y = [dx g(x"27'x)xx". Further, we require the following constraints on G(z): limy 0o G(2*)z =
0; [dx G'XTZxT) = 1; [dx G(xTE %) = —2. G(x) is called the associated Mahalanobis
distribution function.

He., px(x) = p1(x1)p2(2) - - - pa(za)-



The first constraint on G is merely technical, stating that G decays “quickly” to zero.?. The second
ensures the py is a legitimate density, integrating to 1. The third merely enforces the consistency
constraint that £ = [ dx g(x” £~ 'x)xx”. The Gaussian density function is defined by

1 lyTs—14

N(x;X) = (27T)d/2|2‘1/26_2

(4)
where X is the covariance matrix for x and the mean is zero. A Gaussian distribution with mean
p has a density function given by N(x — p; ). It is easily verified that every Gaussian density is

i
a Mahalanobis density with Mahalanobis distribution function G(r) = —2e2%/(2m)%?|Z|/2. The
next theorem shows that the linear fit is faithful to the monotonicity directions of f(x) whenever
the input density is a Mahalanobis density.

Theorem 1.5 (Mahalanobis densities.) Let f(x) be monotonic with monotonicity direction m,
and let the input probability density be a Mahalanobis density. In the regression case, assume that
f s differentiable and does not grow too quickly, i.e.,

lim G f(x)=0 Vi=1,...,d. (5)
Let w' be given by the linear fit. Then m; = sign(w!) for all i such that wt # 0. Further, if fi(x;)
s mon-constant for all x in some compact set of positive measure, then wﬁ # 0.

Since the Gaussian density is a Mahalanobis density, the theorem applies, and an immediate corol-
lary is that the linear fit will induce the correct monotonocity directions, provided a certain technical
condition regarding the growth of f is met. The technical condition essentially amounts to the fact
that log | f(x)| = o(xTx), which is a reasonable assumption if the moments of f are to exist. Other
Mahalanobis densities are given in Appendix A.

Practically, from the learning perspective, one does not have access to the target function f(x),
which is assumed to be monotonic, nor does one have access to the input distribution py(x). Rather,
one has a data set, Dy = {x;,%;}~.,. The particular way in which the data set was sampled defines
the regression model. The model we will assume is the standard homoskedastic regression model.
x; are sampled independently from py(x) and y; = f(x;) + €;, where ¢; is noise. In the regression
case, we assume that the ¢; are independent zero mean noise, with bounded fourth moments.

Elei|xi] =0, Elei€j|xi, x;] = 0263, (6)

where ¢;; is the Kronecker delta function. Often, one assumes the noise to be Gaussian, but this
is not a necessary requirement. For technical reasons, we will generally assume that all fourth
moments that include powers of the noise variable, powers of x and powers of f are bounded. For
example, E[f?(x)xxT] < oo, etc. Some of these restrictions can be dropped, however for simplicity,
we maintain them. For the classification case, we assume that the noise ¢; is independent flip noise,
i.e., independent flips of the output values from y; to —y; with some probability p < %

p. 1-
@:{0 v P (7)

—2f(x;) w.p. p.

2This is not a serious constraint if moments of py(x) are to exist. In fact, since py(x) integrates to 1, this
constraint becomes vacuous when d > 3.




Define the augmented input vector by
= |a] ®
and define Xy by

1 N 1 N 1 XT
X — 2 :A.AT _ j : i
i=1 i=1 ¢

An approximation to the linear fit is given by the Ordinary Least Squares (OLS) estimator, which
minimizes the sample average of the squared error. The OLS estimator is given in the following
lemma,

l

Lemma 1.6 The OLS estimates wy, w*, of wh, w' are given by

N
. wk X—l R
B = [W(i] =N 2V (10)
i=1
PROOF: See any standard book on statistics, for example [4]. |

Under reasonable conditions, when N — oo, we expect sample averages to converge to expecta-
tions, i.e.,

%Zx S EX] =0, Xy o [(1) EOTI} , z::yx - [15[%}3);1]] . (11)

Thus, the OLS estimates should converge to the true linear fit. The following lemma is therefore
not surprising.

Lemma 1.7 Let w), w' be the linear fit to f(x) with respect to input density px(x). Assume that all

fourth order moments of px with respect to x, f(x) and ¢; are bounded, and that E[x] = 0. Suppose

that N points {x;}X., are sampled i.i.d. from px with y; = f(x;) + €; where ¢; is independent noise.

