
Direct Routing

Costas Busch∗ Malik-Magdon Ismail† Marios Mavronicolas‡ Paul Spirakis§

July 11, 2003

Abstract

Direct routing is a special case of bufferless routing in which packets are not allowed to conflict with
each other. The task is to compute the injection times of the packets so that they don’t conflict. A well
known lower bound on the routing time of any algorithm is Ω(C + D), where the congestion C is the
maximum number of paths that use any edge, and the dilation D is the maximum length of any path.
We study the extent to which direct routing algorithms can achieve this lower bound.

We present a simple greedy direct routing algorithm for arbitrary routing problems that has routing
time O(C · D). We show that this routing time is worst case optimal. In particular, we construct a
“hard” routing problem on the mesh, for which any direct routing algorithm has routing time Ω(C · D),
while C + D = Θ(

√

C · D).
We then consider many interesting routing problems on commonly used network topologies. We show

that variants of the simple greedy algorithm achieve optimal routing time. The routing problems and
corresponding routing times (rt) are:

i. Trees: arbitrary routing problems on arbitrary tree topologies (rt = O(C + D)).

ii. Mesh with n nodes: permutations (rt = O(
√

n)); arbitrary one-bend paths (rt = O(C + D)).

iii. Butterfly with n inputs: random destinations and permutations (rt = O(lg n) w.h.p.).

iv. Hypercube with n nodes: random destinations and permutations (rt = O(lg n) w.h.p.).

∗Computer Science Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA. Email:

buschc@cs.rpi.edu
†Computer Science Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA. Email:

magdon@cs.rpi.edu
‡Department of Computer Science, University of Cyprus, P. O. Box 20537, Nicosia CY-1678, Cyprus. Email:

mavronic@ucy.ac.cy
§Department of Computer Engineering and Informatics, University of Patras, Rion, 265 00 Patras, Greece, & Computer

Technology Institute, P. O. Box 1122, 261 10 Patras, Greece. Email: spirakis@cti.gr

1 Introduction

Packet routing is the general task of delivering a set of packets from their sources to their destinations. Here,
we consider direct routing: packets follow specified paths; packets cannot be buffered at intermediate nodes
along the path; and, packets are not allowed to conflict with each other. Thus, packets proceed “directly”
from their source to their destination. Direct routing is especially appropriate when buffers are costly or
unavailable (for example optical networks [20]), or collisions cannot be tolerated (for example power aware
routing in sensor networks [8]) or packet delivery times must be guaranteed (for example real-time systems
applications).

The task is to compute a valid routing schedule, which is a set of injection times such that if the packets
enter the network at their prescribed times, then they will follow their prespecified paths without conflicts.
The routing time is the time at which the last packet is absorbed at its destination. In general we would
like to minimize the routing time. We assume that the nodes are synchronous, i.e. a global clock defines a
discrete time. At most two packets may use a link per time step (at mose one in either direction of the link).
We measure the efficiency of a direct routing algorithm with respect to the congestion C (the maximum
number of packets that use an edge) and the dilation D (the maximum length of any path). A well known
lower bound on the routing time of any routing algorithm (direct or not) is given by Ω(C +D). It is desirable
to design routing algorithms with routing time close to this lower bound. For store-and-forward routing, in
which nodes have buffers for storing packets in transit, there are routing algorithms with performance close
to the lower bound [4, 12, 13, 15, 17, 19]. However, such algorithms are not applicable when no buffers are
available.

Here, we provide a comprehensive study of direct routing, paying particular attention to its efficiency
class with respect to C and D. In order to guarantee that the packets will be routed without conflicts, a
direct routing algorithm must necessarily be offline – some centralized resource with complete information
regarding the packet paths computes the packet injection times. Thus, another consideration is the offline
time of a direct routing algorithm, i.e. the amount of time the centralized resource takes to compute the
routing schedule.

Contributions. We present results for the general direct routing problem, as well specific classes of prob-
lems on many common network architectures. The architectures we consider are the tree, mesh, butterfly
and hypercube (Figure 1).

All our direct routing algorithms are based on a simple greedy approach, which considers one packet at
a time and assigns it the earliest available injection time. For an arbitrary routing problem, we show that
the routing time of this greedy algorithm is O(C · D). We show that for direct routing, this is worst case
optimal. More specifically, we expicitly construct a “hard” routing problem on the mesh network for which
C + D = Θ(

√
C · D). We then show that every direct routing algorithm will have a routing time that is

Ω(C · D) for this routing problem. Since C · D is strictly worse that C + D for this hard routing problem,
we see that direct routing is significantly harder than routing with buffers, in the general case.

We show that variants of the greedy algorithm can be used to route optimally for many interesting
network topologies. Thus, for these topologies, when it comes to offline routing, buffers offer no significant
advantage and would be a wastage of resources. The routing times (rt) achieved are summarized below.

i. Trees: for arbitrary routing problems on arbitrary tree topologies, rt ≤ 2C + D − 2.

ii. Mesh with n nodes: in the worst case, rt = Ω(C · D) for any algorithm. For permutation routing,
rt ≤ 4

√
n− 2 + D using the simple greedy algorithm – we obtain this upper bound using only one-bend

paths (paths consisting of at most two line segments); in the worst case, D = Ω(
√

n) so this is optimal.
For arbitrary one-bend paths, rt ≤ 8C + 4D − 8 using a variant of the greedy algorithm.

iii. Butterfly with n inputs and one packet per input: for random destinations, P
[

rt ≤ 5
2 lg n

]

> 1− 3n−
1
2 .

