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Abstract

In hot-potato (deflection) routing, nodes in the network have no buffers for packets in transit. A hot-
potato routing algorithm is greedy if packets are advanced from their sources toward their destinations
whenever possible. The dilation D is the longest distance a packet has to travel; the congestion C is the
maximum number of packets that traverse any edge. The routing time of a routing-algorithm is the time
for the last packet to reach its destination. A well known lower bound on the routing time is Ω(C + D).
When is it possible to design routing algorithms whose routing times match this lower bound?

Here, we address this fundamental question within the context of hot-potato routing for the specific
case of a tree with n nodes. In particular, we present two greedy, hot-potato routing algorithms:

i. A deterministic algorithm, which has a routing time of O((δ ·C +D) lg n), where δ is the maximum
node degree; thus, for bounded degree trees, the routing time becomes O((C + D) lg n).

ii. A randomized algorithm which has a routing time of O((C + D) lg2
n) with high probability, for

any node degree. Randomization is used for adjusting packet priorities.

Both algorithms are online and simple yet efficient. They are built upon the idea of using safe deflections,
which are deflections whose net effect is to “recycle” edges from one path to another. These are the first
known hot-potato routing algorithms (whether greedy or not) for trees whose routing time is within
logarithmic factors of the Ω(C + D) lower bound.
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1 Introduction

Packet routing is the general task of delivering a set of packets from their sources to their destinations.
Hot-potato (or deflection) routing is relevant in networks whose nodes cannot buffer packets in transit – any
packet that arrives at a node must immediately be forwarded to another node at the next time step, as if
it were a “hot potato”. A routing algorithm (or protocol) specifies at every time step the actions that each
node takes while routing the packets. The routing time of the algorithm is the time at which the last packet
is delivered to its destination. It is generally desirable for a routing algorithm to deliver all the packets to
their destinations as quickly as possible.

Hot-potato routing was introduced by Baran [4], and since then, hot-potato routing algorithms have
been observed to work well in practice [5]. They have been used in parallel machines such as the HEP
multiprocessor [31], the Connection machine [17], and the Caltech Mosaic C [30], as well as in high speed
communication networks [22]. Hot-potato routing is especially relevant in optical networks where it is difficult
to buffer messages [1, 16, 22, 33, 35].

Here, we consider tree networks (acyclic connected graphs) in which each edge is a bi-directional link.
Trees are important because many real-life networks are built upon them (for example, hierarchical infras-
tructures), which explains the interest that this type of routing problem has generated in the literature (see,
for example, [2, 3, 20, 25, 27, 29, 34]). Furthermore, as articulated by Leighton [20], a spanning tree can be
used to route packets in an arbitrary network. We consider trees in which nodes are synchronous, namely,
a global clock defines a discrete time. At each time step t, a node may receive packets, which it forwards to
adjacent nodes according to the routing algorithm. These packets reach the adjacent nodes at the next time
step t + 1. At each time step, a node is allowed to send at most one packet per link.∗

We consider one-to-many routing problems, in which each node is the source of at most one packet;
however, each node may be the destination of multiple packets. For a routing problem in which packet paths
have already been specified, there are two parameters that are useful for evaluating the performance of a
routing algorithm: the dilation D, which is the maximum length of any path, and the congestion C, which is
the maximum number of paths that use any link (in either direction). Since at most one packet can traverse
an edge in a given direction at each time step, a trivial lower bound on the time needed to route all the
packets to their destinations is Ω(C + D). It is desirable to design routing algorithms with routing time
close to this lower bound. For store-and-forward routing, in which nodes have buffers for storing packets
in transit, there are routing algorithms with performance close to the lower bound [7, 19, 21, 24, 26, 28].
However, such algorithms are not applicable when buffers are not available.

Here, we will assume that the packets are routed along the unique shortest path from their source to
their destination.† We consider greedy hot potato routing. A routing algorithm is greedy if a packet always
follows its path whenever this is possible. In hot-potato routing, a problem occurs if two or more packets
appear at the same node at the same time, and all these packets have the same link as the next edge in their
path. This constitutes a conflict between the packets because only one of them can follow that particular
link. Since nodes have no buffers, the other packets will have to follow different links that deviate from their
paths. We say that these packets are deflected. In a greedy algorithm, a packet π can be deflected only when
another packet makes progress along the link that π wished to follow. If the number of deflections that a
packet undergoes is small, the routing time will be close to optimal. Due to deflections, the path ultimately
followed by a packet may not be the packet’s original path; however, it will still contain the original path.
We note that our Õ(C + D) bounds hold with respect to the C and D of the original shortest paths; hence
they are at most polylogarithmic factors away from the true optimal.

Contributions. We present two greedy hot-potato routing algorithms on trees. These are the first known
hot-potato algorithms for trees. Greedy algorithms tend to be simple and easy to implement efficiently (as
are the ones we present). Further, when the network traffic is low, and there are not many conflicts, greedy
algorithms will not unnecessarily delay packets.

