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Abstract— determine (i) at least how much data must be sampled to

There has been an increasing interest on construction of draw meaningful conclusions, and (ii) what is the sam-
router-level Internet graphs, usingtraceroute like measure- pling technique to be used.

ment primitives. Furthermore, many metrics reflecting the is obvi hat th . hei |
properties of the Internet graph have been defined based on It is obvious that the metrics converge to their actua

these measurements. However, many important questions Values as the size of data increases. However the com-
remain: How much measurements (sampling) one needs to plexity of collecting data from the Internet, the memory
conduct over the Internet to get a good estimation of its requirements to store this data, and the computational and
properties? How accurately can these properties be com- space complexity of the metric evaluation also increase
puted? What is the impact of sampling techniques on the \ith the data size. For these reasons it is important to de-
computation of these properties? termine minimum amount of data that must be collected

This paper shows that most of the metrics aresvasive: that its will b lized to the whole Int i
their exact values cannot be determined without visiting dl SO that results will be generalized to the whole Internet.

links in the Internet graph. This indicates a fundamental In [1], Floyd and Paxson discuss the difficulties in sim-
difficulty: due to its size and dynamics, a complete Internet ulating the Internet. Recently, in [2] authors showed
graph cannot be obtained, thus the metrics are computed that the measurement techniques based on traceroute-like
under incomplete information. e probing may create a biased view of the Internet graph.
The contribution of this paper is three-fold: First t pro- This work continues with explaining the difficulties of

vides ameta-metric called (v, o)-evasiveness to determine if . .
ametric can be estimated with at least 1> accuracy by sam-  measuring the Internet from a novel perspective. We show

pling ~ percentage of data. Second, it demonstrates an im- that most of the metrics of the Internet router graph are
portant relationship between thekurtosis of measured data €vasive their exact values cannot be determined without
and the o value of sampling. Third, it provides a novel visiting all edges in the Internet graph. There are several
technique to compare different metrics and data collection contributions of this paper.

methods by using the kurtosis of data and theiro values. First, it introduces ameta-metric called (v,o)-

Index Terms— Graph theory, Internet measurements, evasiveness, to answer the following questions: (i) can a

statistics, topology inference. metric be estimated with &-accuracy by using only
percentage of the total data? (ii) how do the values of
I. INTRODUCTION ando change for different metrics? (iii) is the sampling

Obtaining an accurate map of the Internet topology fethod important in this task?

a time consuming and non-trivial task. Inferring the In- Clearly a metric with highy and o cannot be used to
ternet router graph is based on probing techniques suctdaginguish between different topology generators sihce i
traceroute. This graph has routers as its vertices (nodiessgvasive and its value cannot be computed accurately.
and there is an edge between a pair of nodes if they dreus, even if that metric captures an important property
one IP hop apart. Due to the immense size of the Int@f the Internet, it cannot be useful because of its evasive-
net, only a limited amount of data can be collected withiness. In contrast, metrics with lowand lowo are better

a short period of time. Furthermore due to its dynamicmetrics since they reflect more “accurate” properties of
the data may become outdated in a short time. Thethe Internet. Second, it demonstrates a strong relatipnshi
fore snapshots of the Internet in different time periods abetween the kurtosis of data and the accuracy of a metric
taken and metrics are computed on them. As the sizeawimputed on them. This relationship determines whether
the snapshots determines the values of metrics, one mastetric is computed accurately with only a small part of



data or not as well as it provides a measure to decide since in exact evasiveness (i) the next query can be chosen

when a data collection technique has a greater impactlmsed on the current answer from the oracle, and (ii) there

the correctness of metrics. Third, the paper proposesidgano margin of error - the propert§ exists or not.

useos and kurtosis values in the comparison of different In (v, o)-evasiveness a property (metrié) is called

metrics and different data collection methods. Finally, ihonotone if fory’ > ~ property P still holds. In other

shows that the values of metrics depend strongly on tiverds additional information will not change the fact that

type of sampling method deployed for measurements. metric P can be computed with an error margin of at most
The rest of the paper is organized as follows: We de-o. Similarly, if the variance of a metri, which is com-

fine (v, o)-evasiveness in Section Il. In Section |I-B, weputed over says graphsG = (V, E) with v|E| queries

explore the relationship betweén, o)-evasiveness andwith an error margin of at mosto, is non-zero ther® is

property testing. The metrics reflecting different propesaid nontrivial.*

ties of the Internet are explained in Section lll. We explain We show in this work that~, o)-evasiveness can be

our experiments and give results in Sections IV and Vdsed to evaluate the metrics as well as to compare the

Section VI concludes the work and discusses possible firaph generators as reported in [3].

ture work.