For permutation routing, P [rt ≤ 5 lg n] > 1−6n−
1
2 . Since D = Ω(lg n), these results are asymptotically

optimal with high probability (w.h.p.).

iv. Hypercube with n nodes and one packet per node: for random destinations, P [rt ≤ 7 lg n] > 1− 1
32n . For

permutation routing, P [rt ≤ 14 lg n] > 1− 1
16n . Since D ≥ 1

4 lg n w.h.p, these results are asymptotically
optimal w.h.p.

1

HypercubeButterflyMeshTree

Figure 1: Interesting network topologies

In summary, we present a comprehensive treatment of the direct routing problem in terms of congestion
and dilation. During the course of our analysis, we use techniques that may be of independent interest. We
make extensive use of the dependency graph in which packets are nodes and two packets are adjacent if their
paths may conflict. We link many properties of a direct routing problem to properties of the corresponding
dependency graph. As a final note, we mention that the offline computation time of all our algorithms is
polynomial in n (the nework size), N (the number of packets), C and D.

Related Work. The only previous work known on direct routing is for trees. In particular, Symvonis [21]
and Alstrup et al. [2] study permutations on trees and give routing algorithms with routing time O(n) for
any tree with n nodes. This time is optimal in the worst-case, since there are trees with permutations that
require Ω(n) routing time. However, there exist many permutation routing problems where C + D = o(N),
for which our tree algorithm is strictly better. For example, consider the tree with a root and n−1 children,
and any permutation routing on this tree. Then C = 1 and D = 2, and for our algorithm, all packets are
injected at time 0. Therefore, the routing time is 2 time steps, compared with the routing time Θ(n) of the
algorithm in [2].

Other models of bufferless routing are matching routing and hot-potato routing. In the matching model,
at each time step, a set of edges with disjoint end points is chosen and packets at the endpoints of each
selected edge are exchanged. Matching algorithms have been studied for permutation problems on various
network topologies, [1, 18, 24]. In hot-potato routing, when packets conflict they get deflected, i.e. use
alternative paths to their destination. Hot-potato algorithms have been studied in [3, 5, 7, 9, 10] for various
network topologies.

In terms of congestion and dilation, there has been extensive research for store-and-forward algorithms
in attaining the O(C + D) routing in arbitrary networks [12, 13, 15, 17, 19]. There are also hot-potato
algorithms which come close to the lower bound Ω(C + D) for leveled networks [6] and vetrex symmetric
networks [14].

Paper Outline. In the remainder of the paper, we proceed as follows. In the next section, we give useful
definitions and preliminary results. In Section 3, we introduce the dependency graph and in section 4, we
present the “hard” routing problem. In Section 5, we present the greedy algorithm. We then present results
for trees, meshes, butterflies and hypercubes in Sections 6, 7, 8 and 9. We end with some concluding remarks
in Section 10.

2 Preliminaries

Problem Definition. Let’s first define the problem and introduce the definitions that we will subsequently
need. We are given a graph G = (V, E) with n ≥ 1 nodes, and a set of packets Π = {πi}N

i=1. Each packet πi

is to be routed from its source, s(πi) ∈ V , to its destination, δ(πi) ∈ V , along a pre-specified path pi. Thus,
there are N packets to be routed on a graph with n nodes. For simplicity, we will consider acyclic packet
paths (all our results hold also for paths with cycles).

Consider two paths p1 = (v1, v2, . . . , vk) and p2 = (u1, u2, . . . , ul). The paths p1 and p2 collide if they
share an edge in the same direction, i.e., there is some pair of indices i, j such that (vi, vi+1) = (uj , uj+1),
with 1 ≤ i < k and 1 ≤ j < l (we also say that π1 and π2 collide). Two packets conflict if they are routed

2

in such a way that they appear in the same node at the same time, and the next edge in their paths is the
same. The length of a path p, denoted |p|, is the number of edges in the path. The distance between two
nodes, is the length of a shortest path that connects the two nodes.

The task is to determine the injection time τi for each packet πi ∈ Π, such that if packet πi is injected
into node s(πi) at time τi, it will follow the path to its destination δ(πi) without any conflicts. A direct
routing problem has the following components. Input: (G, Π, P), where G is a multi-graph, and the packets
Π = {πi}N

i=1 have respective paths P = {pi}N
i=1. Output: The injection times T = {τi}N

i=1, denoted a routing
schedule for the routing problem. Validity Requirement: If each packet πi is injected at its corresponding
time τi into its source si, then it will follow a conflict-free path to its destination where it will be absorbed
at time t = τi + |pi|. Such a routing schedule is called valid.

Consider a routing problem (G, Π, P). The routing time rt(G, Π, P) is the maximum time at which a
packet gets absorbed at its destination, rt(G, Π, P) = maxi{τi + |pi|}. The offline time, ol(G, Π, P) is the
number of operations used to compute the routing schedule T .

Let dp(e) denote the number of edges along a path p that need to be traversed in order to reach an edge
e. Two packets π1, π2 are synchronized if their paths p1, p2 collide at some edge e and dp1

(e) = dp2
(e). Thus,

if injected at the same time, they will conflict. More generally, a set of packets is synchronized if every pair
of packets in the set is synchronized. Let π1, π2 ∈ Π be two packets with paths p1, p2 that collide at an edge
e. If τ1 and τ2 are the injection times of π1 and π2, then in a valid direct routing schedule, it must be that
|τ1 − τ2 + dp1

(e) − dp2
(e)| > 0.

Shortcut-Free Paths. Let E be the set of all edges used by the paths in P . A spliced path from node
vs to vd of G, is a path (vs, w1, w2, . . . , wj , vd) such that every edge along this path belongs to E . In other
words, a spliced path from vs to vd is made up of segments of the different paths in P spliced together. Let
p = (v1, v2, . . . , vk) be a path in P , and let S be the set of all spliced paths from v1 to vk using the paths in
P . In particular, p ∈ S. We say that path p is shortcut-free in P if the length of every path in S is at least
the length of p, i.e., there is no shorter path from v1 to vk that can be obtained by using parts of the other
paths. We say that the paths in P are short-cut free if every path p ∈ P is shortcut-free in P .

