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Abstract—
There has been an increasing interest on construction of

router-level Internet graphs, using traceroute like measure-
ment primitives. Furthermore, many metrics reflecting the
properties of the Internet graph have been defined based on
these measurements. However, many important questions
remain: How much measurements (sampling) one needs to
conduct over the Internet to get a good estimation of its
properties? How accurately can these properties be com-
puted? What is the impact of sampling techniques on the
computation of these properties?

This paper shows that most of the metrics areevasive:
their exact values cannot be determined without visiting all
links in the Internet graph. This indicates a fundamental
difficulty: due to its size and dynamics, a complete Internet
graph cannot be obtained, thus the metrics are computed
under incomplete information.

The contribution of this paper is three-fold: First it pro-
vides ameta-metric called (γ, σ)-evasiveness to determine if
a metric can be estimated with at least 1-σ accuracy by sam-
pling γ percentage of data. Second, it demonstrates an im-
portant relationship between thekurtosis of measured data
and the σ value of sampling. Third, it provides a novel
technique to compare different metrics and data collection
methods by using the kurtosis of data and theirσ values.

Index Terms— Graph theory, Internet measurements,
statistics, topology inference.

I. INTRODUCTION

Obtaining an accurate map of the Internet topology is
a time consuming and non-trivial task. Inferring the In-
ternet router graph is based on probing techniques such as
traceroute. This graph has routers as its vertices (nodes)
and there is an edge between a pair of nodes if they are
one IP hop apart. Due to the immense size of the Inter-
net, only a limited amount of data can be collected within
a short period of time. Furthermore due to its dynamics,
the data may become outdated in a short time. There-
fore snapshots of the Internet in different time periods are
taken and metrics are computed on them. As the size of
the snapshots determines the values of metrics, one must

determine (i) at least how much data must be sampled to
draw meaningful conclusions, and (ii) what is the sam-
pling technique to be used.

It is obvious that the metrics converge to their actual
values as the size of data increases. However the com-
plexity of collecting data from the Internet, the memory
requirements to store this data, and the computational and
space complexity of the metric evaluation also increase
with the data size. For these reasons it is important to de-
termine minimum amount of data that must be collected
so that results will be generalized to the whole Internet.

In [1], Floyd and Paxson discuss the difficulties in sim-
ulating the Internet. Recently, in [2] authors showed
that the measurement techniques based on traceroute-like
probing may create a biased view of the Internet graph.
This work continues with explaining the difficulties of
measuring the Internet from a novel perspective. We show
that most of the metrics of the Internet router graph are
evasive: their exact values cannot be determined without
visiting all edges in the Internet graph. There are several
contributions of this paper.

First, it introduces ameta-metric called (γ, σ)-
evasiveness, to answer the following questions: (i) can a
metric be estimated with 1-σ accuracy by using onlyγ
percentage of the total data? (ii) how do the values ofγ
andσ change for different metrics? (iii) is the sampling
method important in this task?

Clearly a metric with highγ andσ cannot be used to
distinguish between different topology generators since it
is evasive and its value cannot be computed accurately.
Thus, even if that metric captures an important property
of the Internet, it cannot be useful because of its evasive-
ness. In contrast, metrics with lowγ and lowσ are better
metrics since they reflect more “accurate” properties of
the Internet. Second, it demonstrates a strong relationship
between the kurtosis of data and the accuracy of a metric
computed on them. This relationship determines whether
a metric is computed accurately with only a small part of
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data or not as well as it provides a measure to decide on
when a data collection technique has a greater impact on
the correctness of metrics. Third, the paper proposes to
useσ and kurtosis values in the comparison of different
metrics and different data collection methods. Finally, it
shows that the values of metrics depend strongly on the
type of sampling method deployed for measurements.

The rest of the paper is organized as follows: We de-
fine (γ, σ)-evasiveness in Section II. In Section II-B, we
explore the relationship between(γ, σ)-evasiveness and
property testing. The metrics reflecting different proper-
ties of the Internet are explained in Section III. We explain
our experiments and give results in Sections IV and V.
Section VI concludes the work and discusses possible fu-
ture work.

II. T HEORETICAL FOUNDATIONS

This work usesgraph evasivenessto evaluate different
metrics and sampling techniques used for internet mea-
surements. Graph evasiveness (also known as elusiveness)
considers the following problem. Given an input graphG
suppose we are to decide ifG has a certain property P
by asking, to an oracleO, whether or not edge(u, v) be-
longs toG. In a graph withN nodes there are at most
N(N − 1)/2 edges that can be used as a query to the or-
acleO. If the decision aboutP can only be made using
exactlyN(N − 1)/2 queries then the propertyP is said
to beevasive. In other words ifP can only be decided by
checking all the edges ofG then it is an evasive property.
Thus, evasiveness of graphs is used for determining the
worst case complexity of computing some graph proper-
ties [4].