Both of our algorithms are online: at any time step, each node makes routing decisions based only on
the packets it receives at that particular time step. We assume that each source node knows the path of the

∗At any time step, at most two packets can traverse an edge in the tree, one packet along each direction of the edge.
†In a tree, any path between two nodes must contain the shortest path, so no other set of paths can have smaller congestion

or dilation than the shortest paths.
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packet it will inject into the network, the tree topology, and the congestion and the dilation of the routing
problem; we emphasize, however, that it does not know the paths of other packets. The node then determines
the time at which the packet will be injected. After the packet is injected, the packet is forwarded to its
destination greedily. We give two hot-potato algorithms:

i. The algorithm Deterministic has routing time that is O((δ · C + D) lg n), where δ is the maximum node
degree node in the tree. For bounded degree trees, the routing time is thus an O((C + D) lg n). All
choices that a node makes in routing the packets can be done deterministically.

ii. The algorithm Randomized has routing time less than κ(C + D) lg2 n with probability at least 1 − 1
n
,

where κ is a constant. Randomization is used when packets select priorities. These priorities are then
used to resolve conflicts.

Note that for bounded-degree trees, the algorithm Deterministic guarantees a routing time that is within a
logarithmic factor of optimal. The algorithm Randomized is only an additional logarithmic factor away from
optimal; however, it remains so even for non-bounded degree trees.

Our algorithms are based on the idea of assigning levels to the nodes of the tree on the basis of short-
nodes: a short-node r of a tree T with n nodes is a node such that if the tree were rooted at r, then each
subtree contains at most n/2 nodes. Similarly, one can define short-nodes of r’s subtrees, and so on. As we
descend deeper into subtrees, the levels of the nodes increase. The level of a packet is the smallest level node
that it crosses.

The general idea is that packets at different levels are routed in different phases. We show that there
are at most O(lg n) such phases. In the algorithm Deterministic, each phase has a duration O(C + D), while
in the algorithm Randomized, in order to get a high probability result, we need to allow the phases to have
duration O((C+D) lg n)). Combining this with the bound on the number of phases then leads to our routing
time bounds. The heart of both of our algorithms lies in the use of safe deflections, in which packets are only
deflected onto edges used by other packets that moved forward in the previous time step. We observe that
if all deflections are safe, then the congestion in the network can never increase as a result of deflections.

Related Work. Hot-potato routing algorithms have been extensively studied for various multiprocessor
architectures such as the 2-dimensional mesh and torus [6, 11, 13, 15, 18], the d-dimensional mesh [6, 9],
the hypercube [10, 15], vertex symmetric networks [23], and leveled networks [8, 12]. For more details
about multiprocessor architectures we suggest [20]. There are no known, efficient hot-potato algorithms for
arbitrary networks.

Various routing models for trees have been considered. Matching routing on trees is considered in [2, 27,
34]; here, at each time step, a set of edges with disjoint endpoints is chosen, and then the packets at the
endpoints of each selected edge are exchanged. All of the results in matching routing consider permutation
routing problems and provide algorithms with routing time O(n), where n is the number of packets. In
[3, 14, 32], the direct routing model is considered on trees; here, an injection time schedule is computed such
that the packets follow their paths without conflicts. Direct routing algorithms are offline, some central
node has global information about the routing problem and computes the injection times of the packets;
in contrast, hot-potato routing is online and relies on deflections. In [3, 32] direct routing algorithms with
routing time O(n) are given. In [14], a direct routing algorithm (on trees) with optimal O(C+D) routing time
is presented. Roberts et al. [29] consider greedy hot-potato routing and show that there exist permutation
problems such that any greedy hot-potato algorithm requires Ω(n) routing time.

To our knowledge, our algorithms are the first hot-potato routing algorithms which consider the general
congestion + dilation routing problem on trees. The only other congestion + dilation hot-potato algorithms
known are for other network topologies (leveled networks [12] and vertex symmetric networks [23]). For
store-and-forward routing, there has been an extensive research on obtaining optimal O(C + D) routing
algorithms for arbitrary networks [19, 21, 24, 26, 28].

Paper Outline. We introduce trees and hot-potato routing in Sections 2 and 3, respectively. In Section 4,
we present the algorithm Deterministic and its routing time analysis. In Section 5, we do so for the algorithm
Randomized. We end with some concluding remarks in Section 6.
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Figure 1: The short node

2 Trees

A tree T = (V, E) is a connected acyclic graph with |V | = n and |E| = n − 1. The degree of node v is
the number of nodes adjacent to v. Let v ∈ V ; then, T induces a subgraph on V − {v} which consists of a
number (possibly zero) of connected components. Each such connected component is a subtree of v in T .‡

If v is adjacent to K nodes in T , then there are k disjoint subtrees T1, . . . , Tk of v, one for each node vi ∈ Ti

that is adjacent to v. The distance from v to u, is the number of edges in the (unique) shortest path from v
to u.

The main idea behind our algorithms is to look at the tree from the point of view of a short node (see
Figure 1). A node v in the tree is short if every subtree of v contains at most n/2 nodes. At least one short
node is guaranteed to exist; the algorithm Find-Short-Node (Algorithm 1), finds one in O(n) time.

Algorithm: Find-Short-Node(tree T )

Input: A tree T with n nodes v1, . . . , vn.