One example of shortcut-free paths are a collection of shortest paths between pairs of vertices on a graph.
However, it is easy to see that shortcut-free paths are not restricted to shortest paths. Note the two paths
in a set of short-cut free paths may collide at mupliple edges. If the paths are shortcut-free, in order to
construct a valid routing schedule, two packets need only be desynchronized at the first (or any one) edge
on which they collide:

Lemma 2.1 Let Π be a set of packets with shortcut-free paths P . Suppose that p1, p2 ∈ P collide, and let
(v, w) be any particular edge at which the paths collide. Then the respective packets π1 and π2 do not conflict
(on any edge) if and only if π1 and π2 reach v at different time steps.

Proof: The only if direction is clear. We consider the if direction, i.e. suppose to the contrary that π1 and
π2 reach v at different times but conflict at some other edge (v′, w′). So both packets reach v′ at the same
time. If (v′, w′) is earlier than (v, w) in one of the paths then the packets take different times to reach v from
v′ hence one of the paths from v′ to v is shorter contradicting the fact that the paths are shortcut-free. On
the other hand, if (v′, w′) is later than (v, w) on one of the paths, then the packets take different times to
get from v to v′ which means that one of the paths from v to v′ is shorter, contradicting the fact that the
paths are shortcut-free. In either case we get a contradiction, so (v′, w′) cannot exist as claimed.

3 Dependency Graphs

Consider a routing problem (G, Π, P). The dependency multi-graph D of the routing problem is a graph such
that each packet πi ∈ Π is a node in the graph. There is an edge between two packets in D for every edge
on which their paths collide. Corresponding to the dependency multi-graph is the dependency graph D in
which all the edges between two vertices are collapsed into one edge. Thus, there is an edge between packets
in D if and only if their paths collide at least once.

3

A clique K in D is synchronized if all the packets in K are synchronized. No pair in a synchronized
clique can have the same injection time, as otherwise they would conflict. Thus, the size of the maximum
synchronized clique in D gives a lower bound on the routing time:

Lemma 3.1 Let K be a maximum synchronized clique in the dependency graph D. Then, for any routing
algorithm, rt(G, Π, P) ≥ |K| + |pmax|, where pmax is the maximum path length of the packets in K and |K|
is the number of nodes in K.

The dependency graph also gives us a lower bound on the offline computation time. If two packets collide at
an edge, then any algorithm must check that they are desynchronized at that edge. This implies that every
edge in the dependency multi-graph graph D has to be examined at least once. We have:

Lemma 3.2 Any direct routing algorithm has offline computation time which is at least the number of edges
in the dependency multi-graph D.

4 A Hard Routing Problem

Here, we show the existence of hard direct routing problems.

Theorem 4.1 For every direct routing algorithm, there exist routing problems for which the routing time is
Ω(C · D), and C + D = Θ(

√
C · D).

c

x = 0 x = 1 x = 2 x = 3 x = 4

c

c

c

c

Proof: We give an explicit construction of a rout-
ing problem for which the number of packets is N =
Θ(C ·D) and all the packets form a synchronized clique
of size N in the dependency graph D. Then we can
apply lemma 3.1 to obtain the Ω(C · D) lower bound.
The routing problem is illustrated in the figure on the
right, which describes a routing problem on a mesh (for
a description of the mesh network see Section 7). There
are L levels in this routing problem. Each path in the
figure (ending with an arrow) is actually the path for c
packets. The anchor path is the vertical path of length
L (L = 4 in the figure). Each path can be associated
to a level, which denotes the x-coordinate at which the
path moves vertically up after making its final left turn.
Thus the anchor path is the level-0 path, which begins
at coordinates (0, 0) and ends at (0, L). There is a path
for every level in [0, L], and so the total number of pack-
ets is N = c(L + 1). The level-i path for i > 0 begins
at (1− i, i−1) and ends at (i, L+ i), and is constructed
as follows. Beginning at (1 − i, i − 1), the path moves
right till (0, i − 1), then alternating between up and
right moves till it reaches level i at node (i, 2i−1) (i al-
ternating up and right moves), at which point the path
moves up to (i, L + i).

We list some properties of this set of paths. Let
j > i ≥ 0. (i) The level-j path meets the level i path exactly once at the edge from (i, i + j − 1) to (i, i + j).
Further, an edge is shared by at most 2 paths. (ii) Every packet is synchronized with every other packet,
i.e., if packets π1, π2 follow paths p1, p2 which share an edge e then dp1

(e) = dp2
(e): if the two paths are

the same then there is nothing to show, otherwise, this follows from (i) and the fact that the level-i path is
injected at (1 − i, i− 1). Thus, if two packets are injected at the same time into two paths p1, p2, then they
will conflict at e. (iii) The length of the level i path is L + 2i. The conjestion is C = 2c and the dilation is
D = 3L.

Since every pair of packets is synchronized, in the dependency graph D, the packets form a synchronized
clique of size N . Thus, we can apply Lemma 3.1 to obtain rt(G, Π, P) ≥ N + D. Since N = c(L + 1) =

4

C
2 (D

3 + 1), rt(G, Π, P) = Ω(C · D). Choosing c = Θ(
√

N) and L = Θ(
√

N), we have that C + D = Θ(
√

N)

so C + D = Θ(
√

C · D), concluding the proof.

5 The Greedy Algorithm

We consider the following greedy algorithm.