It is conjectured by Karp [5] and proven in [6] that
every nontrivial monotone graph property is evasive. A
property ismonotoneif insertion of new edges to a graph
with propertyP does not destroy the property.P is non-
trivial if it holds for some graphs with N nodes and it
does not hold for some other with the same number of
nodes. Planarity, 2-connectivity, connectivity are exam-
ples of such properties.

A. Does Sampling Size Matter? -(γ, σ)-Evasiveness

This work introduces a new concept called(γ, σ)-
evasiveness by relaxing the strict or exact evasiveness def-
inition as follows:

Definition 1: Given a graphG with vertex setV and
edge setE, a propertyP is called(γ, σ)-evasive if it can
be “computed” by making at leastdγ|E|e queries with an
error margin of at most±σ for 0 ≤ γ ≤ 1 andσ ≥ 0.

Note that in this definition, the graph is given but com-
putation of a property has(γ, σ)-evasiveness. The(γ, σ)-
evasiveness is an approximation to the exact evasiveness

since in exact evasiveness (i) the next query can be chosen
based on the current answer from the oracle, and (ii) there
is no margin of error - the propertyP exists or not.

In (γ, σ)-evasiveness a property (metric)P is called
monotone if forγ′ > γ propertyP still holds. In other
words additional information will not change the fact that
metricP can be computed with an error margin of at most
±σ. Similarly, if the variance of a metricP , which is com-
puted over sayK graphsG = (V,E) with γ|E| queries
with an error margin of at most±σ, is non-zero thenP is
said nontrivial.1

We show in this work that(γ, σ)-evasiveness can be
used to evaluate the metrics as well as to compare the
graph generators as reported in [3].

B. Property Testing and(γ, σ)-Evasiveness

It follows from the above description that(γ, σ)-
evasiveness establishes a trade off between accuracy and
cost. Thus, a relevant study to(γ, σ)-evasiveness isprop-
erty testing.

Property testing concerns with the problem of deter-
mining whether an unknown function has a particular
property or it isε “far away” from it. Property testing
of functions were first proposed in [7] and testing graph
properties was initiated in [8]. For example, testingρ-
clique property for a graph withN nodes requires de-
termining whether or not the graph has a clique of size
ρN for 0 < ρ < 1, or the graph isε-far from the class
of N -vertex graphs with a clique of sizeρN . The tester
will accept a property with confidenceδ and will reject
it also with probabilityδ. The parameterε is a distance
metric and depends on the functional description of the
graph. For example, in an adjacency matrix representa-
tion, distance is the ratio of entries that are not the same
in both matrices to total number of entries. A convenient
representation for a simple graph is to use a symmetric
Boolean function which takes a pair of vertices and out-
puts 1 if there is an edge between them, 0 otherwise [8].
Remark that computation of the function is similar to ask-
ing a query to the oracleO in graph evasiveness.

Property testing starts by choosing a small subset of
nodes randomly and uniformly as asampleand checks
how close this subset is having the property. If it requires
more thanε operations to obtain the property, the test fails.
There are three measures that determines the complexity
of a property testing: (i) number of samples, (ii) number
of queries and (iii) running time of the tester.

We note several differences and similarities between
(γ, σ)-evasiveness and property testing. First, it is the

1For the rest of this paper evasiveness will refer to(γ, σ)-evasiveness
unless a distinction is made explicitly.
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type of the properties examined. The(γ, σ)-evasiveness
considers the statistics of the distribution of certain prop-
erties. For example we examine the degree distribution
and define a property to determine if the average node de-
gree isδ or if the clustering coefficient of the graph isC
which is also computed as an average over all the nodes.
In contrast, property testing can be used to answer queries
such as is the graph connected, is it planar, does it have
a cut of size at leastρN2 edges, does it have a clique
of sizeρN? However, similarities exists between(γ, σ)-
evasiveness and property testing with respect to some lo-
cal metrics/properties.

For example, if the testing forρ-clique property is af-
firmative with accuracyδ then, with confidenceσ, there
is at least a nodeu with degreed ≤ ρ + η such that
the clustering coefficient ofu is at most 1 and at least
2(ρ + η)/(ρ + η)2 for η ≥ 0.

In general, we conjecture that tests for first order graph
properties (i.e., properties that are expressed using quan-
tifiers on the vertices) may be relevant to measuring local
metrics in the Internet.