|| THEORET|CAL FOUNDAT|ONS B Property Testing an()‘y, O')'EvaSiveneSS

This work usegraph evasiveneds evaluate different It follows from the above description thaty,o)-
metrics and sampling techniques used for internet méayasiveness establishes a trade off between accuracy and
surements. Graph evasiveness (also known as elusiven€8§j: Thus, a relevant study (o, o)-evasiveness igrop-
considers the following problem. Given an input graph erty testing
suppose we are to decided has a certain property P Property testing concerns with the problem of deter-
by asking, to an oracl®, whether or not edgéu, v) be- Mining whether an unknown function has a particular
longs toG. In a graph withN nodes there are at mostProperty or it ise “far away” from it. Property testing
N(N — 1)/2 edges that can be used as a query to the &-functions were first proposed in [7] and testing graph
acle©. If the decision abouf’ can only be made usingProperties was initiated in [8]. For example, testing
exactly N(N — 1)/2 queries then the property is said clique property for a graph wittiV nodes requires de-
to beevasive In other words ifP can only be decided by termining whether or not the graph has a clique of size
checking all the edges @ then it is an evasive property.?V for 0 < p < 1, or the graph is-far from the class
Thus, evasiveness of graphs is used for determining ®le/V-vertex graphs with a clique of sizeV. The tester
worst case complexity of computing some graph propeill accept a property with confidenaeand will reject
ties [4]. it also with probabilityé. The parametet is adistance

It is conjectured by Karp [5] and proven in [6] thatmetric and depends on the functional description of the
every nontrivial monotone graph property is evasive. #raph. For example, in an adjacency matrix representa-
property ismonotondf insertion of new edges to a graphtion, distance is the ratio of entries that are not the same
with property P does not destroy the propert? is non- in both matrices to total number of entries. A convenient
trivial if it holds for some graphs with N nodes and itepresentation for a simple graph is to use a symmetric
does not hold for some other with the same number Bpolean function which takes a pair of vertices and out-
nodes. Planarity, 2-connectivity, connectivity are exanfuts 1 if there is an edge between them, 0 otherwise [8].

ples of such properties. Remark that computation of the function is similar to ask-
ing a query to the oracl® in graph evasiveness.
A. Does Sampling Size Matter?+, o )-Evasiveness Property testing starts by choosing a small subset of

This work introduces a new concept calléd, o)- nodes randomly and uniformly assampleand checks

evasiveness by relaxing the strict or exact evasiveness i close this subset is having the property. If it requires
inition as follows: more thare operations to obtain the property, the test fails.

Definition 1: Given a graphG’ with vertex setV’ and There are three measures that determines the complexity
edge sefZ, a propertyP is called(, o)-evasive if it can of a property testing: (i) number of samples, (i) number

be “computed” by making at leagt| E|] queries with an of queries and (iii) run_ning time of the t_es_ter._ _
error margin of at mosto for 0 < ~ < 1 ando > 0. We note several differences and similarities between

Note that in this definition, the graph is given but comtY; o)-€vasiveness and property testing. First, it is the

pUtat_ion ofa Pr0perty ha(s}_’a U)‘_evaSiveneSS- They, U)_‘ !For the rest of this paper evasiveness will refeftor)-evasiveness
evasiveness is an approximation to the exact evasivenessss a distinction is made explicitly.



type of the properties examined. Tl o)-evasiveness whole graph. For example, the average node degree gives
considers the statistics of the distribution of certainpprothe number of connections that a typical node has.
erties. For example we examine the degree distributionin [9], it is stated that metrics based on the minimum,
and define a property to determine if the average node deaximum and average values are not sufficient to describe
gree isé or if the clustering coefficient of the graph@$ the skewed distributed data and proposed to use the expo-
which is also computed as an average over all the nodeents of power laws as new metrics (these are the outde-
In contrast, property testing can be used to answer quenigse, rank, eigen, and hop plot exponents). The exponents
such as is the graph connected, is it planar, does it hameasure the tendency of a property.
a cut of size at leasbN? edges, does it have a cquue
of sizepN? However, similarities exists betweén, o
evasiveness and property testing with respect to some
cal metrics/properties. Clustering coefficients are the local metrics that reflect
For examp|e, if the testing fqp-c”que property is af- the ConneCtiVity information in the neighborhOOd environ-
firmative with accuracy then, with confidencer, there ment of a node [10]. It can be also thought that they

is at least a node, with degreed < p+n such that prOVide the tranSitiVity information [11], since it contso
the clustering coefficient of. is at most 1 and at leastwhether two different nodes are connected, or if they are

2(p+n)/(p+n)?fory > 0. connected to the same node.

