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Abstract— Many physical simulators linearize contact con-
straints such that each contact constraint defines a half-space
in the configuration space of the effected objects. By modeling
contact constraints as infinitely extending half spaces it is only
possible to approximate regions in configuration space that
are locally convex. This implicit assumption of local convexity
introduces artifacts in the results of the simulation. We present a
new method for modeling regions of configuration space that are
locally nonconvex using a linear complementarity formulation.
From this we show that we can now accurately represent any
general polytope using linear complementarity.

I. I NTRODUCTION

The linear complementarity problem, or LCP, was first used
by Lötstedt [1] to formulate multi-body unilateral contact
problems. Further work on linear and non-linear comple-
mentarity methods for multi-body contact were developed by
Baraff [2] and Pfeiffer [3]. Both of these methods compute the
instantaneous acceleration and velocity for a system of objects
in contact. Most formulations linearize the contact constraints,
treating all contact surfaces as planar, although some non-
linear methods have worked with curved surfaces [4]. When
using an instantaneous analysis, interpenetration between bod-
ies may occur after the velocities are integrated forward by a
finite time step.

The linear time-stepping method introduced by Stewart and
Trinkle [5] integrates velocities and positions forward in time
in such a manner that the linearized contact constraints are
satisfied at the end of each time step. In the Stewart-Trinkle
time stepping approach each contact surface is linearized to
reduce the interpenetration constraint to a half-space constraint
in configuration space, (also called C-space). This leads to
erroneous or incorrect collisions occurring when objects move
towards sharp corners. Because the LCP formulation requires
that each and every contact constraint is satisfied, the valid
region for a single object is defined as the intersection of
some number of half-spaces in C-space. The intersection of
many convex sets is itself a convex set, therefore the straight
forward LCP formulation treats all contact constraints as
convex regions in C-space. In this paper we show ways to
modify the Stewart-Trinkle LCP formulation of the dynamic
model to include nonconvex constraints.

We have found that the new techniques presented in this
paper were fairly easy to incorporate into our existing LCP

based simulation. Furthermore, the novel techniques presented
in this paper immediately corrected simulation inaccuracies
caused by the implicit assumption of local convexity, as can
be seen in Fig. 1.

convex constraints

nonconvex constraints

Fig. 1. The above screenshots were taken from a matlab program simulating
a block sliding over a hole. In both examples there is a potential contact
with the lower right corner of the block and the diagonal edge of the right
side of the hole. If the C-space of the block can only use convex constraints
then the diagonal edge on the right side of the hole is incorrectly modeled
as extending forever. Using nonconvex constraints the block correctly slides
past the corner.

II. DYNAMIC MODEL

A linear complementarity problem (LCP) is defined as
follows [6]: Given a constant matrixB ∈ Rm×m and constant
vectorb ∈ Rm, find vectorsz ∈ Rm andy ∈ Rm satisfying
the following conditions:

y = Bz + b, (1)

0 ≤ y ⊥ z ≥ 0, (2)

wherey ⊥ z is the perpendicularity constraintyT z = 0.
The time-stepping method formulates the linearized dynam-

ics problem as the following [5]:

M(νl+1 − νl) = W npl+1
n + W fpl+1

f + pl
ext, (3)

ql+1 − ql = hG(ql)νl+1. (4)

The unknown vectorνl+1 represents generalized velocity
at the end of the current time step[tl, tl+1]. Similarly the
unknown vectorql+1 represents generalized position at time
tl+1. The time step duration is represented byh. The unknown
vectorspl+1

n and pl+1
f represent the magnitude of impulses



applied during the current time step in the normal and tan-
gential direction respectively. The vectorpl

ext represents the
magnitude of all external impulses. The matricesW n andW f

are Jacobian or “wrench” matrices that map contact forces
to wrenches in the body-fixed frame. The matrixG(q) is a
Jacobian matrix that maps the object velocityν to the rate of
change for object configurationq.

The complementarity formulation becomes the follow-
ing [5]:

0 ≤ y =




W T
nνl+1 + f l/h

W T
f νl+1 + Esl+1

Upl+1
n −ET pl+1

f


 ⊥




pl+1
n

pl+1
f

sl+1


 = z ≥ 0.