Second, the approximation parameterε in property test-
ing is fundamentally different from the approximation pa-
rametersσ andγ in (γ, σ)-evasiveness. Parameterσ does
not bound the number of operations needed to ensure the
property andγ is not an accuracy measure. In property
testing,ε operations ensures the property which enables
property testing algorithms to get good approximations to
NP hard problems.

Finally, testing graph properties by queries with uni-
form distribution is not trivial in the Internet. Some of
the metrics (properties) of the Internet graph have long-
tailed distributions in which rare and dominant events that
reside in the tail. As a result, a random walk may not pro-
vide a uniform distribution for sampling (in contrast with
regular graphs), in the Internet graph obtaining a uniform
sampling is not trivial as observed by [2].

III. M ETRICS

Metrics can be distinguished in terms of the scope of
the information they provide. Local metrics, which are ex-
tracted from individual nodes, give information about the
individual nodes whereas global metrics reflect the prop-
erties of a whole network. A single global value can be
extracted from the local values by using simple statistics.

A. Degree

Degree is the most trivial metric and it is defined as the
number of the connections of a single node for an undi-
rected graph. Although degree of a node is a local prop-
erty, the statistics on it gives connectivity information of a

whole graph. For example, the average node degree gives
the number of connections that a typical node has.

In [9], it is stated that metrics based on the minimum,
maximum and average values are not sufficient to describe
the skewed distributed data and proposed to use the expo-
nents of power laws as new metrics (these are the outde-
gree, rank, eigen, and hop plot exponents). The exponents
measure the tendency of a property.

B. Clustering Coefficients

Clustering coefficients are the local metrics that reflect
the connectivity information in the neighborhood environ-
ment of a node [10]. It can be also thought that they
provide the transitivity information [11], since it controls
whether two different nodes are connected, or if they are
connected to the same node.

Clustering coefficientCi is defined as the percentage of
the connections between the neighbors of nodei, and it is
given as:

Ci =
2 · Ei

k · (k − 1)
(1)

where k is the number of neighbors of nodei andEi is the
existing connections between its neighbors.

Clustering coefficientDi is defined similar toCi with
an exception. It also considers nodei and its connections
in the computation of the clustering coefficient [10]. The
formula ofDi is given as:

Di =
2 · (Ei + k)

k · (k + 1)
(2)

The global clustering coefficients ofC andD are com-
puted as the averages ofCi andDi respectively. Another
global clustering coefficient,C(2), can be computed by
taking the average over clustering coefficients of all the
nodes,Ci, except the ones whose degrees are one [12].

C. Distance Between Nodes

The hop distance between nodesu andv is defined as
the shortest path between them, taking the weight of each
edge as a unit length. Note that, it is also possible to
define distances in terms of physical distances between
nodes [13]. This work takes the hop distance as the dis-
tance measure. Thediameterof a graph is the maximum
of minimum distances between any two nodes and it de-
termines the effective size of a network.

Closenessis a local metric that measure the connect-
edness of a network [11]. The closeness of a node is the
average of the distances between this node and the other
ones. It reflects the centrality property of a single node
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TABLE I
THE σ VALUES COMPUTED FOR(0.2,σ)-EVASIVENESS FOR THE METRICS, I .E., THE ERROR PERCENTAGES WHEN20 PER CENT OF DATA

ARE COVERED. THE ± VALUES INDICATE THE STANDARD DEVIATION . IT IS CLEAR THAT NONE OF THE METRICS ARE DETERMINED

EXACTLY.

Metric Hop sampling Random walk Biased walk
Average degree 0.791(±0.064) 0.079(±0.003) 0.660(±0.077)
Clustering coefficientC 3.349(±0.270) 0.212(±0.018) 2.697(±0.115)
Clustering coefficientC(2) 2.836(±0.241) 0.015(±0.012) 1.984(±0.064)
Clustering coefficientD 0.023(±0.008) 0.059(±0.001) 0.047(±0.012)
Hop plot exponent 0.017(±0.009) 0.145(±0.001) 0.129(±0.015)
Effective hop diameter 0.352(±0.020) 0.018(±0.003) 0.134(±0.004)
Average path length 0.381(±0.024) 0.004(±0.003) 0.253(±0.005)
Characteristic path length 0.375(±0.017) 0.005(±0.004) 0.249(±0.007)
Minimum closeness 0.336(±0.028) 0.022(±0.004) 0.224(±0.006)
Average eccentricity 0.398(±0.039) 0.028(±0.004) 0.247(±0.002)
Hop diameter 0.581(±0.094) 0.100(±0.049) 0.269(±0.047)

TABLE II
THE σ VALUES COMPUTED FOR(0.5,σ)-EVASIVENESS FOR THE METRICS, I .E., THE ERROR PERCENTAGES WHEN50 PER CENT OF DATA

ARE COVERED. THE ± VALUES INDICATE THE STANDARD DEVIATION . ALTHOUGH 50 PER CENT OF DATA ARE COVERED, THERE ARE

STILL ERRORS IN THE VALUES OF THE METRICS(INTERNET METRICS ARE EVASIVE).