Output: A short node of T .

begin
1 r ← any arbitrary node of T ;
2 Let T r be the rooted tree with root r. Using a standard preorder traversal on T r, compute for

every node vi, the number of nodes in the subtree of T r which is rooted at vi;
3 X ← r;
4 while X is not short do
5 Let T ′ be a subtree of X in T which contains more than n/2 nodes;
6 Let X ′ be the node of T ′ which is adjacent to X (i.e., the “root” node of T ′);
7 X ← X ′;

end
8 return X ;

end

Algorithm 1: Find-Short-Node

A tree T may have many short-nodes, however, algorithm Find-Short-Node returns a unique short-node,
assuming that the start node r in the algorithm is chosen deterministically. So, from now on, we will consider
the unique short-node that is computed by algorithm Find-Short-Node.

We now define (inductively) the level ` of a node, and the inner-trees of T as follows. The tree T is
the only inner-tree at level ` = 0. The only node at level ` = 0 is the short node of T . Assume we have
defined inner-trees up to level ` ≥ 0. Every connected component obtained from the inner-trees of level ` by
removing the short nodes of these inner-trees at level ` is an inner-tree at level ` + 1. The level ` + 1 nodes
are precisely the short nodes of the inner-trees at level ` + 1.

It is clear that the above definition inductively defines the inner-trees at all levels; it correspondingly
assigns a level to every node. The process is illustrated in Figure 2. We can easily construct an O(n2)
procedure to determine the node levels and inner-trees of T at every level. Further, the following properties

‡Note that for unrooted trees which we consider here, a subtree of a node v originates from every adjacent node of v; in
contrast, the convention for rooted trees is that a subtree of v is any tree rooted at a child of v.
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Figure 2: The process of constructing inner-trees at levels 0, 1 and 2

(which we state here without proof) hold: (i) every inner tree is a tree, (ii) the maximum level of any node
and inner-tree is no more than lg n, (iii) an inner-tree T ′ at level ` contains a unique node x at level `, which
is the short node of the inner-tree (we say that x is the inducing node of T ′), (iv) any two inner-trees at
the same level are disconnected, and (v) all nodes in a level-` inner-tree other than the inducing node have
a level that is smaller than `.

3 Packets

Packet Paths. A path is any sequence of nodes (v1, v2, . . . , vk). The length of the path is the number of
edges in the path. The original path of a packet π is the shortest path from the source node of the packet
to its destination node. Let ` be the minimum level of any node in the original path of π. Then, there is
a unique node v with level ` in the path of π (since otherwise inner-trees of the same level would not be
disconnected). Let T ′ be the inner-tree that v is inducing. The whole original path of π must be a subgraph
of T ′ (from the definition of inner-trees). We say that the level of packet π is `, and that the inner-tree of π
is T ′.

Assume now that packet π is injected into the network. At any time step t, the current path of a packet is
the shortest path from the current node that the packet resides to its destination node. At the moment when
the packet is injected, its current path is the same with the original path. While packet π is being routed
to its destination, it may deviate from its original path due to deflections. However, the packet traverses at
least once each edge of its original path before it reaches its destination.

We say that a packet moves forward if it follows the next link of its current path; otherwise, the packet
is deflected. When the packet moves forward, its current path gets shorter by removing the edge that the
packet follows. Any time that the packet is deflected, its current path grows by the edge on which the packet
was deflected. Note that even with deflections, the current path of a packet is always the shortest path from
the current node to the destination node.

Packet Routing and Deflections. In our algorithms, a packet remains in its source node until a partic-
ular time step, specified by the algorithms, at which the packet becomes active. When the packet becomes
active, it is injected at the first time step that its first link on its original path is not used by any other
packets that reside at the source node. We call such an injection a canonical injection.

After a packet is injected in the network, the packet moves forward to the destination. At each time
step, each node in the network does the following: (i) the node receives packets from adjacent nodes, (ii)
the node makes routing decisions, and (iii) according to these decisions, the node sends packets to adjacent
nodes.

We say that two or more packets meet if they appear in the same node at the same time step. We say
that two or more packets conflict if they appear in the same node at the same time and both wish to follow
the same link forward. In a conflict, one of the packets will successfully follow the link, while the other
packets must be deflected. In a greedy algorithm, a packet always attempts to follow a link forward unless
it is deflected by another packet with which it conflicts for the same edge. The algorithms we consider here
are greedy.

In our algorithms, packets are deflected in a particular way, which allows the congestion of the edges not
to increase. Consider a node v at time step t. Let Sf denote the set of packets which appear in v at time
step t and moved forward at time step t− 1 toward v. Let Ef be the edges that the packets of Sf followed
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at time t− 1. Let π be a packet that is deflected away from v at time t. Then, π attempts to be deflected
on an edge of Ef . If this is not possible, then it is deflected on any other edge adjacent to v. Thus, π is not
deflected on Ef only if other packets will use all the edges of Ef . We call this process of deflecting packets
canonical deflection.

If π successfully follows an edge of Ef , then we say that the deflection of π is safe. We will show that in
our algorithms, the deflections are always safe. Safe deflections have the following effect. Let e be the edge
of Ef that π will be deflected on. Let σ be the packet of Sf that followed e at time step t − 1. Edge e is
transferred from the current path of σ to the current path of π; thus, the edges “recycle” from one path to
another path. Next, we show that it is always possible to have safe deflections when packet injections and
deflections are canonical.

Lemma 3.1 If packet injections and deflections are canonical, then packet deflections are also safe.