(5)

The first and third rows in Eqn. (5) contain vectors that repre-
sentn constraints forn contacts. The second row represents
kn constraints wherek is the number of spanning vectors used
to approximate the friction cone [5]. The matrixE ∈ Rkn×n is
block diagonal with nonzero blocks given by[1, 1, . . . , 1]T ∈
Rk. The diagonal matrixU stores friction coefficients. The
vector f l contains distances to each current and potential
contact. Thef l/h term is a constraint stabilization term. The
unknown vectorsl+1 is a scaling factor for the tangential
impulses in the unknown vectorpl+1

f . By solving Eqn. (3)
for νl+1 in terms ofpl+1

n , pl+1
f and sl+1 we can obtain the

following values forB andb introduced in Eqn. (1):

B =




W T
nM−1W n W T

nM−1W f 0
W T

f M−1W n W T
f M−1W f E

U −ET 0


 , (6)

b =




W T
n (νl + M−1pext) + f l/h

W T
f (νl + M−1pext)

0


 . (7)

Equations (6) and (7) give the complete LCP formulation
when using convex constraints. We can now solve forz which
containspl+1

n , pl+1
f and sl+1. We then use these values to

computeνl+1 andql+1.

III. N ON-PENETRATION CONSTRAINT

In this section we focus on the non-penetration constraint
for the case of a point mass approaching with two potential
contacts. For a point mass, C-space and physical space are
identical.

0 ≤ W T
1nνl+1 + f l

1/h ⊥ pl+1
1n ≥ 0, (8)

0 ≤ W T
2nνl+1 + f l

2/h ⊥ pl+1
2n ≥ 0. (9)

This formulation can accurately model convex features in
C-space such as in Fig. 2(a) where we see a point mass
approaching a corner with convex constraints. In Fig. 2(b)
we see a point mass approaching a corner with nonconvex
constraints. Simulations that use the convex formulation will
mistakenly model all corners as having convex constraints.

invalid region

object

valid region

(a) Convex

invalid region

object
valid region

(b) Nonconvex

Fig. 2. The convex feature on the left allows the intersection of the valid
regions for the two planes. The nonconvex feature on the right allows the
union of the valid regions for the two planes.

Problem 1: Model the valid region in C-space as the union
of two half-spaces, instead of the intersection of two half-
spaces. All other physical properties should remain unchanged
from the convex formulation.

The penetration gap at the end of the current time step
divided by h is calculated in the left side of Eqns. (8) and
(9). We temporarily ignore friction and external forces and
define this value for each plane asa1 anda2:

a1 = W T
1n(νl + M−1(W 1npl+1

1n + W 2npl+1
2n )) + f l

1/h,
(10)

a2 = W T
2n(νl + M−1(W 1npl+1

1n + W 2npl+1
2n )) + f l

2/h.
(11)

An object will lie in the union of two contact constraint
half-spaces if eithera1 ≥ 0 or a2 ≥ 0. Modeling this “or” re-
lationship is not straightforward because the LCP formulation
requires that each and every constraint is satisfied. It is not
possible to specify a logical “or” relationship such that only
one of two constraints must be satisfied. Therefore, we propose
two new LCP formulations to solve this problem. The “max”
formulation maintains more physical accuracy but requires
more constraints, whereas the “summation” formulation is
less physically accurate but can be expressed using fewer
constraints.

IV. M AX FORMULATION

The first “max” formulation depends on the following
logical relation (we express logical or as∨, logical and as
∧, and logical equivalence as⇐⇒):

(a1 ≥ 0) ∨ (a2 ≥ 0) ⇐⇒ max{a1, a2} ≥ 0. (12)

Proposition 1: The following LCP based on the max for-
mulation assures that the valid region is the union of two half-
spaces. It also assures that contact force is generated only for
planes in contact.

Based on Eqn. (12), we enforce constraints on the expres-
sionsa1 anda2. For now we will ignore friction and external
forces, so that thea1 and a2 expressions are each linear in
the unknownspl+1

1n andpl+1
2n , as seen in Eqns. (10) and (11).