For regression, the noise satisfies satisfying (6), and for classification, the noise is independent flip
noise (7). Let w! be given by the exact linear fit, and let w* be the OLS estimator of w'. Then,
. .

w P {w Tegression, (12)

(1 —2p)w classification.

We use the standard notation —£5 to denote convergence in probability. Notice that while w*
converges in probability to w! for regression, it does not for classification, unless p = 0. However,
since p < %, the sign of w* converges in probability to the sign of w! for both cases. Thus, if the
linear fit w! induces the correct monotonicity directions, then so will w*, asymptotically as N — oo.
The following theorem is therefore evident.

Theorem 1.8 (OLS) Let f(x) be monotonic with monotonicity direction m, and suppose that N
points {x;}X, are sampled ii.d. from px(x) with y; = f(x;) + € where ¢; is independent noise.
Assume that all fourth order moments are finite. If f is a classification function, then € is a flip
noise with probability p < L (7), otherwise it is a zero mean random variable with variance o (6).
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Figure 1: Dependence of the probability of obtaining the correct monotonocity directions as a
function of the sample size.

Let w'! be given by the ezact linear fit, and let w* be the OLS estimators for w'. Suppose further
that the linear fit induces the correct monotonicity directions, i.e., sign(w') = m. Then,

lim P[sign(w*) =m] = 1.
N—oo

This theorem states if the linear fit extracts the correct monotonicity directions, then with high
probability (for large N), the OLS estimator will do so as well, even in the presence of noise. The
theorem thus applies to independent input densities and Mahalanobis densities. This convergence
is illustrated in Figure 1 where we show the dependence of P[sign(w) = m] as a function of N for
different noise levels, for both classification and regression. The data were sampled uniformily from
0,1]? and f(z,y) = e¥~" — £ for regression and the sign of this function for classification.

Discussion

Before a monotonicity constraint can be enforced, most algorithms will require knowledge of the
direction of the monotonicity. We have shown that under quite general assumptions, the correct
monotonicity directions are induced by fitting a linear model to the data. In particular, when the
inputs have a Gaussian distribution, this is so. Once the direction of monotonicity is known, it can
be incorporated into more complicated learning models such as neural networks, a task that would
have been considerably tougher had the monotonicity directions not been known.

The linear model is appealing for at least two reasons. The first is the it is easy to implement.
The second is that once it has been implemented, the monotonicity directions are easy to determine.
We presented sufficient conditions under which using a linear model would work correctly. Necessary
and sufficient conditions for such an algorithm are still missing. Other approaches to determining
the monotonicity of a function that are as simple and efficient as fitting a linear model would also
be a significant advance. There is potential that some non parametric techniques could prove useful
in this respect.

Another interesting and unanswered question is, “How bad can the linear model be?”. The
example constructed in Proposition 1.3 required one dimension to dominate the other. In such a



situation, one might suspect that this second dimension is not important in the implementation of
the true monotonic fit. To be more specific, if the linear model gave monotonicity direction m’ # m,
and one obtains the best monotonic fit subject to the incorrect monotonicity constraints m’, then
how bad can the expected fit error be? We leave such questions as food for future thought.

2 Proofs

The following lemmas will be useful in the proof of Theorem 1.2. The first two state that the
monotonicity directions of f and the monotonicity directions that would be induced by a linear fit
are unchanged under scaling and translation of the input space. The third states a useful property
of monotonic functions.

Lemma 2.1 (Monotonicity direction is scale and translation invariant) Let f(x) be mono-
tonic with monotonicity direction m. Let A be any invertible diagonal matriz and b be any vector.
Then, g(x) = f(Ax + b) is monotonic. Further, the monotonicity direction of g is sign(A)m.

PROOF: Suppose m; = +1 and let A > 0. g(l’z + A) = fZ(A”.TZ + b; + AZ,A) If Au > 0, then
filAiizi + b + AyA) > fi(Auz; + b;) = g(z;). Similarily if A; < 0, then fi(Auz; + b + AzA) <
fi(Asz; + b;) = §(x;). An analogous argument with m; = —1 and A < 0 completes the proof. =

Lemma 2.2 Let w,wq be the linear fit for f(x) with respect to input density px(x). Let A be any
invertible diagonal matriz and b be any vector. Let X' = Ax+b be a scaled and translated coordinate
system, with respect to x. In the X' coordinate system, let v,vy be the linear fit. Then w = Av.