Metric Hop sampling Random walk Biased walk
Average degree 0.225(±0.007) 0.127(±0.000) 0.225(±0.011)
Clustering coefficientC 0.992(±0.029) 0.345(±0.007) 0.993(±0.022)
Clustering coefficientC(2) 1.161(±0.055) 0.253(±0.006) 1.080(±0.032)
Clustering coefficientD 0.014(±0.004) 0.023(±0.000) 0.009(±0.001)
Hop plot exponent 0.025(±0.008) 0.054(±0.000) 0.023(±0.006)
Effective hop diameter 0.199(±0.012) 0.039(±0.001) 0.117(±0.005)
Average path length 0.239(±0.017) 0.068(±0.001) 0.152(±0.000)
Characteristic path length 0.221(±0.011) 0.067(±0.001) 0.147(±0.000)
Minimum closeness 0.210(±0.018) 0.055(±0.001) 0.132(±0.000)
Average eccentricity 0.274(±0.026) 0.060(±0.001) 0.157(±0.001)
Hop diameter 0.493(±0.116) 0.063(±0.000) 0.215(±0.017)

and smaller values indicate that the node resides close to
the center of a network.

The average path lengthis one of the global metrics
defined as the average of the closeness values for all
nodes [14]. In [12], thecharacteristic path lengthis de-
fined as the median of all closeness values.Eccentricityof
a node is a local metric defined as the minimum number
of hops required to reach at least 90 per cent of its reach-
able nodes. The average of the eccentricity of all nodes
reflects the size of a network.

In [9] the number of node pairs withinh hops (denoted
by P (h)) is used to define thehop-plot exponentH. It is
stated thatP (h) ∝ hH, h � δ, whereδ is the diameter of
a network. Given the hop plot exponent theeffective hop

diameterδef is defined as:

δef =
N2

N + 2 · E

1/H

(3)

IV. EMPIRICAL STUDY

A. Data and Sampling Methods

In the experiments, we use the router level Internet data
obtained by using the Mercator software [16]2. This data
consists of approximately 230K nodes and 320K links,
and it is used by three sampling techniques. In the em-
pirical study, the sampling simulates the data collection
from the Internet, and the router level data represents the
whole Internet topology. We compute the metrics on each
sampled data and observe their values, depending on the
size of the sampled data.

2The data are available at http://www.isi.edu/scan/mercator/maps.html.
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1) Hop Sampling: The first sampling technique is the
hop sampling. It creates a subnetwork of the original
topology by randomly selecting an initial node and grow-
ing it from that node according to the specified hop count
h. All nodes and edges visited withinh hops are taken to
form a subnetwork. This technique is called “ball grow-
ing” in [17]. In our experiments, we select hop count
value starting with one and incrementing it until the sam-
pled graphs consist of at least 90 per cent of its original
topology.

2) Random Walk: The second technique is theran-
dom walk[18]. In the random walk, we start a randomly
selected node and in each step, we select a neighbor of
the current nodei at random with probability1/di where
di is the degree ofi and move to it. In this algorithm,
in each step a new link is added, therefore a new sub-
network is formed. On the other hand, we compute the
metrics on these subnetworks only at certain points, at the
first time that the following percentages of the total nodes
10%, 20%, ..., 90% are covered.

3) Biased Random Walk:We implement a modified
version of the random walk as the last sampling technique.
Biased walkis similar to the random walk, the only dif-
ference is in selecting a neighbor of the current node. A
bias factor is added such that the nodes with larger de-
grees have higher selecting probabilities. A node is se-
lected with a probability proportional to its degree, e.g.,
if the current node have neighbors with the degrees of 3
and 4, their selecting probabilities will be 3/7 and 4/7 re-
spectively. In the biased walk, we favor the nodes with
higher connectedness. As in the random walk, the metrics
are computed at the first time when10%, 20%, ..., 90%
are hit.

B. Metrics used

We select less costly metrics to make them efficiently
computable in terms of time and memory. For example
we discard the eigenvalue exponent since the memory and
time complexity become too high with the amount of data
we use. We do not compute the outdegree and the rank
exponent, since they are defined on directed graphs and
we keep our graphs as undirected.