In general, we conjecture that tests for first order graphClustering coefficienC’; is defined as the percentage of
properties (i.e., properties that are expressed using-quiil® connections between the neighbors of nodead it is
tifiers on the vertices) may be relevant to measuring locgiven as:
metrics in the Internet. C; = 2- ki (1)

Second, the approximation parameter property test- k-(k—1)

ing is fundamentally different from the approximation payhere k is the number of neighbors of nadend ; is the
rametersr and~y in (v, 0)-evasiveness. Parametetloes existing connections between its neighbors.

not bound the number of operations needed to ensure thg|ystering coefficientD; is defined similar taC; with
property andy is not an accuracy measure. In propertyn exception. It also considers noidand its connections

testing, e operations ensures the property which enablg$the computation of the clustering coefficient [10]. The
property testing algorithms to get good approximations {grmula of D; is given as:

NP hard problems.

Finally, testing graph properties by queries with uni-
form distribution is not trivial in the Internet. Some of
the metrics (properties) of the Internet graph have long-
tailed distributions in which rare and dominant events that The global clustering coefficients 6f and D are com-
reside in the tail. As a result, a random walk may not pré@uted as the averages ©f andD respectively. Another
vide a uniform distribution for sampling (in contrast witrdlobal clustering coefficient”*), can be computed by

regular graphs), in the Internet graph obtaining a uniforf@king the average over clusterlng coefficients of all the
sampling is not trivial as observed by [2]. nodesC;, except the ones whose degrees are one [12].

I? Clustering Coefficients

2-(Bi+k)

Dy = k-(k+1)

()

[1l. METRICS C. Distance Between Nodes

Metrics can be distinguished in terms of the scope of T hop distance between nodeandw is defined as
the information they provide. Local metrics, which are eXne shortest path between them, taking the weight of each
tracted from individual nodes, give information about th@dge as a unit length. Note that, it is also possible to
individual nodes whereas global metrics reflect the progefine distances in terms of physical distances between
erties of a whole network. A single global value can bgoges [13]. This work takes the hop distance as the dis-
extracted from the local values by using simple statistiCgance measure. Thdiameterof a graph is the maximum

of minimum distances between any two nodes and it de-
A. Degree termines the effective size of a network.

Degree is the most trivial metric and it is defined as the Closenesss a local metric that measure the connect-
number of the connections of a single node for an undieness of a network [11]. The closeness of a node is the
rected graph. Although degree of a node is a local progverage of the distances between this node and the other
erty, the statistics on it gives connectivity informatidrao ones. It reflects the centrality property of a single node



TABLE |
THE 0 VALUES COMPUTED FOR(0.2,0)-EVASIVENESS FOR THE METRICSI.E., THE ERROR PERCENTAGES WHERO PER CENT OF DATA
ARE COVERED. THE & VALUES INDICATE THE STANDARD DEVIATION. IT IS CLEAR THAT NONE OF THE METRICS ARE DETERMINED
EXACTLY.

Metric

Hop sampling

Random walk

Biased walk

Average degree
Clustering coefficien”
Clustering coefficien€(?)

0.791(-0.064)
3.349(-0.270)
2.836(£0.241)

0.079¢-0.003)
0.212(:0.018)
0.015¢0.012)

0.660(-0.077)
2.697(£0.115)
1.984£-0.064)

Clustering coefficienD
Hop plot exponent
Effective hop diameter

0.023(0.008)
0.017¢0.009)
0.352¢-0.020)

0.059¢-0.001)
0.145(:0.001)
0.018(:0.003)

0.047(-0.012)
0.129¢:0.015)
0.134(:0.004)

Average path length
Characteristic path length
Minimum closeness
Average eccentricity

0.381(£0.024)
0.375(£0.017)
0.336(:0.028)
0.398(:0.039)

0.004(-0.003)
0.005(:0.004)
0.022(:0.004)
0.028(:0.004)

0.253-0.005)
0.249(:0.007)
0.224(:0.006)
0.247(:0.002)

Hop diameter

0.581(-0.094)

0.1006-0.049)

0.269(-0.047)

TABLE Il

THE 0 VALUES COMPUTED FOR(0.5,)-EVASIVENESS FOR THE METRICSI.E., THE ERROR PERCENTAGES WHES0 PER CENT OF DATA
ARE COVERED. THE & VALUES INDICATE THE STANDARD DEVIATION. ALTHOUGH 50 PER CENT OF DATA ARE COVEREDTHERE ARE

STILL ERRORS IN THE VALUES OF THE METRICEINTERNET METRICS ARE EVASIVE).