Proof: Let v be some node, and S the set of packets that will be routed from v at time step t. We write
S = Sf ∪Sd ∪Si, where Sf , Sd and Si are disjoint sets such that: Sf are those packets which moved forward
at time step t−1, in order to appear in v at time step t; Sd are those packets that were deflected at time step
t− 1; Si are those packets which are injected at time step t in node v. Let Ef and Ed denote the respective
set of edges, adjacent to v, which the packets of Sf and Sd followed at time step t− 1. Clearly, |Sf | = |Ef |
and |Sd| = |Ed|; furthermore, since Sf ∩ Sd = ∅, it must be Ef ∩Ed = ∅. Let S′ denote the set of packets of
S that will be deflected. We only need to show that the packets of S′ follow edges of Ef .

We can write Sf = S1 ∪ S2 ∪ S3 ∪ S4, where S1 are packets that will move forward on edges of Ef , S2

are packets that will move forward on edges of Ed, and S3 are packets that will move forward on edges not
in Ef ∪ Ed, and S4 are packets that will be deflected; sets S1, S2, S3, S4 are disjoint. Furthermore, we can
write Sd = S5 ∪ S6, where S5 are packets of Sd that will move forward on edges of Ed and S6 are packets
that will be deflected; sets S5 and S6 are disjoint. Clearly, S′ = S4 ∪ S6.

For every packet of Sf which moves forward on an edge of Ed, a packet of Sd must be deflected. This
implies that |S2| = |S6|. Let A be the set of edges of Ef that are not used by packets of S1; in other words,
A is the set of edges of Ef on which safe deflections can occur. We have that |A| = |Sf | − |S1|. We also
have that |S′| = |S4| + |S6| = |S4| + |S2|. Equivalently, |S′| = |Sf | − |S1| − |S3|. It follows that |S′| ≤ |A|.
Subsequently, all packets can be deflected on edges of Ef . It follows that all deflections are safe, as needed.

Consider some edge e. The congestion of edge e, denoted Ct
e, is the number of current paths that go

through edge e at the beginning of time step t. Let Ct = maxe∈E Ct
e, namely, Ct denotes the network

congestion at time t. Note that C = C0. Safe deflections imply that for any edge e and any time step t, Ct
e

is no more than C0
e , since edges are transferred from one current path to another one due to deflections, and

the number of original paths crossing e is C0
e . Therefore, from Lemma 3.1 we obtain:

Lemma 3.2 If packets injections and deflections are canonical, then Ct ≤ C, for any t ≥ 0.

Deflection Sequences. In the analysis of our algorithm Deterministic, we use a technique developed by
Borodin et al. [9, Section 2], called “general charging scheme”, with which they analyze deflection routing
algorithms. Below, we adapt the discussion from [9, Section 2] so that it is appropriate for trees. Consider
a packet π that was deflected at time t1 by packet π1. Define a deflection sequence and a deflection path
with respect to this deflection as follows. Follow packet π1 starting at time t1 either to its destination or up
to time t2 > t1, when it is deflected for the first time after t1 by some packet π2. Follow π2 from time t2
either to its destination or until some other time t3 > t2, when π2 is deflected for the first time after t2 by
some packet π3. Then follow packet π3. Continue in the same manner until a packet πj is followed to its
destination. Define the sequence of packets: π1, π2, . . . , πj as the deflection sequence of π at time t1. Define
the path that follows this sequence of packets from the point of deflection to the destination of πj to be the
deflection path. (See Figure 3.)

Claim 3.3 [9] Suppose that for any deflection of packet π from node v to node u, the shortest path from
node u to the destination of πj (the last path in the deflection sequence) is at least as long as the deflection
path. Then, πj cannot be the last packet in any other deflection sequence of packet π.
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Figure 3: The deflection sequence π1, π2, . . . , πj .

Clearly, Claim 3.3 holds for greedy routing on trees. Claim 3.3 implies that we can “charge” the deflection
of π to packet πj , in the sense that when a packet is deflected another packet makes it to the destination.
This implies the following corollary.

Corollary 3.4 [9] If the deflection sequence for each of the deflections incurred by a routing algorithm
satisfies the conditions of Claim 3.3, then the arrival time of each packet is bounded by dist(π) + 2(k − 1),
where dist(π) is the length of the shortest path from the source of packet π to its destination and k is the
number of packets.

4 A Deterministic Algorithm

Here we present the algorithm Deterministic (Algorithm 2). Each node is the source of at most one packet.
Let v be a node which is the source of a packet π. In this algorithm, v first computes the level of the packet.
Then according to the packet level, node v makes π active at a particular time step. The packet then moves
greedily in the network until it is absorbed at its destination.

Algorithm: Deterministic

Input: A tree T of maximum node degree δ; A set of packets Π with path congestion C and dilation
D; Each node is the source of one packet; Each node knows T, C, D;

Do for each packet π of level `:
begin

1 Packet π gets active at time τ · `, where τ = 2(δ · C − 1) + D;
2 The injection and deflections of packet π are canonical;
3 Packet π moves greedily to its destination;

end

Algorithm 2: Deterministic

Lemma 3.1 implies that all deflections are safe. We continue with the routing time analysis of the
algorithm. Let m be the maximum level in T (note that m ≤ lg n). We divide time into consecutive phases
φ0, φ1, . . . , φm, such that each phase consists of τ time steps. Write Π = Π0, Π1, . . . , Πm, where Πi are
packets of level i. From the algorithm, the packets of set Πi become active at the first time step of phase φi.
We will show that all packets of level i are absorbed during phase φi. In particular, we will show that the
following invariants hold, where i ≥ 0:

Pi: all packets of Π0 ∪Π1 ∪ · · · ∪Πi are absorbed by the end of phase φi.