The following local metrics are used by the empirical
study: degree, clustering coefficient C, clustering coef-
ficient D, closeness, and eccentricity of each individual
node.

In addition to these local metrics, the hop plot values
(P (h)) defined in [9] are computed to obtain the hop plot
exponent.

These local metrics yield to computation of following
global metrics to characterize the whole Internet graph:

(i) the average node degree (ii) the average clustering co-
efficientsC, C(2) andD (iii) the minimum closeness, the
average path length and the characteristic path length (iv)
the average eccentricity (v) the hop-plot exponent (vi) the
effective hop diameter (vii) the hop diameter of a graph.

We run each sampling method 20 times, starting with
different randomly selected initial nodes. We plot the val-
ues when10%, 20%, ..., 90% of data are covered. We use
linear interpolation for the hop sampling values, since the
data covered in each step differ in each run (unlike the
random and biased walks). All results given in this paper
are the averages of these 20 runs3.

C. How Long are the Tails?- Kurtosis of the metrics

Kurtosis is the fourth moment and used to decide how
long of tail a distribution has. It is a measure of the peak-
ness or flatness of the distribution and computed as fol-
lows:

kurtosis =

∑N
i=1(Xi − X̄)4

(N − 1)s4
− 3 (4)

whereN is the size of dataX, X̄ is the mean ands is the
standard deviation of the data.

Kurtosis ranges from -2 to plus infinity. Positive kur-
tosis value indicates a peaked distribution which is de-
scribed as leptokurtic. The kurtosis of the normal distribu-
tion is zero. In leptokurtic distributions, observations have
a tendency to cluster densely about some particular point
far away from the average. Flat distributions described as
platykurtic have negative kurtosis values. In platykurtic
distributions, observations are distributed fairly uniformly
across their ranges.

We have computed the kurtosis of the local metrics
given in Section IV-B. We have also computed the kurto-
sis of the hop plot values (P (h)), defined as the number of
pairs within each hop count [9]. Our objective is to learn
about the shape charecteristics of the distribution of these
metrics without actually computing their distributions.

V. OBSERVATIONS AND INTERPRETATIONS

For all global metrics, the explicitσ values for(0.2, σ)-
evasiveness and(0.5, σ)-evasiveness are shown in Tables I
and II respectively. The results in these tables are the av-
erages, and the standard deviations are given in parenthe-
ses. Theσ values indicate error percentages in computing
the global metrics when 20 and 50 per cent of data are
covered. Theσ values for otherγ values are plotted in
Figures 1-6. Note that these results will help the interpre-
tation of next subsections.

3We note that the number of runs are not large; however, standard
deviations, shown in Tables I and II, are significantly low tojustify for
using limited number of runs for the submission.
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TABLE III
RANKING OF METRICS FOR THREE DIFFERENT SAMPLING METHODS. THE VALUES IN THE PARENTHESIS INDICATE THEσ VALUES (I .E.,

PERCENTAGE OF THE ERROR) WHEN γ = 0.20 (I .E., 20 PER CENT OF DATA ARE USED). THEY ARE COMPUTED OVER20 RUNS. EACH

SAMPLING METHODS FAVORS DIFFERENT METRICS IN TERMS OF ACCURACY.

Hop sampling Random walk Biased walk
1. Hop plot exponent (1.7%) 1. Average path length (0.4%) 1. Clustering coeff.D (4.7%)
2. Clustering coeff.D (2.3%) 2. Characteristic path length (0.5%)2. Hop plot exponent (12.9%)
3. Minimum closeness (33.6%) 3. Clustering coeff.C(2) (1.5%) 3. Effective hop diameter (13.4%)
6. Effective hop diameter (35.2%) 4. Effective hop diameter (1.8%) 4. Minimum closeness (22.4%)
4. Characteristic path length (37.5%)5. Minimum closeness (2.2%) 5. Average eccentricity (24.7%)
5. Average path length (38.1%) 6. Average eccentricity (2.8%) 6. Characteristic path length (24.9%)
7. Average eccentricity (39.8%) 7. Clustering coeff.D (5.9%) 7. Average path length (25.3%)
8. Hop diameter (58.1%) 8. Average degree (7.9%) 8. Hop diameter (26.9%)
9. Average degree (79.1%) 9. Hop diameter (10.0%) 9. Average degree (66.0%)
10. Clustering coeff.C(2) (283.6%) 10. Hop plot exponent (14.5%) 10. Clustering coeff.C(2) (198.4%)
11. Clustering coeff.C (334.9%) 11. Clustering coeff.C (21.2%) 11. Clustering coeff.C (269.7%)

A. Evasiveness of the Metrics

In Tables I and II, it is clear that the metrics are not de-
termined exactly, in other words there are always errors in
the values of metrics unless all the graph is visited. More-
over, σ values differ for each metric as well as for each
sampling method (each sampling method favors a differ-
ent set of metrics, by yielding more accurate results).