Metric

Hop sampling

Random walk

Biased walk

Average degree
Clustering coefficient”
Clustering coefficien€'(2)

0.225¢£0.007)
0.992(:0.029)
1.161:0.055)

0.127@0.000)
0.345(-0.007)
0.253(:0.006)

0.225(£0.011)
0.993(£0.022)
1.080£-0.032)

Clustering coefficienD
Hop plot exponent
Effective hop diameter

0.014(-0.004)
0.025(:0.008)
0.199¢:0.012)

0.023(£0.000)
0.054¢:0.000)
0.039¢:0.001)

0.009¢-0.001)
0.023¢:0.006)
0.117€:0.005)

Average path length
Characteristic path length
Minimum closeness
Average eccentricity

0.239(-0.017)
0.2216-0.011)
0.210¢:0.018)
0.274(:0.026)

0.068(-0.001)
0.067(:0.001)
0.055(:0.001)
0.060¢:0.001)

0.152(0.000)
0.147¢-0.000)
0.132(-0.000)
0.157(-0.001)

Hop diameter

0.493(£0.116)

0.063¢0.000)

0.215¢0.017)

and smaller values indicate that the node resides closaliameters. ; is defined as:

the center of a network. N2 UM

1= NT3E ®)
The average path lengtlis one of the global metrics
defined as the average of the closeness values for all IV. EMPIRICAL STUDY
nodes [14]. In [12], theharacteristic path lengtls de- A. Data and Sampling Methods
fined as the median of all closeness valugscentricityof In the experiments, we use the router level Internet data
a node is a local metric defined as the minimum numbghtained by using the Mercator software [A6This data
of hops required to reach at least 90 per cent of its reaglynsists of approximately 230K nodes and 320K links,
able nodes. The average of the eccentricity of all nodggq it is used by three sampling techniques. In the em-
reflects the size of a network. pirical study, the sampling simulates the data collection
from the Internet, and the router level data represents the
In [9] the number of node pairs within hops (denoted whole Internet topology. We compute the metrics_ on each
by P(h)) is used to define theop-plot exponent. It is sampled data and observe their values, depending on the

stated tha?(h) o k', h < &, whered is the diameter of size of the sampled data.

a network. Given the hop plot exponent tifective hop  2The data are available at http://www.isi.edu/scan/mergaaps.html.



1) Hop Sampling: The first sampling technique is the(i) the average node degree (ii) the average clustering co-
hop sampling It creates a subnetwork of the originakfficientsC, C? and D (jii) the minimum closeness, the
topology by randomly selecting an initial node and growaverage path length and the characteristic path length (iv)
ing it from that node according to the specified hop coutite average eccentricity (v) the hop-plot exponent (vi) the
h. All nodes and edges visited withinhops are taken to effective hop diameter (vii) the hop diameter of a graph.
form a subnetwork. This technique is called “ball grow- We run each sampling method 20 times, starting with
ing” in [17]. In our experiments, we select hop coundifferent randomly selected initial nodes. We plot the val-
value starting with one and incrementing it until the sanues when0%, 20%, ..., 90% of data are covered. We use
pled graphs consist of at least 90 per cent of its originkhear interpolation for the hop sampling values, since the
topology. data covered in each step differ in each run (unlike the

2) Random Walk: The second technique is tlian- random and biased walks). All results given in this paper
dom walk{18]. In the random walk, we start a randomlyare the averages of these 20 rdns
selected node and in each step, we select a neighbor of
the current node at random with probabilityl /d; where C. How Long are the Tails?- Kurtosis of the metrics
d; is the degree ot and move to it. In this algorithm, Kurtosis is the fourth moment and used to decide how
in each step a new link is added, therefore a new subng of tail a distribution has. It is a measure of the peak-
network is formed. On the other hand, we compute tiss or flatness of the distribution and computed as fol-
metrics on these subnetworks only at certain points, at tloevs:
first time that the following percentages of the total nodes ~
10%, 20%, ..., 90% are covered. Furtosis — X - X)

3) Biased Random Walk:We implement a modified (N —1)s?
version of the random walk as the last sampling techniqugpere v is the size of dat&’, X is the mean and is the
Biased walkis similar to the random walk, the only dif- standard deviation of the data.
ference is in Selecting a neighbor of the current node. AKurtosiS ranges from -2 to p|us |nf|n|ty Positive kur-
bias factor is added such that the nodes with larger dgsis value indicates a peaked distribution which is de-
grees have higher selecting probabilities. A node is sgribed as leptokurtic. The kurtosis of the normal distribu
lected with a probability proportional to its degree, e.Gtion is zero. In leptokurtic distributions, observatiorsé
if the current node have neighbors with the degrees ofa3endency to cluster densely about some particular point
and 4, their selecting probabilities will be 3/7 and 4/7 rgar away from the average. Flat distributions described as
spectively. In the biased walk, we favor the nodes Wiiiatykurtic have negative kurtosis values. In platykurtic

higher connectedness. As in the random walk, the metrigstributions, observations are distributed fairly unifdy
are computed at the first time when%, 20%, ...,90%  across their ranges.