PROOF: w,w, are minimizers of [dx px(x) (W'x + wy — f(x))?, and v,v, are minimizers of
[ dx' per (x")(vIX' +vg — f(AT' (X' — b)))? where pe(x') = px(A~'(x — b))/|A|. Making a change
of variables to x = A~ (x' — b) we have that v, v, are minimizers of [ dx px(x) (v’ Ax+v'b +
vy — f(x))?. Consequently, we identify w? = vI' A, and since A is diagonal, the lemma follows. m

Lemma 2.3 Let f(x) be monotonic with monotonicity direction m. Then m;x; fi(x;) > m;z; f;(0).
Further, if fi(z;) is non-constant, then Jx; < 0 such that the inequality is strict Vx; < x;, or
Ex;’ > 0 such that the inequality is strict Va; > x;’

PRrROOF: Let m; = +1. If z; > 0, then f;(x;) > f;(0) therefore x; fi(x;) > z;fi(0). If z; < 0, then
fi(z;) < fi(0) therefore x; f;(x;) > x;f;(0). An exactly analogous argument holds with inequalities
reversed when m; = —1. Further, suppose that f;(z;) is non-constant, and that m; = 1. Then one
of the following two cases must hold.

(i) 3z > = > 0 such that f;(z}) > fi(z) > f:(0).

(ii) Jz; < x < 0such that fi(z]) < fi(z) < f:(0).
In both cases, it is easy to see that the inequality becomes strict in the respective ranges for x; as
claimed. An analogous argument with m; = —1 and the inequality signs reversed completes the
proof of the lemma. [ ]



Proof of Theorem 1.2 By Lemmas 2.1 and 2.2, after suitable scaling and translation, we can
assume, without loss of generality, that E[x] = 0 and that F[xx’| = I. Then, using Lemma 1.1,
we have that o ©

w :/ dx px(x)xf(x) Wy :/ dx px(x) f(x). (13)

It remains to show that m;w; > 0, as follows.

;Wi @ /dxl/ dz; px(x) miz; fi(2:), (14)

O [ ix o) [ o pi(oman i), (15)

=[x po)mifi0) [ di pa () (16)

© o, (17)

(18)

where x' = (x1,...,%;_1,%it1,---,2Zq)- (a) follows since the measure is independent, (b) by Lemma

2.3 and (c) because E[x| = 0, concluding the proof. Note that if w; = 0, the result is ambiguous
and could be an artifact of the measure. However, from Lemma 2.3 we see that if f;; is non-constant
for all x in a compact set of positive probability, then the :Efc can be chosen so as to specify sets of
positive probability with the inequality being strict strict, and hence the result is that m;w; > 0,
concluding the proof of the theorem. [ ]

Proof of Proposition 1.3. It suffices to construct an example where the optimal linear fit gives
the wrong monotonicity directions. We use a two dimensional example f(x) = x3 — x5, and for the

input density, we use a mixture of Gaussians,
1 1
px(T1,10) = §N(x1 —a1)N(xze — 1) + §N(x1 +a1)N(ze +1). (19)

1
where N(z) is the standard Gaussian density function, N(z) = e~2% /v/27. Notice that E[x] =
0. Denote the covariance matrix of this distribution by 3. Using the moments of the Gaussian
distribution, see for example [4], we find that

2
s=['t 0] Bl=deedes, Bl =alesn (20)

The optimal linear fit is given by

w = TE[f(x)x] = = [gg?xi f%ﬁgﬂ : (21)
1 ai +9a? + 6
:2+ﬁ[4@—ﬁ—4' )