We propose to use evasiveness values of the metrics to
compare them in terms of accuracy. For example, for the
hop sampling, the average degree and the global cluster-
ing coefficientD are(0.2, 0.791) and(0.2, 0.023)-evasive
respectively. It means with 20 per cent of data, the global
clustering coefficientD gives more accurate results than
the average degree. It makes the clustering coefficientD
a better metric compared to the average degree, in terms
of accuracy. For each sampling method, the rankings of
the metrics are reported in Table III. The values in paren-
theses indicate the average of theσ values whenγ = 0.2.

Theσ values for the same metric provide a measure to
compare different sampling methods. Smallerσ values
indicate better sampling methods, e.g., the average path
length is (0.2,0.381), (0.2,0.004), and (0.2,0.253)-evasive
for the hop sampling, random walk and biased walk re-
spectively. Thus the average path length “ranks” the sam-
pling methods as the random walk, biased walk, and hop
sampling whenγ = 0.2 (in Table I). On the other hand the
hop plot exponent ranks them as the hop sampling, biased
walk, and random walk when 20 per cent of data are vis-
ited. Our experiments show that for most of theγ values
the random walk is the best technique (see Figures 1-6).

B. How Much to Measure?

Another interesting question is what amount of mea-
surement (sampling) is necessary to estimate the value of

a metric within a particular error range. The answer is not
obvious for such a large graph like the Internet. However,
(γ, σ)-evasiveness for sampled graphs gives some clues
in the answer of this question. In Table IV, the average
amount of necessary data to obtain 90 and 80 per cent
accuracy is given. In this table, we see that, the hop sam-
pling and biased walk fail to estimate most of the metrics
within at most 20 per cent of error unless at least half of
the nodes are visited. This is an important drawback for
these sampling methods, since they cannot produce ap-
propriate samples to estimate most of the metrics with-
out visiting half of the graph. This table also shows that
the random walk is successful in estimating a metric with
10 per cent error when at most 20 per cent of the graph
is visited (the only exception is the hop plot exponent).
With this sampling the amount of data will decrease if we
tolerate 20 per cent of error.

C. How Much Do Local Properties Differ from Global
Ones?

In this work, we observe that distributions of local met-
rics and theσ values of global ones are closely related.
Before computing it, we can get some clues about the re-
liability of a global metric by using the local metric dis-
tributions on sampled graphs. This is important for the
Internet graph, since we will estimate a metric by using
only a small part of the graph.

In Figures 1-6,σ and kurtosis values as a function
of γ are shown. In each figure, we focus on a differ-
ent local metric. In these figures, x-axis indicates how
much data are visited (i.e.,γ value). σ values in y-
axis indicate the error percentage of a global metric (1 −
computed metric value/real metric value) whereas
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TABLE IV
γ VALUES: AMOUNT OF MEASUREMENT(SAMPLING) NECESSARY FOR0.90 AND 0.80 ACCURACIES. THESE ACCURACIES CORRESPOND

TO σ = 0.10 AND σ = 0.20 RESPECTIVELY. RESULTS ARE THE AVERAGES OVER20 RUNS AND STANDARD DEVIATIONS ARE GIVEN IN

PARENTHESES. IT IS EVIDENT THAT SAMPLING TECHNIQUE PLAYS AN IMPORTANT ROLE.