-3 4

are hit. We have computed the kurtosis of the local metrics
given in Section IV-B. We have also computed the kurto-
B. Metrics used sis of the hop plot valued{(/)), defined as the number of

We select less costly metrics to make them eﬁicientRfairS within each hop count [9]. Our objective is to learn
computable in terms of time and memory. For examp?ém“t the shape charecteristics of the distribution ofghes
we discard the eigenvalue exponent since the memory dRgtrics without actually computing their distributions.

time complexity become too high with the amount of data V. OBSERVATIONS AND INTERPRETATIONS

we use. We do not compute the outdegree and the rank=or all global metrics, the explicit values for(0.2, o )-
exponent, since they are defined on directed graphs &W@siveness an@.5, o)-evasiveness are shown in Tables |
we keep our graphs as undirected. and Il respectively. The results in these tables are the av-
The following local metrics are used by the empiricadrages, and the standard deviations are given in parenthe-
study: degree, clustering coefficient C, clustering coefes. Ther values indicate error percentages in computing
ficient D, closeness, and eccentricity of each individughe global metrics when 20 and 50 per cent of data are
node. covered. Ther values for othery values are plotted in

In addition to these local metrics, the hop plot valugsigures 1-6. Note that these results will help the interpre-
(P(h)) defined in [9] are computed to obtain the hop plaktion of next subsections.

exponent. . . . . 3We note that the number of runs are not large; however, stdnda
These |0(fa| metrics y|e|d_ to computation of followinGyeyiations, shown in Tables I and 11, are significantly lovjustify for
global metrics to characterize the whole Internet graptiing limited number of runs for the submission.



TABLE Il
RANKING OF METRICS FOR THREE DIFFERENT SAMPLING METHODSTHE VALUES IN THE PARENTHESIS INDICATE THEs VALUES (1.E.,
PERCENTAGE OF THE ERRORWHEN v = 0.20 (1.E., 20PER CENT OF DATA ARE USED. THEY ARE COMPUTED OVER20 RUNS. EACH
SAMPLING METHODS FAVORS DIFFERENT METRICS IN TERMS OF ACCURCY.

Hop sampling Random walk Biased walk

1. Hop plot exponent (1.7%) 1. Average path length (0.4%) 1. Clustering coeffD (4.7%)

2. Clustering coeffD (2.3%) 2. Characteristic path length (0.5%)2. Hop plot exponent (12.9%)

3. Minimum closeness (33.6%) 3. Clustering coeffC'(?) (1.5%) 3. Effective hop diameter (13.4%)
6. Effective hop diameter (35.2%) | 4. Effective hop diameter (1.8%) | 4. Minimum closeness (22.4%)

4. Characteristic path length (37.5%). Minimum closeness (2.2%) 5. Average eccentricity (24.7%)
5. Average path length (38.1%) 6. Average eccentricity (2.8%) 6. Characteristic path length (24.9%)
7. Average eccentricity (39.8%) 7. Clustering coeffD (5.9%) 7. Average path length (25.3%)
8. Hop diameter (58.1%) 8. Average degree (7.9%) 8. Hop diameter (26.9%)

9. Average degree (79.1%) 9. Hop diameter (10.0%) 9. Average degree (66.0%)

10. Clustering coeffC®) (283.6%) | 10. Hop plot exponent (14.5%) | 10. Clustering coeffC'(?) (198.4%)
11. Clustering coeffC' (334.9%) 11. Clustering coef€ (21.2%) 11. Clustering coeffC (269.7%)

A. Evasiveness of the Metrics a metric within a particular error range. The answer is not

In Tables | and I1, it is clear that the metrics are not dévious for such a large graph like the Internet. However,
termined exactly, in other words there are always errors ifi, 7)-€vasiveness for sampled graphs gives some clues
the values of metrics unless all the graph is visited. Mor#l the answer of this question. In Table IV, the average
over, o values differ for each metric as well as for eacBmount of necessary data to obtain 90 and 80 per cent
sampling method (each sampling method favors a diff@@ccuracy is given. In this table, we see that, the hop sam-
ent set of metrics, by yielding more accurate results). pling and biased walk fail to estimate most of the metrics