The monotonicity direction of f is m = [1, —1]. The first component is always positive, which is
consistent with m, however for sufficently negative a;, for example a; < —2, the second component
becomes positive which is inconsistent with m, thus concluding the proof. [ ]
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Let py(x) be a density that depends on x only through x”¥~'x, where ¥ is the covariance
matrix for x under density px. Thus, px(x) = g(x" £7'x) for some function g defined on R,. By
construction, E[x] = 0, since py is a symmetric function. Let G be the indefinite integral of g, so
G'(z) = g(z). Assume that G(z) <0, Vz > 0, and that G is a sufficiently decreasing function such
that

lim G(z*)z =0 (23)

|z| =00

Note that g must satisfy some constraints. It must normalize to 1, and the covariance must be X.
Thus,

s = / dx g(x"E1x)xc” (24)
> / dx g(xT " 1x) 5L (25)
= .2 / dx [VoGTS %)) x7 (26)
= %2 / dx V,(G(x"S'x)xT) — G(x"E %) V,x! (27)
= _%2 / dx G(xT2xT) (28)

where the last line follows because, using the fundamental theorem of calculus and (23), the first
term is zero, and, V4x? =1I. Thus we have the two constraints,

dx G'(xT='xT) =1 dx G(xTE'xT) = -2. (29)
/ /

The first constraint can always be effected by multiplying G by some positive scalar. The second
then leads to a constraint on GG. Using some standard multidimensional integration techniques,
these two constraints can be reduced to

o I'(d/2) © I'(d/2)
d=1v( 2y _ d=1v( 2\ —
/0 ds "7 G'(s°) = R E /0 ds s G(s%) = SR (30)
where the Gamma function is defined by I'(z) = [;° dss”'e™*. In terms of g(z), these constraints
become ['(d/2) ['(d/2+1)
o0 o0 +
d—1,(.2\ _ A+l 2) _
/0 ds s"7g(s”) = PRETE /0 ds s g(s®) = | (31)

The classification boundary with respect to dimension z; is a function f¢(x') : Rt — {R, oo, —cc},

that determines the point at which f;(z;) changes sign. Here x' = (x1,...,2;_1, %11, - - -, Z4). Thus,
m; x; > [
filw) =" Z Zc( ,) (32)
—m; x; < ff(2")

An interesting fact about the classification boundary is that it is a monotonic function. In fact,
its monotonicity directions m¢ can be obtained from the original monotonicity directions by m¢ =
—mim’.



Proof of Theorem 1.5. Let py(x) = g(x" X7 'x") satisfy the properties described above. Let f
be a monotonic function with monotonicity direction m satisfying®

lim GXTZ'xT)f(x)=0 Vi=1,...,d. (33)

|zi|—00

Lets first consider the regression case, then w from the linear fit is given by

w = /dx g(xTZ %) T x f(x), (34)
@ % / dx [VixG(x"E27'x)] f(x), (35)
_ % / ix V(GRS (%) — GTS %) Vi f (x), (36)
® —% / dx GTE %)V, f(%). (37)
© —% (/ dx G(XTEIX)A(X)) m, (38)
@ Am, (39)

where A(x) and A are a non-negative diagonal matrices. (a) follows by the definition of G; (b)
follows by using the fundamental theorem of calculus and (33); (c) follows because f is monotonic
with monotonicity direction m, therefore V, f(x) must have the same sign as m and hence can
be written as A(x)m; (d) follows because —G is non-negative. Thus all the non-zero components
of w have the same sign as m and the theorem follows. Note that if for each 7 and some € > 0,
|G(x"E7'x)A;;(x)| > € holds in some set of measure greater than zero, then every component of
w will be non-zero. Certainly this will be the case if f;(xz;) is non-constant for all x in a compact
set, of positive probability.
For the classification case, (35) gives

_ JHEOIP © 0
@ M ' Tyt —/ Gx"=™! 40
Wi = 2 / i /oo axiG(X ) fe(x) O (x X “o
(i) —mi/dxl G(XTzflx) s o) (41)
O 2, (42)

where )\; > 0. (a) follows by definition of f£(x'); (b) follows by the fundamental theorem of calculus;
and (c) follows because G(z) < 0. If ff(x') is bounded on a compact positive probability set, which
will happen if f;(x;) is non-constant for all x in a compact set of positive probability, then A; > 0,
and the theorem follows. n

The following lemmas will prove useful in the proof of Theorem 1.8. Let the data be {x;, y;}¥,
and let Xy = + SV %&T, and y; = f(x;) + €. The noise ¢; satisfies (6) for regression, and (7) for
classification.

3Note that for the classification case this restriction is vacuous as |f(x)| = 1.
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Lemma 2.4 (Expectation of the OLS estimator) Let w* be the OLS estimator and w' be the

OLS estimator had the data been noiseless. Then

. w'(1 — 2p) classification,
EJw"] = { . _
w regression,

where the expectation is with respect to the noise.