Artificial variablesc1, c2, d, g1, g2, h1, h2 andp are created.
Additionally, a large positive constantγ is used. The following



equations are meant to replace Eqns. (8) and (9) when it is
necessary to model a nonconvex feature in C-space:

0 ≤ c1 + a1 − 1 ⊥ c1 ≥ 0 (13)

0 ≤ c2 + a2 − 1 ⊥ c2 ≥ 0 (14)

0 ≤ g1 + g2 − 1 ⊥ d ≥ 0 (15)

0 ≤ c1 + d− γ ⊥ g1 ≥ 0 (16)

0 ≤ c2 + d− γ ⊥ g2 ≥ 0 (17)

0 ≤ h1 + a1 ⊥ h1 ≥ 0 (18)

0 ≤ h2 + a2 ⊥ h2 ≥ 0 (19)

0 ≤ d− γ + 1 ⊥ p ≥ 0 (20)

0 ≤ h1 + d− γ + 1 ⊥ pl+1
1n ≥ 0 (21)

0 ≤ h2 + d− γ + 1 ⊥ pl+1
2n ≥ 0. (22)

Eqns. (13) and (14) constrainc1 = |min{a1, 1} − 1| and
c2 = |min{a2, 1} − 1|. Eqns. (18) and (19) constrainh1 =
|min{a1, 0}| andh2 = |min{a2, 0}|. Eqns. (15), (16) and (17)
are designed to find the maximum value ofa1 anda2.

As long asγ > max{c1, c2} we will haved > 0 from Eqns.
(13), (14), (16) and (17). In generald ≥ max{γ− c1, γ− c2}.
Becaused > 0 the third equation forcesg1 + g2 = 1, and
thereforeg1 > 0 or g2 > 0. To makeg1 or g2 greater than
0 eitherd + c1 − γ = 0 or d + c2 − γ = 0. This fixesd to
eitherγ− c1 or γ− c2, which in turn implies a strict equality
d = max{γ − c1, γ − c2}. We have manipulatedd to select
the smaller of thec1 and c2 values, and therefore select the
maximum (least negative) ofa1 anda2. Relatingd to a1 and
a2, we can sayd = min{max{a1, a2}, 1} + γ − 1. Finally
we haved− γ +1 = min{max{a1, a2}, 1}. In the degenerate
case wherec1 = c2 bothg1 andg2 may be greater than 0, but
this does not change the relationship betweend, a1 anda2.

Notice that d − γ + 1 is equivalent to the right side of
Eqn. (12) except for an extramin term. Themin term is not
important for our purposes sincemin{max{a1, a2}, 1} ≥ 0
implies thatmax{a1, a2} ≥ 0, which is what we are really
interested in. Ifd − γ + 1 > 0 we have no contact, and if
d− γ + 1 = 0 we do have contact.

In Eqn. (20) we haved − γ + 1 ≥ 0 which enforces the
non-penetration constraint. Note thatp in Eqn. (20) is not used
in any other equation, and has no effect on the formulation. In
Eqns. (21) and (22), the normal force magnitude for individual
planes of the nonconvex constraint are calculated. Forpl+1

1n to
be greater than 0, bothd − γ + 1 and h1 must be 0. This
enforces the rule that a contact force can only come from a
plane that is in contact.

To make the formulation work, the constant valueγ must be
greater than|min{a1, a2, 0}| to forced to be positive in Eqns.
(16) and (17). To be conservativeγ can be set to the diameter
of the scene, or the twice the distance the fastest point can
travel in the next time step.