In order to show that the properties Pi are indeed invariants, we will first show that the following properties
hold, where i ≥ 0, and P−1 is taken to be true by default:

Qi: if Pi−1 holds, then all packets of Πi are absorbed by the end of phase φi.

Now, we will consider a particular level ` ≥ 0 and phase φ`. Assume that P`−1 holds (namely, all packets
of Π0 ∪Π1 ∪ · · · ∪Π`−1 have been absorbed by the end of phase φ`−1). We will show that Q` holds; namely,
we will show that all packets of Π` will be absorbed by the end of phase φ`. Notice that in phase φ` the only
packets injected are those of Π`. So, from now on, we will consider phase φ` and only the packets Π`. We
will show that each packet remains inside its inner-tree for the duration of φ`. (Note that an inner-tree can
be connected with another inner-tree of lower level.)
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Lemma 4.1 During phase φ`, each packet of Π` remains inside its inner-tree.

Proof: Assume for contradiction that some packet of Π` leaves its inner-tree during phase φ`. Let π be
the first packet which leaves its inner-tree, and let t be the time step at which this event occurs. That is, at
time step t, packet π appears in a node v which is not in its inner-tree, and at time step t− 1, packet π was
in a node u in its inner-tree. Thus, in node u and time t− 1, packet π is deflected, since the destination of
π is in its inner-tree. Since deflections are safe, there must be another packet σ that moved forward from
node v to node u at time step t− 2. Since inner-trees of the same level are disjoint, we have that packet σ
left its inner-tree before packet π, a contradiction.

From Lemma 4.1, it follows that only packets of the same inner-tree meet with each other; thus, only
packets of the same inner-tree may conflict with each other. From now on, we will consider only packets of
some particular inner-tree T ′ of level `, such that T ′ is induced by some node r of level `. Next, we show
that every packet with inner-tree T ′ will be absorbed in phase φ`.

Corollary 3.4, applies to Algorithm Deterministic. For any packet π, we have that dist(p) ≤ D. Moreover,
at the beginning of phase φ`, the number of packets in inner-tree T ′ does not exceed δ · C, since: (i) the
original path of each packet of T ′ goes through node r, (ii) the degree of r is at most δ, and (iii) each edge
adjacent to r has congestion Cτ ·` ≤ C (a consequence of Lemma 3.2). Further, no more packets can be
added in T ′ during phase φ`. Thus, from Corollary 3.4, all packets in inner-tree T ′ will be absorbed within
a period of time 2(δ · C − 1) + D = τ . Subsequently, all packets of inner-tree T ′ are absorbed by the end of
phase φ`. This implies that all packets of Π` are absorbed by the end of phase φ`. Therefore, we have the
following lemma:

Lemma 4.2 Q` holds for all ` ≥ 0.

From the definition of P`, we have that P` holds if Q1, . . . , Q` hold, which is true from Lemma 4.2.
Therefore, we obtain the following result:

Lemma 4.3 P` holds for all ` ≥ 0.

Lemma 4.3 implies that Pm holds. The fact that Pm holds further implies that all packets will be absorbed
by the end of phase φm. Since m ≤ lg n, all packets are absorbed by time step τ · (m + 1) which is at most
(2(δ · C − 1) + D)(lg n + 1). We have:

Theorem 4.4 The routing time of algorithm Deterministic is bounded by O((δ · C + D) lg n).

From Theorem 4.4, we obtain the following corollary.

Corollary 4.5 If δ is bounded by a constant, then the routing time of algorithm Deterministic is bounded by
O((C + D) lg n).

5 A Randomized Algorithm

Here, we present the algorithm Randomized (Algorithm 3). The difference between Randomized and Deter-

ministic is that the packets have now priorities. There are two levels of priority: low and high. At any time
step, a packet is in one of these two priorities. The meaning of the priority is that in conflicts packets of
high priority win over packets of low priority. Conflicts between packets of the same priority are resolved
arbitrarily. Initially, when a packet becomes active, it is in the low priority. The packet has a chance to
change its priority when conflicts occur. In a deflection, no matter what the previous priority was, the packet
sets its priority to high with probability p (where p is specified in the algorithm), and sets its priority to
low with probability 1− p. In the analysis, we will show that a packet in high priority has a good chance to
reach its destination node without deflections.

Lemma 3.1 implies that all deflections are safe. We proceed with the routing time analysis of the
algorithm. Let m be the maximum level in T (note that m ≤ lg n). We divide time into consecutive
phases φ0, . . . , φm, and the packets into different sets Π0, . . . , Πm, as we did in Section 4. We also consider
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Algorithm: Randomized

Input: A tree T ; A set of packets Π with path congestion C and dilation D; Each node is the source
of one packet; Each node knows T, C, D;

Do for each packet π of level `:
begin

1 Packet π gets active at time step τ · `, where τ = 16 · (C + D) · (2 lg n + lg lg 2n) + 3D + 1;
2 The injection and deflections of packet π are canonical;
3 Packet π moves greedily to its destination;
4 When packet π becomes active it has has low priority;
5 If π is deflected at time step t, then the next time step t + 1, the priority of π becomes high with

probability p = 1/(4(C+D)), and low with probability 1−p (no matter what the previous priority
was). The packet preserves the new priority until the next deflection;

end

Algorithm 3: Randomized

the properties Pi and Qi, 0 ≤ i ≤ m, defined in Section 4. We will show that properties Pi hold with high
probability. In order to do this, we will first show that Qi holds for any particular i ≥ 0 with high probability.