1: // Greedy direct routing algorithm:
2: // Input: routing problem (G, Π, P) with N packets Π = {πi}N

i=1.
3: // Output: Set of injection times T = {τi}N

i=1.
4: Let π1, . . . , πN be an arbitrary ordering of the packets.
5: for i = 1 to N do
6: Greedily assign the first available injection time τi to packet πi ∈ Π so that it does not conflict with

any packet already assigned an injection time.
7: end for

It is easy to show by induction, that no packet πj conflicts with any packet πi with i < j, and thus the
greedy algorithm produces a valid routing schedule. The routing time for the greedy algorithm will be
denoted rtGr(G, Π, P). Let degi be the degree of packet πi in the dependency multi-graph D. Next we show
that τi ≤ degi which implies the folowing lemma:

Lemma 5.1 rtGr(G, Π, P) ≤ maxi{degi + |pi|}.

Proof: We show that the injection times assigned by the greedy algorithm satisfy τi ≤ degi, from which
the claim follows immediately. For packet i, we consider the path pi and the interval of times [0, degi]. Every
time a packet σ, that has already been assigned an injection time, uses an edge on pi, we remove the (at
most one) injection time in this set that would cause πi to conflict with σ at the time σ uses this edge. Since
degi is the number of times packets collide with πi, we remove at most degi injection times from this set.
As there are degi + 1 injection times in this set, it cannot be empty, so the greedy algorithm must assign an
injection time to πi that is in this set, as it assigns the smallest available injection time.

We now give an upper bound on the routing time of the greedy algorithm. Since the congestion is C and
|pi| ≤ D ∀i, a packet collides with other packets at most (C − 1) · D times. Thus, degi ≤ (C − 1) · D, ∀i.
Therefore, from Lemma 5.1 we obtain:

Corollary 5.2 rtGr(G, Π, P) ≤ C · D.

The general O(C · D) bound on the routing time of the greedy algorithm is worst case optimal, within
constant factors, since from Theorem 4.1, there exist worst-case routing problems with Ω(C · D) routing
time. In the next sections, we will show how the greedy algorithm can do better for particular routing
problems. For those problems, we specify a particular order in which the greedy algorithm considers the
packets.

Consider now shortcut-free paths. In Lemma 2.1, we showed that in order to obtain a valid routing
schedule, the packets need only be desynchronized at one of the edges on which they collide, and the packets
can be guaranteed to not conflict with each other for their entire paths. This leads to the following result.
Let degi be the degree of packet πi in the dependency graph D.

Lemma 5.3 For a shortcut-free direct routing problem, rtGr(G, Π, P) ≤ maxi{degi + |pi|}.

Proof: We show that the injection times assigned by the greedy algorithm satisfy τi ≤ degi, from which
the claim follows immediately. The proof is very similar to Lemma 5.1, so we will be brief. In the interval
of times [0, degi], every packet already assigned an injection time removes at most one injection time in this
set. The difference from Lemma 5.1 is in that case, each such packet could remove a time for every time
it used the path. Since there are at most degi such packets, at least one such time must be available for
assignment to this packet by the greedy algorithm.

5

The maximum degree of any node in the dependency graph D is N − 1, since a packet may collide with at
most N − 1 other packets. Therefore, from Lemma 5.3 we obtain the following corollary.

Corollary 5.4 For a shortcut-free direct routing problem, rtGr(G, Π, P) ≤ N + D − 1.

There are routing problems for which the N + D − 1 bound for shortcut-free free paths is smaller than the
general C · D bound of Corollary 5.2. For example, in the case where all paths are shortcut-free and the
same we have C = N , and thus, N + D is smaller than C · D = N · D.

Now we discuss the offline routing time of the greedy algorithm. Each time an edge on a packets path is
used by some other packet, the greedy algorithm will need to desynchronize these packets if necessary. This
will occur at most C · D times for a packet, hence,

Lemma 5.5 The offline computation time of the greedy algorithm is olGr(G, P, D) = O(N · C · D).

Thus, the offline time is polynomial. Further, since in the worst case, the size of the dependency multi-graph
is Ω(N · C · D), from Lemma 3.2 we see that the greedy offline time is worst case optimal.

6 Trees

Consider the routing problems (T, Π, P), in which T is a tree with n nodes, and there are N packets
Π = {πi}N

i=1 in which all the paths in P are shortest paths. An asymptotically optimal direct routing
schedule can be computed efficiently. The algorithm is the greedy algorithm of Section 5 with the only
difference being that we impose a particular order in which the packets are considered.

Let r be an arbitrary node of T . Let di be the closest distance that π′

is path comes to r. The direct routing
algorithm can now be simply stated as the greedy algorithm with the packets considered in sorted order,
according to the distance di. In particular, Order the packets πi1 , πi2 , . . . , πiN

so that di1 ≤ di2 ≤ · · · ≤ diN
.

We show that this algorithm achieves O(C + D) routing time.

Theorem 6.1 Let (T, Π, P) be any routing problem on the tree T . Then the routing time of the greedy
algorithm using the distance-ordered packets is rt(T, Π, P) ≤ 2C + D − 2.

πi

di

r

vu

π′′

π′

Proof: It suffices to show that the injection time for every packet computed in
the algorithm satisfies τi ≤ 2C − 2. Consider packet πi at depth di as illustrated
in the figure. Every packet that has already been assigned an injection time must
pass through a node with depth ≤ di. If such a packet could possibly conflict
with πi then it follows a path similar to either πi, π′ or π′′ as shown in the figure.
In all cases, these packets must therefore use one of the edges u, v, and since the
congestion is C, there can be at most 2C − 2 such packets. Consider the set of
possible injection times [0, 2C − 2]. Each such possibly conflicting packet will
remove at most one injection time from this set, so this set will be non-empty
after the times conflicting with these (at most) 2C − 2 packets are removed.
Since πi is assigned the smallest injection time that guarantees no conflict with
packets that have already been assigned times, it must therefore be assigned an
injection time τi ≤ 2C − 2, concluding the proof.