We propose to use evasiveness values of the metric3ighin at most 20 per cent of error unless at least half of
compare them in terms of accuracy. For example, for tHee nodes are visited. This is an important drawback for
hop sampling, the average degree and the global clustéese sampling methods, since they cannot produce ap-
ing coefficientD are(0.2, 0.791) and(0.2,0.023)-evasive Propriate samples to estimate most of the metrics with-
respectively. It means with 20 per cent of data, the glob@yt Vvisiting half of the graph. This table also shows that
clustering coefficientD gives more accurate results thathe random walk is successful in estimating a metric with
the average degree. It makes the clustering coeffidient10 per cent error when at most 20 per cent of the graph
a better metric compared to the average degree, in ter¥isited (the only exception is the hop plot exponent).
of accuracy. For each sampling method, the rankings \Bfith this sampling the amount of data will decrease if we
the metrics are reported in Table Ill. The values in parefplerate 20 per cent of error.
theses indicate the average of thealues wheny = 0.2.

The o values for the same metric provide a measure g)
compare different sampling methods. Smabevalues
- . es?
indicate better sampling methods, e.g., the average pgtﬂ
length is (0.2,0.381), (0.2,0.004), and (0.2,0.253)4#eeas In this work, we observe that distributions of local met-
for the hop sampling, random walk and biased walk reics and thes values of global ones are closely related.
spectively. Thus the average path length “ranks” the saB®efore computing it, we can get some clues about the re-
pling methods as the random walk, biased walk, and hbability of a global metric by using the local metric dis-
sampling wheny = 0.2 (in Table I). On the other hand thetributions on sampled graphs. This is important for the
hop plot exponent ranks them as the hop sampling, biadaternet graph, since we will estimate a metric by using
walk, and random walk when 20 per cent of data are vienly a small part of the graph.
ited. Our experiments show that for most of thealues In Figures 1-6,0 and kurtosis values as a function
the random walk is the best technique (see Figures 1-6pf ~ are shown. In each figure, we focus on a differ-

ent local metric. In these figures, x-axis indicates how
B. How Much to Measure? much data are visited (i.eqy value). o values in y-

Another interesting question is what amount of meaxis indicate the error percentage of a global metfrie-(

surement (sampling) is necessary to estimate the valueofiputed metric value/real metric value) whereas

How Much Do Local Properties Differ from Global



TABLE IV
~ VALUES: AMOUNT OF MEASUREMENT(SAMPLING) NECESSARY FOR).90 AND 0.80 ACCURACIES. THESE ACCURACIES CORRESPOND
TOo = 0.10 AND o = 0.20 RESPECTIVELY RESULTS ARE THE AVERAGES OVER20 RUNS AND STANDARD DEVIATIONS ARE GIVEN IN
PARENTHESES IT IS EVIDENT THAT SAMPLING TECHNIQUE PLAYS AN IMPORTANT ROLE

c=0.1 c=0.2

Metric Hop Biased Random Hop Biased Random

Average degree 0.78(0.04) 0.80(0.00) 0.10 (0.00)0.60(0.00) 0.60(0.00) 0.10 (0.00)
Clustering coefficient 0.97(0.05) 1.00(0.00) 0.10(0.00)0.90(0.00) 0.90(0.00) 0.10 (0.00)
Clustering coefficien€(® | 1.00(0.00) 1.00 (0.00) 0.20 (0.00)0.90(0.00) 1.00 (0.00) 0.20 (0.02)
Clustering coefficienD 0.12(0.04) 0.10(0.00) 0.10(0.00)0.10(0.00) 0.10(0.00) 0.10 (0.00)
Hop plot exponent 0.11(0.03) 0.30(0.00) 0.40 (0.00)0.10(0.00) 0.10(0.00) 0.20 (0.00)
Effective hop diameter 0.79(0.02) 0.60(0.00) 0.13(0.04)0.55(0.05) 0.10(0.00) 0.10 (0.00)
Average path length 0.87(0.06) 0.70(0.00) 0.17 (0.0%)0.66(0.08) 0.40(0.00) 0.10 (0.00)
Characteristic path length| 0.82(0.05) 0.70(0.00) 0.16 (0.0%)0.58(0.04) 0.40(0.00) 0.10 (0.00)
Minimum closeness 0.88(0.06) 0.70(0.00) 0.20(0.00)0.57(0.06) 0.30(0.00) 0.11(0.02)
Average eccentricity 0.90(0.00) 0.70(0.00) 0.20(0.00)0.75(0.11) 0.40(0.00) 0.11(0.03)
Hop diameter 0.95(0.12) 1.00(0.00) 0.12(0.0%)0.87(0.27) 1.00(0.00) 0.10 (0.00)