Now, we consider a particular level ` ≥ 0 and phase φ`. Let t1, t2, . . . , tτ denote the time steps of phase
φ`. Assume that P`−1 holds (namely, all packets of Π0 ∪ Π1 ∪ · · · ∪ Π`−1 have been absorbed by the end
of phase φ`−1). We will show that Q` holds with high probability; namely, we will show that all packets of
Π` will be absorbed by the end of phase φ` with high probability. Notice that in phase φ` the only packets
injected are those of φ`. So, we will consider only the packets Π`. Notice that Lemma 4.1 holds. Thus, from
now on, we will consider only packets of some particular inner-tree T ′ of level `, such that T ′ is induced by
some node r at level `. We will show that every packet with inner-tree T ′ will be absorbed in phase φ`, with
high probability. Let T1, T2, . . . , Tw denote the subtrees of r in T ′. We first show some interesting properties
about these subtrees.

Lemma 5.1 Consider any subtree Tj, 1 ≤ j ≤ w. The number of packets with destinations in Tj is at most
C.

Proof: Let e denote the edge that connects Tj with node r. At time step t1, the packets that have
destinations in Tj all have edge e in their original paths. Since the congestion upper bound is C, we have
that the number of these packets is at most C.

Lemma 5.2 Consider any time step ti, 1 ≤ i ≤ τ , and any subtree Tj, 1 ≤ j ≤ w. The number of packets
that appear in Tj at time step ti is at most C.

Proof: Let A denote the set of packets with sources in Tj and B the set of packets with destinations in
Tj. Let e be the edge that connects tree Tj with r. It must be that |A| + |B| ≤ C, since all the packets in
A and B have edge e on their original path, and the congestion does not exceed C.

Let Xi denote the set of packets which appear in Tj at time step ti. We can write Xi = Yi ∪Zi, where Yi

are packets with destinations outside Tj, and Zi are packets with destinations in Tj. We know that Y1 = A.
For i > 1, we can write |Yi| = |A| + a − b, where a is the number of packets which entered Tj, and b is
the number of packets which left Tj, between time steps t1 and ti, and all these packets have destinations
outside Tj. Consider a packet π with destination outside Tj, which enters Tj in time step ti (i.e. packet π
traverses e at time step ti−1). It must be that packet π has entered the network due to a deflection. Since
deflections are safe, it must be that another packet σ ∈ Yi−2 followed edge e forward at time step ti−2 (i.e.
packet σ has its destination outside Tj). Thus, for any packet similar to π that enters Tj, there is another
similar to σ the leaves Tj. This implies that a ≤ b. Therefore, |Yi| ≤ |A|. Moreover, we know that Zi ⊆ B.
Which implies that |Xi| = |Yi|+ |Zi| ≤ |A|+ |B| ≤ C, as needed.

We define the depth of a node v, as the distance of the node from node r.
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Lemma 5.3 Consider any time step ti, 1 ≤ i ≤ τ , and any subtree Tj, 1 ≤ j ≤ w. At time step ti, packets
in subtree Tj appear in depth smaller or equal to D.

Proof: Actually, we will show a stronger result: at time step ti packets in subtree Tj appear in depth
smaller or equal to D, and packets in level D are in isolation, that is, no more than one packet appears in
the same node at depth D.

We prove the claim by induction on i. For the basis case, i = 1, the claim holds trivially true, since
every node is the source of one packet and when the packets are injected they are in isolation at time step
t1; moreover, the original path dilation does not exceed D. Let’s assume that the claim is true for any time
step ti, where 1 ≤ i < k ≤ τ . We will show that the claim is true for time step tk. Note that the destination
of any packet is at depth at most D (since the length of the original paths are at most D and all these paths
cross node r). From the induction hypothesis, at time step tk−1, all packets appear in depth D or smaller.
Consider the packets at depth D and at time step tk−1 (note that these packets are in isolation, from the
induction hypothesis). It must be that these packets wish to move at depth D− 1, since none of them have
reached their destinations, and all of them have their destinations in depth D or higher. All these packets
successfully follow the links toward level D−1, and appear in depth D−1 at time step tk. Therefore, at time
step tk, no packet will appear at depth higher than D. Moreover, at time step tk the packets that appear
in depth D can be only packets which appear in depth D − 1 at time step tk−1 (since, from the induction
hypothesis, there are no packets in depth D+1 at step tk−1). These packets will appear in isolation in depth
D at time step t− 1, since each of these packets follows a different edge leading to depth D. Thus the claim
holds for time step tk, as needed.

Let R = [ta, tb], where 1 ≤ a ≤ b ≤ τ , denote a time period containing time steps ta, ta+1, . . . , tb.

Lemma 5.4 Consider a time period R = [ta, tb], 1 ≤ a ≤ b ≤ τ , and a tree Tj, 1 ≤ j ≤ w. The number of
different packets that appear in Tj during period R are at most C + b− a.