Let us create two simple examples, one without contact as
pictured in Fig. 3(a), and one with contact as pictured in Fig.
3(b). For both examples the point has mass 1, and the time

steph is set to 2. The only difference in the two examples is
the current velocityνl. In the first exampleνl = [−2, 0]T , and
in the second exampleνl = [−2,−1]T . In these examples we
set pl+1

1n to represent the contact impulse along the vertical
plane x = 0, and pl+1

2n to represent the contact impulse
along the horizontal planey = 0. This setsa1 and a2 to
represent penetration distance divided by time step in x and y
respectively. Since each constraint is aligned with an axis and
we have a time step of 2ql+1 = [2a1, 2a2]T

valid region

(0, 0)
invalid region

q =(1,1)l

l+1q    =(−3, 1) y
x

(a) No Contact

q    =??l+1

(−3,−1)
(0, 0)

valid region

invalid region

q =(1,1)l

y
x

(b) Contact

Fig. 3. In the left example no contact occurs, in the right example contact
does occur. In the right example the point would reachql+1 = [−3,−1]T

if no constraints were present, but since contact is made a different must be
obtained.

We used an LCP solver to compute the unique frictionless
solution za for the example in Fig. 3(a). There are three
solutions for the example shown in 3(b): contact with both
planes (zb1), contact with the vertical plane (zb2), and contact
with the horizontal plane (zb3). We obtainedzb1 from an LCP
solver and found the other two solutions by hand. The example
in Fig. 3(a) usesBa andba, and the example in Fig. 3(b) uses
Bb andbb. For all solutionsγ = 100.

In the example seen in Fig. 3(a) no contact occurs and the
solution za dictates that the point mass has velocityνl+1 =
[−2, 0]T , positionql+1 = [−3, 1]T , anda1 = −1.5, a2 = 0.5
at the end of the current time step.

Forzb1, the first solution to the example in Fig. 3(b), contact
is made with both planes and contact impulsespl+1

1n = 1.5 and
pl+1
2n = 0.5 are applied. In this solution the point mass has

velocity νl+1 = [−0.5,−0.5]T and positionql+1 = [0, 0]T

at the end of the current time step. The penetration distance
divided by time step for both planes,a1, a2, is 0 since there
is contact with both planes. Forzb2, the second solution to
the example in Fig. 3(b), contact only occurs with the vertical
plane. In this solution we havea1 = 0, a2 = −0.5, pl+1

1n =
1.5, pl+1

2n = 0, νl+1 = [−0.5,−1]T and positionql+1 =
[0,−1]T . For zb3, the third solution to the example in Fig.
3(b), contact only occurs with the horizontal plane. In this
solution we havea1 = −1.5, a2 = 0, pl+1

1n = 0, pl+1
2n = 0.5,

νl+1 = [−2,−0.5]T and positionql+1 = [−3, 0]T .



Ba = Bb =




1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0




ba =




−2.5
−0.5
−1
−100
−100
−1.5
0.5
−99
−99
−99




bb =




−2.5
−1.5
−1
−100
−100
−1.5
−0.5
−99
−99
−99







c1

c2

d
g1

g2

h1

h2

p
pl+1
1n

pl+1
2n




za =




2.5
0.5
99.5
0
1

1.5
0
0
0
0




zb1 =




1
1
99
0
1
0
0
0

1.5
0.5




zb2 =




1
1.5
99
1
0
0

0.5
0

1.5
0




zb3 =




2.5
1
99
0
1

1.5
0
0
0

0.5




V. SUMMATION FORMULATION

Our second nonconvex formulation is not as accurate, but
is creates a smaller more efficient LCP. For the “summation”
formulation we would like to use something close to the
following logical relation:

(a1 > 0) ∨ (a2 > 0) ⇐⇒ max{0, a1}+ max{0, a2} > 0.
(23)

Unfortunately, the logical relationship in Eqn. (23) does not
hold true if the strict inequality> 0 is replaced by≥ 0. For
this reason we introduce a small positive constantε into the
summation formulation for the non-penetration constraint.

((a1 ≥ −ε/h) ∧ (a2 ≥ −ε/h) ∧ (a1 + a2 ≥ −ε/h)) ∨
((a1 ≥ 0) ∨ (a2 ≥ 0))

⇐⇒ max{−ε/h, a1}+ max{−ε/h, a2}+ ε/h ≥ 0.
(24)

We divide ε by the time steph so thatε is proportional to
distance instead of distance multiplied by time. Theε/h value
will create a small space that is mistakenly classified as in the
valid region. In 2D the corner is “capped” by a plane that is
perpendicular to the bisection of the two contact planes (see
Fig. 4).

mistaken
ε

ε

invalid region

valid region
valid region

Fig. 4. The summation constraint mistakenly identifies a region with area
proportional toε2 as valid.