σ = 0.1 σ = 0.2
Metric Hop Biased Random Hop Biased Random
Average degree 0.78(0.04) 0.80 (0.00) 0.10 (0.00)0.60(0.00) 0.60 (0.00) 0.10 (0.00)
Clustering coefficientC 0.97(0.05) 1.00 (0.00) 0.10 (0.00)0.90(0.00) 0.90 (0.00) 0.10 (0.00)
Clustering coefficientC(2) 1.00(0.00) 1.00 (0.00) 0.20 (0.00)0.90(0.00) 1.00 (0.00) 0.20 (0.02)
Clustering coefficientD 0.12(0.04) 0.10 (0.00) 0.10 (0.00)0.10(0.00) 0.10 (0.00) 0.10 (0.00)
Hop plot exponent 0.11(0.03) 0.30 (0.00) 0.40 (0.00)0.10(0.00) 0.10 (0.00) 0.20 (0.00)
Effective hop diameter 0.79(0.02) 0.60 (0.00) 0.13 (0.04)0.55(0.05) 0.10 (0.00) 0.10 (0.00)
Average path length 0.87(0.06) 0.70 (0.00) 0.17 (0.05)0.66(0.08) 0.40 (0.00) 0.10 (0.00)
Characteristic path length 0.82(0.05) 0.70 (0.00) 0.16 (0.05)0.58(0.04) 0.40 (0.00) 0.10 (0.00)
Minimum closeness 0.88(0.06) 0.70 (0.00) 0.20 (0.00)0.57(0.06) 0.30 (0.00) 0.11 (0.02)
Average eccentricity 0.90(0.00) 0.70 (0.00) 0.20 (0.00)0.75(0.11) 0.40 (0.00) 0.11 (0.03)
Hop diameter 0.95(0.12) 1.00 (0.00) 0.12 (0.05)0.87(0.27) 1.00 (0.00) 0.10 (0.00)

the kurtosis value in y-axis is the measure that charac-
terizes the peakness or flatness of the distribution of local
metrics.

In Figures 1 and 2, the kurtosis values are positive (they
are greater than 5) which indicate leptokurtic distribu-
tions. This means observations of the node degree and the
local clustering coefficientC are clustered far away from
their averages. Thus it is hard to estimate the average val-
ues defined on these local metrics. The experiments indi-
cate that sampling technique is becoming more important
to estimate such metrics. In our case, the random walk
is successful to sample a subgraph on which the average
degree and the global clustering coefficients are estimated
accurately even with small portion of data. On the other
hand, the hop sampling and biased walk fail to sample a
graph successfully regarding to these metrics.

In Figures 3 and 4,γ-kurtosis curves show that the lo-
cal clustering coefficientD and the hop plot valuesP (h)
come from flat distributions. All sampling techniques suc-
cessfully can sample the whole graph, resulting in smaller
σ values even when a small part of data is visited. For
such metrics, sampling technique is not as important as
for the metrics with leptokurtic distributions. These met-
rics are stronger in terms of accuracy compared to those
with leptokurtic distributions.

Figures 5 and 6 show local and global metrics related
to the closeness and eccentricity. For both properties, lo-
cal and global metrics are similar. Their kurtosis values
approximately range from 0 to 3. Although their distri-
butions are leptokurtic, the kurtosis values are not as high
as the node degree or the clustering coefficientC. Their
kurtosis are close to that of the normal distribution. This
feature causes global metrics being more predictable. The

σ values are between the platykurtic and leptokurtic ones.
Like the average degree and global clustering coefficient
C and C(2), the sampling method is important but the
other sampling methods are still tolerable.

D. Does Measurement Size Matter?

In [3], we conducted our own measurements using
traceroute servers to construct an Internet router graph
with 7, 000 nodes from 10 different measurements. In
order to validate the results reported in [3] for a small
measurement size (i.e., 7K), we compare the properties
of 7K-node measurement graph with230K-node Mer-
cator one. Note that both measurement techniques use
traceroute-like primitives for prompting the Internet. The
comparison, tabulated in Table I, shows remarkable sim-
ilarity. Although quite counter intuitive (since one would
expect to see a change in the measured properties of the
Internet as the measurement size increases) this compari-
son suggests the existence of scale-free property [15] for
the Internet router graph.

VI. CONCLUSION

For analyzing the Internet and understanding its topo-
logical properties, it is important to define proper metrics.
The metrics converge to their actual values as the data size
increases. But it is not possible to collect complete Inter-
net data and the cost of the computation gets higher as the
data size increases. Thus the exact values of the metrics
must be estimated by using only a small portion of data. In
this work, we define(γ, σ)-evasiveness to assess whether
it is possible to estimate the real value of a metric in±σ
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TABLE V
COMPARISON OF7K-NODE AND 230K-NODE (MERCATOR)

MEASUREMENT GRAPHS. THE METRICS HAVE REMARKABLE

CLOSE VALUES IN SPITE OF THE DIFFERENCE IN THE

MEASUREMENT SIZE. THE VALUES IN PARENTHESES ARE THE

STANDARD DEVIATIONS OF 10 MEASUREMENTS OF SIZE7K

NODES.