Proof: From Lemma 5.2, we know that the number of packets that appear in Tj at time step ta are at
most C. At any subsequent time step, at most one new packet enters subtree Tj , which implies that during
period R, the number of different packets that appear in Tj is at most C + b− a.

We can bound the number of different packets that π may conflict with in a period as follows:

Lemma 5.5 Consider a time period R = [ta, tb], 1 ≤ a ≤ b ≤ τ , in which a packet π is not deflected. During
period R packet π may have conflicted with at most 2C + b− a different packets.

Proof: Assume that at time step ta, packet π is in subtree Tj and wishes to move to subtree Tk, where its
destination resides, so that k 6= j. (If π has destination node r, or at time step ta is either in r or Tk, then the
analysis is similar.) Assume that packet π resides in subtree Tj for period R′ = [ta, tc], where 1 ≤ a ≤ c < b.
In order for π to conflict with some packet σ in Tj , it must be that packet σ resides in Tj during period R′.
From Lemma 5.4, the number of packets similar to σ is at most C + c− a ≤ C + b− a.

In time period [tc+1, tb], packet π follows a path that includes the node r and a path in the subtree Tk. At
the nodes of this path, packet π may conflict only with packets that have destinations in Tj. From Lemma
5.1, the number of these packets is at most C. Therefore, the total number of different packets that π may
conflict with during period R is at most 2C + b− a.

Consider a time period R = [ta, tb] in which packet π is not deflected. From Lemma 5.5, it follows that
during period R, packet π may conflict with at most 2C + b − a packets. Let σ be any such packet. It is
easy to see that σ will conflict at most once with π during period R (otherwise, packet π and σ would meet
at two nodes at two different time steps during R, and this would imply that there are two different paths
connecting the two nodes, which is impossible). Using this observation, we now prove:

Lemma 5.6 Consider a time step ti, where 1 ≤ i ≤ τ − 2D, at which packet π is in high priority. The
probability that packet π reaches its destination in subsequent time steps without deflections is at least 1/2.
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Proof: Let v be the node in which packet π resides at time step ti. From Lemma 5.3, v appears in depth
at most D. Note that the destination of v is a node which is at depth at most D (since the original paths
have length at most D and cross node r). Hence, at time step ti the current path of node v has length at
most 2D. So, consider time period R = [ti, ti+2D−1]. If during R packet π is not deflected (including time
step ti+2D−1), then it successfully reaches its destination node.

Since packet π is in high priority, it can be deflected only by other packets of high priority. We know
that any other packet σ has only one chance to deflect packet π. This chance is given to packet σ with
probability at most p: first packet σ gets deflected, then increases its priority with probability p, and then
it is in a collision course with packet π. From Lemma 5.5, we have that the number of packets in similar
situation to that of σ is at most 2C + i +2D− 1− i = 2C + 2D− 1 ≤ 2(C + D). Therefore, packet π will be
deflected by any of these packets with probability at most 2(C + D)p = 2(C + D)/(4(C + D)) = 1/2. Thus,
with probability at least 1/2, no packet will deflect packet π.

Using Lemma 5.6, we obtain:

Lemma 5.7 It a packet π gets deflected at time step ti, 1 ≤ i ≤ τ − 2D − 1, then the probability that in
subsequent time steps packet π reaches the destination node without deflections is at least p/2.

Proof: After the packet is deflected at time step ti, it becomes a high priority packet at time step ti+1 with
probability p. From Lemma 5.6, we know that packet π is not deflected until it reaches its destination with
probability at least 1/2. Thus, after the deflection, packet π has a chance to reach its destination without
deflections and in high priority with probability at least p/2.

From Lemma 5.7, we have that every time a packet is deflected, it has a chance to increase its priority
and reach its destination without deflections. We next estimate how many times a packet gets deflected in
a particular time period.

Lemma 5.8 Consider a packet π which is in the network for the entire time period R = [t1, tx], where
D ≤ x ≤ τ . Packet π gets deflected at least (x−D)/2 times in period R.

Proof: Let a denote the number of times that π moves forward and b the number of times it is deflected,
up to (and including) time step tx−1. We have that a+ b = x−1. Every time that the packet moves forward
its distance to the destination decreases, while every time it moves backward the distance increases. Let di

denote the distance of π from its destination at time step ti. We have that dx = d1 − a + b. Equivalently,
dx = d1−x+2b+1, which implies: b = (dx− d0 +x− 1)/2. We know that dx ≥ 1 (since π is in the network
at time step tx), and that d1 ≤ D, since in the original path of π the distance from its destination is at most
D. Thus, b ≥ (x−D)/2.

Next we compute the probability that packet π reaches its destination in phase φ`.

Lemma 5.9 Packet π reaches its destination in phase φ` with probability at least 1− 1/(n2 lg 2n).

Proof: Consider the time period R = [t1, tτ−2D−1]. Any deflection in that time period might increase the
priority of packet π and then π may reach its destination without deflections. From Lemma 5.8, we have that
π is deflected at least x = (τ − 2D− 1−D)/2 = 8(C + D)(2 lg n + lg lg 2n) times in period R. From Lemma
5.7, it follows that every time the packet is deflected in period R it has a chance to reach its destination
with probability at least p/2. In other words, packet π fails to reach its destination in a deflection with
probability at most 1− p/2. Therefore, π fails to reach its destination after x deflections with probability at
most (1 − p/2)x.§ So,

(

1−
p

2

)x

=

(

1−
1

8(C + D)

)8(C+D)(2 lg n+lg lg 2n)

≤
1

e2 lg n+lg lg 2n
=

1

n2 lg 2n
.