the kurtosis value in y-axis is the measure that characvalues are between the platykurtic and leptokurtic ones.
terizes the peakness or flatness of the distribution of loddke the average degree and global clustering coefficient
metrics. C and C?, the sampling method is important but the
In Figures 1 and 2, the kurtosis values are positive (theyher sampling methods are still tolerable.
are greater than 5) which indicate leptokurtic distribu-
tions. This means observations of the node degree and the .
local clustering coefficient” are clustered far away fromD' Does Measurement Size Matter?
their averages. Thus it is hard to estimate the average valin [3], we conducted our own measurements using
ues defined on these local metrics. The experiments intiaceroute servers to construct an Internet router graph
cate that sampling technique is becoming more importamith 7,000 nodes from 10 different measurements. In
to estimate such metrics. In our case, the random walkder to validate the results reported in [3] for a small
is successful to sample a subgraph on which the averageasurement size (i.e., 7K), we compare the properties
degree and the global clustering coefficients are estimat#d7 K-node measurement graph wi2B0K -node Mer-
accurately even with small portion of data. On the otheator one. Note that both measurement techniques use
hand, the hop sampling and biased walk fail to sampletraceroute-like primitives for prompting the Internet.€Th
graph successfully regarding to these metrics. comparison, tabulated in Table I, shows remarkable sim-
In Figures 3 and 4y-kurtosis curves show that the lo-larity. Although quite counter intuitive (since one would
cal clustering coefficienD and the hop plot valueB(h) expect to see a change in the measured properties of the
come from flat distributions. All sampling techniques sudnternet as the measurement size increases) this compari-
cessfully can sample the whole graph, resulting in smallgen suggests the existence of scale-free property [15] for
o values even when a small part of data is visited. Fthe Internet router graph.
such metrics, sampling technique is not as important as
for the metrics with leptokurtic distributions. These met-
rics are stronger in terms of accuracy compared to those
with leptokurtic distributions. For analyzing the Internet and understanding its topo-
Figures 5 and 6 show local and global metrics relatéogical properties, it is important to define proper metrics
to the closeness and eccentricity. For both properties, Tthe metrics converge to their actual values as the data size
cal and global metrics are similar. Their kurtosis valuescreases. But it is not possible to collect complete Inter-
approximately range from 0 to 3. Although their distrinet data and the cost of the computation gets higher as the
butions are leptokurtic, the kurtosis values are not as highta size increases. Thus the exact values of the metrics
as the node degree or the clustering coeffic@ntTheir must be estimated by using only a small portion of data. In
kurtosis are close to that of the normal distribution. Thihis work, we defind~y, o)-evasiveness to assess whether
feature causes global metrics being more predictable. Tihis possible to estimate the real value of a metrietin

VI. CONCLUSION



TABLE V Global metric: Average degree
COMPARISON OF7K-NODE AND 230K-NODE (MERCATOR) 27
MEASUREMENT GRAPHS THE METRICS HAVE REMARKABLE — Hop sampling
CLOSE VALUES IN SPITE OF THE DIFFERENCE IN THE 1.5} Random walk
— - Biased walk
MEASUREMENT SIZE THE VALUES IN PARENTHESES ARE THE
STANDARD DEVIATIONS OF 10 MEASUREMENTS OF SIZE7TK o
NODES.
Metric 7K 230K
Average degree 3.881 (-0.077) | 2.807

Clustering coefficient” 0.012 @-0.008) | 0.026
Clustering coefficien(® | 0.012 ¢-0.009) | 0.062
Clustering coefficienD 0.501 &0.003) | 0.804
Hop diameter 34.300 ¢4.057) | 32.000
Hop plot exponent 3.242 ¢0.020) | 4.940
Effective hop diameter 9.493 (-0.135) | 9.274
Characteristic path length| 9.017 ¢0.171) | 9.339

Average path length 9.285 £0.195) | 9.515 @
Average eccentricity 11.768 €0.262) | 11.706 ,§
Minimum closeness 6.532 -0.272) | 5.527 2

error margin or not. The value indicates the percent-

age of data and it gives us a measure to compare different

metrics and sampling methods. Thg o)-evasiveness is

a novel relaxation oévasivenesand we discussed how it

relates toproperty testing The (v, o')-evasiveness heIpSFig' 1. Vo a_nd ~-kurtosis curves.o is computed on the average
- . degree, which is a global metric, and kurtosis is computethemode

us answer to an important questlon. how much_measuag- rees, which is a local metric. It is obvious that the ramdealk

ment do we need to do to obtain accurate metric reSU'Pﬁgqre successfully sample the graph than the hop samplingiasdd

This is an essential question, because due to the immewask with respect to the accuracy of the average degree.