It can be shown that the offline computation time of this algorithm is ol(T, Π, P) = O((C + D)N) which
is optimal for trees (within constant factors), provided that every node knows its depth. This time is better
than the general upper bound of the greedy algorithm in Lemma 5.5, since each packet need only consider
two edges of its path (and not on its entire path).

7 Mesh

A mesh network M with n nodes is a
√

n × √
n grid of nodes. Every node is connected to up to 4 of its

neighbors on the grid. Since the worst-case routing problem in Theorem 4.1 is on a mesh, Corollary 5.2
imlpies that the greedy routing algorithm achieves asymptotically optimal worst case routing time. We
discuss some important special cases where the situation is considerably better.

6

An important class of routing problems on the mesh is permutation routing problems where each node is
the source and destination of exactly one packet (the source and the destination are different for a packet).
In other words, the destinations are a permutation of the source nodes. For our study, we consider one-bend
packet paths. We say that a packet bends whenever it changes direction from a horizontal link to vertical
link or vice versa. We consider one-bend paths, in which every packet bends at most once. One-bend paths
are trivially short-cut free, since they are shortest paths. We will show that for permutation problems, the
greedy algorithm routes worst case optimally using one-bend paths. We then extend the study of one-bend
permutation problems to one-bend arbitrary routing problems where once again the greedy algorithm with
a specific ordering for the packets has an optimal O(C + D) time. We note that this result is only optimal
under the constraint of one-bend paths. Unlike with trees, it may be possible to lower the congestion by
considering different paths.

One-bend Permutations Problems. Consider a permutation routing problem (M, Π, P) on a mesh M
with n nodes where packets have one-bend paths. We will show that the greedy routing algorithm of Section
5, gives routing time O(

√
n). There are permutation problems such that the packets have to traverse a

distance D = Θ(
√

n) links (regardless of the one-bend path constraint). For such problems, the greedy
algorithm is optimal (within constant factors). In order to show this result, we first bound the number of
packets that any packet can collide with, which then gives a bound on the degree degi of a packet in the
dependency graph D.

Lemma 7.1 Let (M, Π, P) be a permutation routing problem with one-bend paths on a mesh M with n
nodes. Then, degi ≤ 4

√
n − 2.

Proof: Consider the one-bend path of a packet πi. The only other packets that can collide with πi either
have a source node or destination node on the vertical grid line of this path or the horizontal grid line of this
path. There are 2

√
n such source nodes, and 2

√
n such destination nodes. Packet πi uses one of these source

nodes and one of the destination nodes. Since no two packets have the same source and no two packets have
the same destination, there are 4

√
n − 2 remaining nodes which means that at most 4

√
n − 2 other packets

can collide with this packet.

Since the paths are shortcut-free, and D = O(
√

n), using Lemma 7.1 and Lemma 5.3, we get the following
theorem for the greedy algorithm:

Theorem 7.2 Let (M, Π, P) be a permutation routing problem with one-bend paths on a mesh M with n
nodes. Then, the greedy routing algorithm has a routing time rtGr(M, Π, P) = O(

√
n).

Arbitrary Routing Problems. We will now prove a much stronger result regarding arbitrary one-bend
paths, in which there is no restriction on the number of packets or on how the packets choose their sources
and destinations. Namely, we will give an algorithm to direct route any collection of one-bend paths in
O(C + D) time (optimal routing time up to constant factors). Consider such a routing problem (M, Π, P),
in which M has n nodes and the number of packets is N . We find an appropriate ordering of the packets so
that the greedy algorithm finds the optimal routing schedule. The strategy is similar to the strategy used
for the optimal tree direct routing algorithm in Section 6.

There are 8 types of one-bend paths which we group into four groups of 2 as shown below.

group 1 group 2 group 3 group 4

type (i) type (ii) type (i) type (ii) type (i) type (ii) type (i) type (ii)

Notice that in any group above, a type (i) packet can never conflict with a type (ii) packet, since they are
always moving in different directions. This observation gives the following lemma.

7

Lemma 7.3 Let T(i) be a set of injection times of a valid direct routing schedule for the packets of group 1(i)
and let T(ii) be a set of injection times of a valid direct routing schedule for the packets of group 1(ii). Then
T(i) ∪ T(ii) is a valid direct routing schedule for the union of these packets. Similarily for the group 2, 3 and
4 packets.

Lemma 7.3 allows us to determine injection times for the type (i) packets and type (ii) packets separately for
each of the four groups. We can then route the four groups consecutively, in four separate phases. Suppose
that we have determined the injection times of the four groups separately. Let τi denote the maximum
injection time of packet in group i. Since the duration of phase i is at most τi + D, we thus have the
following lemma:

Lemma 7.4 Suppose that injection times for the group 1, 2, 3 and 4 packets have been determined. Let τ1,
τ2, τ3, τ4 respectively be the maximum injection time in each group. Then the packets can be delivered in

time rt(M, Π, P) ≤ τ1 + τ2 + τ3 + τ4 + 4D.

Lemma 7.4 allows us to consider the groups of packets separately, and so from now on, we will focus on group
1 packets. Lemma 7.3 additionally allows to focus only on the type (i) packets. By symmetry (rotation or
reflection of the mesh), we see that all the groups are essentially similar routing problems, hence the same
algorithm can be used to determine route times for all the groups. We will thus describe the algorithm only
for the group 1, type (i) packets.