Thus, packet π reaches its destination in phase φ` with probability at least 1− 1/(n2 lg 2n).

§Note that each deflection is treated as an independent event for reaching the destination node. We can do this because we
have computed the p/2 lower bound for this probability for the worst possible scenario for each deflection. The consideration
of the dependencies between deflections cannot possibly decrease the p/2 lower bound for each deflection.
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Now, we consider all packets Π` in phase φ`.

Lemma 5.10 The probability that all packets from the set Π` reach their destinations in phase φ` is at least
1− 1/(n lg 2n).

Proof: From Lemma 5.9, any particular packet of Π` reaches its destination with probability at least
1 − 1/(n2 lg 2n). Thus, a packet will not reach its destination with probability at most 1/(n2 lg 2n). The
number of packets in Π` is at most n (each node in the network injects at most one packet). By the union
bound, the probability that one of these packets does not make it to the destination in phase φ` is at most
n ·1/(n2 lg n) = 1/(n lg 2n). Subsequently, all the packets make it to the destination with probability at least
1− 1/(n lg 2n), as needed.

From Lemma 5.10 we obtain the following corollary:

Corollary 5.11 If P`−1 holds, then Q` holds with probability at least 1 − 1/(n lg 2n), for any particular `,
0 ≤ ` ≤ m.

We are now ready to show that properties P` hold with high probability:

Lemma 5.12 P` holds with probability at least 1− (` + 1)/(n lg 2n), for any particular `, 0 ≤ ` ≤ m.

Proof: We will actually estimate the upper bound on the probability that P` fails. We have that P` fails
if any of the Q0, Q1, . . . , Q` fails. From Corollary 5.11, each of these properties fails with probability at
most 1/(n lg 2n). Thus, the probability that P` fails is at most (` + 1)/(n lg 2n). Therefore, P` holds with
probability at least 1− (` + 1)/(n lg 2n).

From Lemma 5.12 and the fact that m ≤ lg n, we obtain the following corollary:

Corollary 5.13 Pm holds with probability at least 1− 1/n.

Since m ≤ lg n and τ = O((C + D) lg n), Corollary 5.13 implies that with probability at least 1 − 1/n,
all packets are absorbed by time step τ · (m + 1) ≤ κ(C + D) lg2 n, for some constant κ ≈ 33. Thus we have:

Theorem 5.14 With probability at least 1−1/n, the routing time of Randomized is bounded by κ(C+D) lg2 n,
for some constant κ > 0.

6 Conclusions

We gave two hot-potato routing algorithms for trees. The deterministic algorithm is appropriate for trees
whose degree is bounded by a constant and achieves routing time O((C+D) log n). The randomized algorithm
is appropriate for arbitrary trees and achieves routing time O((C + D) log2 n) with high probability. These
are the first hot-potato algorithms known (greedy or non-greedy) whose routing time is within logarithmic
factors from the Ω(C +D) lower bound. It still remains to close the gap between the Ω(C +D) lower bound
and our upper bounds for trees.
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[12] C. Busch. Õ(Congestion + Dilation) hot-potato routing on leveled networks. In Proceedings of the Fourteenth ACM
Symposium on Parallel Algorithms and Architectures, pages 20–29, August 2002.

[13] C. Busch, M. Herlihy, and R. Wattenhofer. Hard-potato routing. In Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing, pages 278–285, May 2000.

[14] C. Busch, M. Magdon-Ismail, M. Mavronicolas, and P. Spirakis. Direct routing. Submitted for publication to the ACM-
SIAM Symposium on Discrete Algorithms (SODA’04).

[15] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In IEEE, editor, Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science, pages 553–562, Pittsburgh, PN, October 1992.

[16] A. G. Greenberg and J. Goodman. Sharp approximate models of deflection routing. IEEE Transactions on Communica-
tions, 41(1):210–223, January 1993.

[17] W. D. Hillis. The Connection Machine. MIT press, 1985.

[18] Ch. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato routing on processor arrays. In Proceedings of the 5th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 273–282, Velen, Germany, June 30–July 2, 1993.

[19] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-scheduling in O(congestion + dilation) steps.
Combinatorica, 14:167–186, 1994.

[20] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays - Trees - Hypercubes. Morgan
Kaufmann, San Mateo, 1992.

[21] Tom Leighton, Bruce Maggs, and Andrea W. Richa. Fast algorithms for finding O(congestion + dilation) packet routing
schedules. Combinatorica, 19:375–401, 1999.

[22] N. F. Maxemchuk. Comparison of deflection and store and forward techniuques in the Manhattan street and shuffle
exchange networks. In Proc. IEEE INFOCOM, pages 800–809, 1989.

[23] Friedhelm Meyer auf der Heide and Christian Scheideler. Routing with bounded buffers and hot-potato routing in vertex-
symmetric networks. In Paul G. Spirakis, editor, Proceedings of the Third Annual European Symposium on Algorithms,
volume 979 of LNCS, pages 341–354, Corfu, Greece, 25–27 September 1995.
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