Metric 7K 230K
Average degree 3.881 (±0.077) 2.807
Clustering coefficientC 0.012 (±0.008) 0.026
Clustering coefficientC(2) 0.012 (±0.009) 0.062
Clustering coefficientD 0.501 (±0.003) 0.804
Hop diameter 34.300 (±4.057) 32.000
Hop plot exponent 3.242 (±0.020) 4.940
Effective hop diameter 9.493 (±0.135) 9.274
Characteristic path length 9.017 (±0.171) 9.339
Average path length 9.285 (±0.195) 9.515
Average eccentricity 11.768 (±0.262) 11.706
Minimum closeness 6.532 (±0.272) 5.527

error margin or not. Theγ value indicates the percent-
age of data and it gives us a measure to compare different
metrics and sampling methods. The(γ, σ)-evasiveness is
a novel relaxation ofevasivenessand we discussed how it
relates toproperty testing. The (γ, σ)-evasiveness helps
us answer to an important question: how much measure-
ment do we need to do to obtain accurate metric results?
This is an essential question, because due to the immense
size of the Internet, it is only possible to sample its small
part.

We conducted an extensive study of(γ, σ)-evasiveness
on the Internet router graph with 230K nodes, collected
by the Mercator software [16]. Some of the results are as
follows:

• We obtain differentγ andσ values for different met-
rics and sampling methods. Table IV shows that, with less
than half of the nodes, 10 per cent of error is only tolera-
ble for the random walk. The other two sampling methods
cannot tolerate this error with this amount of data except
for the global clustering coefficientD and the hop plot
exponent (they are the metrics with negative kurtosis). As
the per cent of error margin increases (becomes 20 per
cent in this table), with less than half of the nodes, the
biased walk is starting to tolerate 20 per cent of error for
the metrics whose kurtosis values are negative or close to
that of the normal distributed data. With this much data,
the hop sampling still make more than 20 per cent of error
for the metrics with positive kurtosis values. As a result
of this table, we can “rank” the sampling methods as the
random walk, biased walk, and hop sampling in descend-
ing order. This table also summarizes which metrics can
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Fig. 1. γ-σ andγ-kurtosis curves.σ is computed on the average
degree, which is a global metric, and kurtosis is computed onthe node
degrees, which is a local metric. It is obvious that the random walk
more successfully sample the graph than the hop sampling andbiased
walk with respect to the accuracy of the average degree.

be estimated accurately by using a small part of data.

• There is a statistical relationship between the kurtosis
of local metrics and the error margin in estimating cor-
responding global metrics. Theσ values are small for
the local metrics with platykurtic distribution independent
of the sampling method. For leptokurtic distributed lo-
cal metrics, the sampling method has a great impact on
the value ofσ. Increasing the value of kurtosis increases
the importance of the sampling method. When kurtosis is
closer to that of the normal distributed data,σ values are
considered tolerable but not as good as for the platykurtic
data for all sampling methods.

• (γ, σ)-evasiveness is ameta metricwhich can be used
to compare different metrics and sampling methods. It
shows that efficient metrics are the ones that converge
their exact values quickly and accurately. That means they
have smallerσ andγ values in(γ, σ)-evasiveness.

We think that analyzing the(γ, σ)-evasiveness of met-
rics and kurtosis values of the subgraphs will help us to
come up with better sampling methods which increases
the success of a metric estimation.
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Fig. 2. γ-σ andγ-kurtosis curves.σ is computed on the clustering
coefficientsC andC(2), which are the statistics of local clustering co-
efficient C. Kurtosis is computed on the local clustering coefficient C,
defined for each node. On leptokurtic distributed data, somesampling
methods better sample the graph than the others.
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Fig. 3. γ-σ andγ-kurtosis curves.σ is computed on the clustering co-
efficientD, which is the average of the local clustering coefficient D.
The kurtosis of the local clustering coefficient D is given inthe second
graph. Platykurtic distributions decrease the importanceof the sam-
pling methods. It is obvious that all sampling methods are successful.
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Fig. 4. γ-σ andγ-kurtosis curves.σ is computed on the hop plot
exponent and the effective hop diameter, which are the global metrics,
and kurtosis is computed on the hop plot values for each hop count.
Note that this local metric is different than the others, since it is com-
puted on hop plot values whereas the other local metrics belong to
individual nodes.
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Fig. 5. γ-σ andγ-kurtosis curves.σ values are computed on the
global closeness metrics whereas kurtosis is computed on the local
closeness. The results are very similar to those in Figure 6
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Fig. 6. γ-σ curve of the average eccentricity for the whole graph and
γ-kurtosis curve for the node eccentricities. The local eccentricities
as well as the local closeness values (Figure 5) are leptokurtic, but
their kurtosis values are smaller compared to those in Figures 1 and 2.
The selection of the sampling method is still important but it reduces
according to the average degree and the global clustering coefficients
C andC(2).