2

1

5

` = 0

` = 1

` = 2

` = 3

(4, 3)

(0, 0)

(0, 5)

We now describe the order in which the packets are to be considered by the
greedy algorithm. Define a coordinate system for the Mesh with the origin,
O = (0, 0), at the top left corner. The Mesh nodes all have coordinates (x, y),
where 0 ≤ x, y <

√
n. The node (x, y) is x nodes right of the origin and y below

it. The coordinates of some nodes indicated by lighter shading are illustrated
in the figure to the right. We define levels in a network, starting with level zero,
` = 0. The different levels are also illustrated in the figure to the right by the
diagonal dotted lines. The level ` nodes are (0, `), (1, `−1), (2, `−2), . . . , (`, 0).
The level of a packet is the level of the lowest level node that the packet passes
through, i.e., the level of a packet is the closest distance the packet gets to
the origin node. We are only considering paths of the form indicated in the
figure to the right. Notice that for such paths, the level of the nodes traversed
monotonically decreases by one each time to the minimum value and then
monotonically increases. Some representative paths are illustrated, along with
the level of the path.

The direct routing algorithm can now be simply stated as the greedy algorithm with the packets considered
in sorted order, according to level. In particular, Let li be the level of packet πi. Order the packets
πi1 , πi2 , . . . , πiN

so that li1 ≤ li2 ≤ · · · ≤ liN
. We will show the latest injection time is O(C). The following

lemma is the main result that will be needed.

Lemma 7.5 Consider a packet π with level `, that passes through node (x, `−x), of level `, where 0 ≤ x ≤ `.
Let e1 be the edge that the packet uses to get to (x, `− x), and let e2 be the edge that the packet uses when it
leaves (x, ` − x) (one of these edges may not exist). Any packet that has already been assigned an injection
time that collides with this packet must use either e1 or e2.

Proof: Let `′ be the level of any previously assigned packet π′. Then `′ ≤ `. Suppose that π′ collides with
π and suppose to the contrary that π′ uses neither edges e1 nor e2. There are two cases. First suppose that
π′ collides with a horizontal edge of π. In this case since π′ does not use e2 and is a group 1 type (i) packet,
the closest point of π′ to O is y, ` − x where y > x, thus `′ > `, contradicting the fact that `′ ≤ `. On the
other hand, suppose that π′ collides with a vertical edge of π. In this case, since π′ does not use e1, the
closest point of π′ to O is (x, ` − y) where y < x, once again contradicting the fact that `′ ≤ `, concluding
the proof.

Since the paths are shortcut free, Lemma 2.1 implies that when packet π is considered by the algorithm, in
determining the injection time for π, we need only consider previously assigned packets π′ that use at least
one of the edges e1 or e2. It is sufficient to desynchronize π from π′ at one of e1 or e2, which allows us to
route the packets efficiently, as claimed in the following theorem.

8

Lemma 7.6 Let τi be the injection times assigned by the greedy algorithm using the level-ordered packets.
Then τi ≤ 2C − 2.

Proof: When the algorithm assigns an injection time to πi there are at most 2C−2 other packets that can
use the edges e1, e2 as defined in Lemma 7.5. Consider the interval of injection times [0, 2C − 2]. Each of
these packets will remove at most one of these injection times, so after each of thes packets are considered,
there must be at least one time left in this set for packet πi.

Combining Lemma 7.6 with Lemma 7.4, we get the following theorem.

Theorem 7.7 Let (M, Π, P) be a one-bend routing problem on the mesh M . Then the routing time of the
greedy algorithm using the level-ordered packets is rt(M, Π, P) ≤ 8C + 4D − 8.

8 Butterfly

In a n-input butterfly network B, where n is a power of 2, each node has a distinct label 〈l, r〉, where l is
its level and r is its row. The rows are labeled by lg n-bit binary addresses. Nodes at level 0 are inputs
(sources of packets) and nodes at level lg n are outputs (destinations of packets). Thus, an n-input butterfly
has n(lg n + 1) nodes. For l < lg n, a node labeled 〈l, r〉 is connected to nodes 〈l + 1, r〉 and 〈l + 1, rl〉, where
r(l) denotes r with the lth bit complemented. Note that there is a unique path from an input node to an
output node.

We study random-destinations and permutation routing problems on the butterfly. In a random-destination
problem, each input node is the source of exactly one packet, and the destination of each packet is chosen
randomly and uniformly among the output nodes. In a permutation routing problem, each input node is
the source of exactly one packet, and each output node is the destination of exactly one packet. We route
permutations using Valiant’s scheme [22, 23] where packets choose random intermediate nodes.

Consider a random destinations routing problem (B, Π, P). A trivial lower bound on the routing time is
lg n, the length of any path. We will show that the greedy algorithm of Section 5 gives routing time at most
5
2 lg n w.h.p., which is optimal up to a constant factor. In order to get this bound, we first show that any
packet collides with at most 3

2 lg n other packets w.h.p. Thus, the maximum degree in the dependency graph

D is at most 3
2 lg n. Since the paths are shortcut-free and D ≤ lg n, using Lemma 5.3, we get the bound.

Consider a packet π ∈ Π with path v0, v1, . . . , vlg n. Let mi, i = 1, . . . , lg n − 1, be the number of other
packets that could possibly collide with packet π, with the first collision edge being (vi, vi+1) (note that it
is not possible to have collisions on edge (v0, v1)). Let qi be the probability that one of those mi packets
actually uses the edge (vi, vi+1). The following lemma follows from the properties of the butterfly network.

Lemma 8.1 m0 = 0, mi = 2i−1, and qi = 2−(i+1), for i = 1, . . . , lg n − 1.

Proof: Clearly m0 = 0. Let σ be some packet σ 6= π that collides for the first time with π on edge
(vi, vi+1). Packet σ arrives at vi using edge (w, vi) with w 6= vi−1. The number of input nodes that can
reach w is 2i−1, and σ could have originated from any of these nodes. Thus, mi = 2i−1.