Proor: By Lemma 1.6,
1 N
— N .
wh = T 21 iXi,

because w' = + X' ZZJL f(x;)%;. Taking expectations, for regression noise we have Ee;]
for the flip noise we have El¢;] = —2pf(x;), from which the lemma follows.

Lemma 2.5 (Covariance of the OLS estimator) Let w* be the OLS estimator, then

o2 Xy ;
Cov(w) N . regression,
% classification.

PROOF: For regression,

Bl(w — Bw)(w — Bl = 2 (Zzﬁif«f 2 [%-]) T
o Xy

= N Y

—
=

where (a) follows because E [e;€;] = 0%8;;. For classification,

E[(w* — E[w*])(w* — E[w*])T] = XTN (Z D %% E((2pf (i) + &) (2pf (x;) + 61)])

i=1 j=1
(b) 4p(1—P)XN1

- N

o>

XN

(43)

(44)

=0, and

-1

N I

(48)

where (b) follows because f(x;)? = 1 and so using (7) and the independence of the ¢;, we get that

E[(2pf(x:) + e)(2pf(x;) + €j)] = 4p(1 — p)d;;, from which the lemma follows.

Lemma 2.6 Let Yy, Zx be random variables such that Yy -5 Zx, and let g be a continuous

function. Then g(Yn) L5 9(Z,). Further, if Zy is the constant z, then g need only be continuous

at z.

PROOF: See for example [2].

11



Lemma 2.7

P [1 oF 4, P 1 oF
XN_> [O Z:| XNI—) [0 2—1:| (49)

ProOF: The first result follows by the weak law of large numbers because the fourth order moments
are bounded. Since ¥ is invertible, the function Xj_\,1 is continuous at Xy = 3. Therefore, by
Lemma 2.6, the second result also holds. |

The following is a well known lemma about the distribution of the OLS estimator, essentially
stating that it has an asymptotically Gaussian distribution.

Lemma 2.8 The OLS estimator has a distribution that is asymptotically Gaussian, given by
* P Q
B —N(B;Q) (50)
where B is the mean of the estimator, given in Lemma 2.4 and the covariance matriz Q is given by
Lemma 2.5. Therefore, B8*£58. 2.7.
PROOF: The fact that 8* 5 N(B,Q) is a standard result, see for example [4]. by Lemmas 2.5,

2.7, we have that Q@ 250, and so 8* X5 N (3, 0), implying that 8* £ 3. n

Proof of Lemma 1.7 Let 3 = E[%X7]. By Lemma 2.7, X5' £33 1. By the weak law of large
numbers, + >, f(z:)%; -2 E[f(x)%], so w' 25 B 7'E[f(x)%] = w'. By Lemma 2.8, w* 2w’ for
regression, and w* 25 (1 — 2p)w’ for classification. Since w'—23w!, we therefore conclude that
w* Ly w! for regression and w* £ (1 — 2p)w! for classification. ]
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A Some Mahalanobis Densities

We list some Mahalanobis densities, and their associated Mahalanobis distribution functions.

Name G(z)/g(z) p(x)
Gamma g(z) = AzFe oo’ A(xT B x)kema 2P
d+2(k+1)\7 P
. d I'(==,—)
Density k> —5, p>0, a= Wap_—mc)
2p
_ F(g)pa(’“%)/?”
(&2 1/
1
. 26_7$ 1 _lyTy-14
Gaussian G(.’E) = —W N(X, 2) = We 2
—/(@d—1)xTx-1x
Exponential | G(z) = —Ae~V(@-1)2 AVd =15
2vxT¥-1x
square root d>1

(d— 1)"T($)

A=
T(d)|X| /2742
) Ax? AXTE1x)P
Polynomial | 9(2) = (= [+ oS x)7]
d d
ratio For integer p > 0: > +p>0, q¢g> > +p
A 1{ 4+4p
G = - Gz ) =7 z
o-—gSee |-i(Hs
Gy < Pla—i=DaoP " e+ )I(g)
' (p—19)'qg'(1 + ax)r? 227420 (2 +p)T(g+1— ¢ —p)
Linear G(z) = ZAiaf/QGi(aix) ZAiaf/“lgi(aixTZ’lx)
combination | G;(z) are Mahalanobis ZAZ- =1, ZAiai =1, >0, 4, >0

g:;(z) are Mahalanobis
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