size of the Internet, it is only possible to sample its small

part. _ _

We conducted an extensive study(ef o)-evasiveness be estlmatgd accu_ra_tely by u_smg a_lsmall part of data. _
on the Internet router graph with 230K nodes, collected ® There is a statistical relationship between the kurtosis
by the Mercator software [16]. Some of the results are 8510cal metrics and the error margin in estimating cor-
follows: responding global metrics. The values are small for

« We obtain differenty ando values for different met- the local metrics with platykurtic distribution indepemtle
rics and sampling methods. Table IV shows that, with e85 the sampling method.  For leptokurtic distributed lo-
than half of the nodes, 10 per cent of error is only toler§2! metrics, the sampling method has a great impact on
ble for the random walk. The other two sampling methodB€ yalue Ofo. Increasing th‘_" value of kurtosis Increases
cannot tolerate this error with this amount of data excefff€ Importance of the sampling method. When kurtosis is
for the global clustering coefficienb and the hop plot close_r to that of the normal distributed datayalues are _
exponent (they are the metrics with negative kurtosis). A9nsidered tolerable but not as good as for the platykurtic
the per cent of error margin increases (becomes 20 [g&f@ for all sampling methods.
cent in this table), with less than half of the nodes, the ® (7, o)-evasiveness ismeta metriavhich can be used
biased walk is starting to tolerate 20 per cent of error f&¢ compare different metrics and sampling methods. It
the metrics whose kurtosis values are negative or closesttows that efficient metrics are the ones that converge
that of the normal distributed data. With this much dat#)eir exact values quickly and accurately. That means they
the hop sampling still make more than 20 per cent of errBave smaller and+y values in(y, o)-evasiveness.
for the metrics with positive kurtosis values. As a result We think that analyzing théy, o)-evasiveness of met-
of this table, we can “rank” the sampling methods as thies and kurtosis values of the subgraphs will help us to
random walk, biased walk, and hop sampling in descentbme up with better sampling methods which increases
ing order. This table also summarizes which metrics c#ime success of a metric estimation.
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Global metric: Clustering coefficient C

Hop sampling
Random walk
Biased walk

at

kurtosis

Fig. 2. ~-0 and~-kurtosis curvess is computed on the clustering
coefficientsC' andC(®, which are the statistics of local clustering co-
efficient C. Kurtosis is computed on the local clusteringfficent C,
defined for each node. On leptokurtic distributed data, seanepling
methods better sample the graph than the others.
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Global metric: Hop plot exponent

0.25¢
: — Hop sampling
0.2} . Random walk
\ — - Biased walk
0.15¢ A
o \
0.1 '
Global metric: Clustering coefficient D '
0.1r
) 0.05¢
\ — Hop sampling
008y Random walk o
b - - Biased walk 0
0.06 1
o
0.04} Global metric: Effective hop diameter
' 0.5¢
0.021
0.4¢
0
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o
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Local (node) metric: Clustering coefficient D
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0.1t
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L 0
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e
’_;:» 04t Local metric: Hop plot values
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1 : : : : ; '
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4
Fig. 3. v-0 and~-kurtosis curvess is computed on the clustering co- -15 ¢
efficient D, which is the average of the local clustering coefficient D.
The kurtosis of the local clustering coefficient D is giverifie second 5 ‘ ‘ ‘ ‘ ‘
graph. Platykurtic distributions decrease the importasfcéhe sam- “o 0.2 0.4 0.6 08 1
pling methods. It is obvious that all sampling methods aresssful. y

Fig. 4. ~-0 and~-kurtosis curves.o is computed on the hop plot
exponent and the effective hop diameter, which are the gtob#ics,
and Kkurtosis is computed on the hop plot values for each haptco
Note that this local metric is different than the otherscsiit is com-
puted on hop plot values whereas the other local metricsngeio
individual nodes.



Global metric: Average path length
05¢

— Hop sampling
0.4r¢ Random walk
— - Biased walk

03r ~
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0.1

Global metric: Characteristic path length
057

0.47

0.37

0.27
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Global metric: Minimum closeness
0.4

0.37

©o0.2f

0.1

kurtosis

0 02 04 06 08 1
Y

Fig. 5. -0 and~-kurtosis curves.o values are computed on the
global closeness metrics whereas kurtosis is computed erotal
closeness. The results are very similar to those in Figure 6
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0.1
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Global metric: Average eccentricity

— Hop sampling
Random walk
— - Biased walk

Local (node) metric: Eccentricity

Fig. 6. ~-o curve of the average eccentricity for the whole graph and
~-kurtosis curve for the node eccentricities. The local atrigities
as well as the local closeness values (Figure 5) are leptokiout
their kurtosis values are smaller compared to those in Egylirand 2.
The selection of the sampling method is still important bweduces
according to the average degree and the global clusteriefficents

C andC®.