To obtain qi, we observe that from vi+1, packet σ can reach M = 2lg n−(i+1) destination nodes. Since
the only way to get to these nodes is using the edge (vi, vi+1), and since the destination nodes are chosen
randomly with uniform probability, the probability that packet σ uses this edge is qi = M/n = 2−(i+1).

Let Xi be the number of different other packets that collide with packet i. Let x
(i)
j be the Bernoulli random

variable that equals 1 if packet j collides with packet i, and let q
(i)
j = P[x

(i)
j = 1]. Xi =

∑

j x
(i)
j , and x

(i)
j

are independent for different j. Let µ = E [Xi] =
∑

j q
(i)
j . Using Lemma 8.1 we obtain:

∑

j

q
(i)
j =

lg n−1
∑

k=1

mkqk =
1

4
(lg n − 1).

Thus, the expected number of packets that use packet i’s path is 1
4 (lg n−1), independent of i, or the specific

path used by packet i. Note that in the dependency graph D, Xi is equal to degi. We will use the following
version of the Chernoff bound to get a concentration result for Xi:

9

Lemma 8.2 ([16]) Let y1, . . . , yn be independent binomial random variables, with P [yi = 1] = bi for i ∈
[1, m], where 0 < bi < 1. Let Y =

∑m
i=1 yi, µ =

∑m
i=1 bi. Then, for any α > 2e, P [Y > αµ] < 2−αµ.

Define the event Ei by Ei = {Xi > α lg n} for some α > 2e. Applying the Chernoff bound in Lemma 8.2, we

get P
[

Xi > α
4 lg n

]

≤ P [Xi > αµ] < 2α/4

nα/4 . The identity P [maxi Xi ≤ α lg n] = 1 − P [∪i Ei] and the union

bound then give

P
[

max
i

Xi ≤
α

4
lg n

]

> 1 − n · 2α/4

nα/4
= 1 − 2α/4

nα/4−1

Taking α = 6, since maxi degi = maxi Xi, and D = lg n, Lemma 5.3 then gives the following theorem:

Theorem 8.3 For random destination routing problem (B, Π, P) on the n-input butterfly B, the routing

time of the greedy algorithm satisfies P
[

rtGr(B, Π, P) ≤ 5
2 lg n

]

> 1 − 2
√

2n−
1

2 .

It is known that there exist permutation routing problems with congestion at least Ω(
√

n), i.e. some edges
are hot-spots (see [16, Section 4.2]). In order to avoid hot-spots, Valiant [22, 23] proposed the following
alternative scheme to route permutation routing problems in a butterfly-like network. Take two butterflies
and connect them so that the outputs of the first butterfly are are the inputs to the second butterfly. The
permutation problem is for this “joint” butterfly network: each packet has source on the input of the first
butterfly and destination on the output of the second butterfly. The routing idea is to allow each packet
to choose uniformly at random an intermediate node on the output of the first butterfly. The path is then
given by source to random intermediate node followed by intermediate node to destination. Such a routing
scheme avoids hot-spots – the permutation problem is now equivalent to two random destinations problems.
Thus, we can apply Theorem 8.3 twice to obtain the following theorem:

Theorem 8.4 For a permutation routing problem (B, Π, P) on the n-input double-butterfly B using Valiant’s

scheme, the routing time of the greedy algorithm satisfies P [rtGr(B, Π, P) ≤ 5 lg n] > 1 − 4
√

2n−
1

2 .

9 Hypercube

In the n-hypercube network H with n nodes, where n is a power of 2, each node vi has a distinct lg n-bit
binary label 〈i1, i2, . . . , ilg n〉 ∈ {0, 1}lgn. There is a link between two nodes vi and vj if and only if their
respective labels 〈i1, i2, . . . , ilg n〉 and 〈j1, j2, . . . , jlg n〉 differ in exactly one position. Thus, the degree of
every node is lg n.

We study random-destinations and permutation routing problems on the hypercube. In a random-
destinations problem, each node is the source of exactly one packet, and the destination of each packet is
chosen randomly and uniformly among the nodes of the hypercube. In a permutation routing problem, each
node in the hypercube is the source and destination of exactly one packet. For permutation routing, we use
Valiant’s scheme of routing to random intermediate nodes first, as with the double-Butterfly.

We use (left-to-right) bit-fixing to determine the paths given the sources and destinations: let π be a
packet which has to be routed from source s(π) to destination δ(π); flip the leftmost bit at which the labels
of s(π) and δ(π) differ and send packet π along the edge that leads to the resulting node v; now repeat this
process with v and δ(π), continuing until the path has reached δ(π). Note that bit-fixing paths are shortest
paths, since the number of bits flipped is minimum. Further, D ≤ lg n, since no more than n bits are flipped.

Consider a random destinations routing problem (H, Π, P) with bit-fixing paths P . We will show that the
greedy algorithm of Section 5, has routing time bounded by 7 lg n, w.h.p., which is optimal to within constant
factors because it can be shown that D ≥ 1

4 lg n w.h.p (using a simple Chernoff bounding argument). As
with the Butterfly analysis, let Xi be the number of other different packets that packet i collides with. We
will use the following result which is adapted from [16, Theorem 4.6]:

Lemma 9.1 ([16]) P [maxi Xi ≤ 6 lg n] > 1 − 1/(32n).

Thus, the maximum degree in the dependency graph D is at most 6 lg n, with probability at least 1−1/(32n).
Since D ≤ lnn, Lemma 5.3 implies that the routing time of the greedy algorithm is at most 7 lg n w.h.p. We
have the following theorem:

10

Theorem 9.2 For a random destination routing problem (H, Π, P) on the n-hypercube H with bit-fixing
paths. The routing time of the greedy algorithm satisfies P [rtGr(B, Π, P) ≤ 7 lg n] > 1 − 1/(32n).

It is known that on the n-hypercube, there exist permutation routing problems with congestion at least
Ω(

√

n/logn), i.e. some edges are hot-spots (see [16, Section 4.2]). In order to avoid hot-spots, we will use
Valiant’s scheme [22, 23]: for any permutation problem, we will construct paths P ′ by first taking bit-fixing
paths from a source to a random uniformly picked intermediate node, followed by bit-fixing paths from the
intermediate node to a destination. This routing problem is the combination of two random destinations
problem. Thus, we can apply Theorem 9.2 twice to obtain the following theorem,

Theorem 9.3 For a permutation routing problem (H, Π, P ′) on the n-hypercube H which uses Valiant’s
scheme with bit-fixing paths, the routing time of the greedy algorithm satisfies P [rtGr(B

′, Π, P ′) < 14 lgn] >
1 − 1/(16n).

10 Discussion

We have given a comprehensive analysis of direct routing in general, and on particular network topologies.
In all cases we find that a simple greedy scheduling strategy is optimal or near optimal. For the tree and
mesh, our results can accomodate an arbitrary set of packets. For the butterfly and hypercube, we focused
on the lightly loaded (one packet per input node) case. It would be useful to have worst case results for the
fully-loaded (lg n packets per node) cases. In this case, we conjecture that direct routing on the fully loaded
Butterfly is hard, namely that there is a problem with congestion lg n for which any direct routing algorithm
would require Ω(lg2 n) routing time. The intuition for our conjecture can be found in Koch’s result, [11],
where he proves that the throughput of the lightly loaded butterfly with random destinations is O(n/ lg n)
w.h.p., hence the fully loaded butterfly with random destinations should require Ω(lg2 n) phases in which
about n/ lgn packets can be sent. The proof, however, has been elusive.

One important implication of our results is that on many interesting network topologies, buffers are not
necessary for optimal offline routing. Further, packets can be guaranteed not to conflict, and delivery times
can be ensured.

References

[1] N. Alon, F.R.K. Chung, and R.L.Graham. Routing permutations on graphs via matching. SIAM Journal on
Discrete Mathematics, 7(3):513–530, 1994.

[2] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Direct routing on trees. In Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 98), pages 342–349, 1998.

[3] A. Ben-Dor, S. Halevi, and A. Schuster. Potential function analysis of greedy hot-potato routing. Theory of
Computing Systems, 31(1):41–61, January/February 1998.

[4] Petra Berenbrink and Christian Scheideler. Locally efficient on-line strategies for routing packets along fixed
paths. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 112–121, N.Y.,
January 17–19 1999. ACM-SIAM.

[5] A. Broder and E. Upfal. Dynamic deflection routing on arrays. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, pages 348–358, May 1996.

[6] C. Busch. Õ(Congestion + Dilation) hot-potato routing on leveled networks. In Proceedings of the Fourteenth
ACM Symposium on Parallel Algorithms and Architectures, pages 20–29, August 2002.

[7] C. Busch, M. Herlihy, and R. Wattenhofer. Hard-potato routing. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, pages 278–285, May 2000.

[8] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Scalable coordination in sensor
networks. In Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom 99), pages 263–270, NY, August 15-20 1999. ACM Press.

[9] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In IEEE, editor, Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science, pages 553–562, Pittsburgh, PN, October 1992.

11

[10] Ch. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato routing on processor arrays. In Proceedings of the 5th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 273–282, Velen, Germany, June 30–
July 2, 1993.

[11] Richard Koch. Increasing the size of a network by a constant factor can increase performance by more than a
constant factor. SIAM Journal of Computing, 21(5):801–823, 1992.

[12] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-scheduling in O(congestion + dilation)
steps. Combinatorica, 14:167–186, 1994.

[13] Tom Leighton, Bruce Maggs, and Andrea W. Richa. Fast algorithms for finding O(congestion + dilation) packet
routing schedules. Combinatorica, 19:375–401, 1999.

[14] Friedhelm Meyer auf der Heide and Christian Scheideler. Routing with bounded buffers and hot-potato routing
in vertex-symmetric networks. In Paul G. Spirakis, editor, Proceedings of the Third Annual European Symposium
on Algorithms, volume 979 of LNCS, pages 341–354, Corfu, Greece, 25–27 September 1995.

[15] Friedhelm Meyer auf der Heide and Berthold Vöcking. Shortest-path routing in arbitrary networks. Journal of
Algorithms, 31(1):105–131, April 1999.

[16] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge,
UK, 2000.

[17] Rafail Ostrovsky and Yuval Rabani. Universal O(congestion+dilation+log1+ε N) local control packet switching
algorithms. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pages 644–653,
New York, May 1997.

[18] Grammati E. Pantziou, Alan Roberts, and Antonios Symvonis. Many-to-many routing on trees via matchings.
Theoretical Computer Science, 185(2):347–377, 1997.

[19] Yuval Rabani and Éva Tardos. Distributed packet switching in arbitrary networks. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing, pages 366–375, Philadelphia, Pennsylvania, 22–24
May 1996.

[20] Rajiv Ramaswami and Kumar N. Sivarajan. Optical Networks, a Practical Perspective. Morgan Kaufmann,
1998.

[21] A. Symvonis. Routing on trees. Information Processing Letters, 57(4):215–223, 1996.

[22] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Computing, 11:350–361, 1982.

[23] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In Proceedings of the 13th
Annual ACM Symposium on Theory of Computing, pages 263–277, May 1981.

[24] L. Zhang. Optimal bounds for matching routing on trees. In Proceedings of the 8th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 445–453, 1997.

12