Proposition 2: The following LCP based on the summation
formulation assures that the valid region is the union of two
planes unioned with a “small” isoceles triangle at the corner
of the invalid region. It also assures that no contact force is
generated if there is no contact.

Based on Eqn. (24) we enforce constraints on expressionsa1

anda2. As noted before botha1 anda2 represent expressions
that use unknownspl+1

1n and pl+1
2n . Artificial variablesc1 and

c2 are created. The summation formulation is given as follows:

0 ≤ c1 − a1 − ε/h ⊥ c1 ≥ 0 (25)

0 ≤ c2 − a2 − ε/h ⊥ c2 ≥ 0 (26)

0 ≤ c1 + c2 − ε/h ⊥ pl+1
1n ≥ 0 (27)

0 ≤ c1 + c2 − ε/h ⊥ pl+1
2n ≥ 0. (28)

Based on the the nonnegative and perpendicularity con-
straints in Eqns. (25) and (26) we havec1 = max{−ε/h, a1}+
ε/h. The inequalityc1 + c2 − ε/h ≥ 0 in Eqns. (27) and (28)
will enforce the constraints in Eqn. (24) exactly.

We used an LCP solver to compute the unique frictionless
solutionza for the examples in Fig. 3(a). Many solutions are
valid for the example shown in Fig. 3(b) and we present three
of the many possible solutions. In both solutionsε = 0.02,
and ε/h = 0.01.

In the example seen in Fig. 3(a) the solutionza dictates
that the point mass has velocityνl+1 = [−3, 1]T and position
ql+1 = [−2, 0]T at the end of the current time step. If no
contact occurs there is a unique solution that will match the
solution given by the max formulation.

We used an LCP solver to computezb1, the first solution to
the example in Fig. 3(b). In this solution the point mass makes
contact with the horizontal plane but both planes contribute
contact force. In this solution we have velocityνl+1 =
[−1.5,−0.5]T and positionql+1 = [−2, 0]T at the end of the
current time step. To illustrate the capped corner we produced
zb2 by hand, the second solution to the example in Fig. 3(b).
In this solution we havepl+1

1n = 1.495, pl+1
2n = 0.495, νl+1 =

[−0.505,−0.505]T and positionql+1 = [−0.001,−0.001]T .
Here we see a case where the point mass makes contact



with the capped corner and penetrates both the vertical and
horizontal planes by half ofε. For zb3, the third solution to
the example in Fig. 3(b), contact only occurs with the vertical
plane but both planes contribute contact force. In this solution
pl+1
1n = 1.5, pl+1

2n = 0.13, νl+1 = [−0.5,−1.87]T and position
ql+1 = [0,−2.7400]T . We manually produced this solution to
show that the small but arbitrary contact impulsepl+1

2n = 0.13
does produce a valid solution.

B1 = B2 =




1 0 −1 0
0 1 0 −1
1 1 0 0
1 1 0 0




b1 =




1.49
0.49
−0.01
−0.01


 b2 =




1.49
−0.51
−0.01
−0.01







c1

c2

pl+1
1n

pl+1
2n


 za =




0
0.51
0
0




zb1 =




0
0.01
0.5
0.5


 zb2 =




0.005
0.005
1.495
0.495


 zb3 =




0.01
0

1.5
0.13




As can be seen from example 1, this formulation does not
constrain contact forces to only come from individual sides
that are in contact. Rather, if any contact occurs then any
normal force may be greater than 0, but if no contact occurs
then no normal force may be greater than 0. This is not as
accurate as the max formulation, and also leads to the existence
of many possible solutions. When using the summation for-
mulation for the first example, the point mass can lie anywhere
on the horizontal plane betweenql+1 = [−3, 0]T andql+1 =
[−0.02, 0]T , anywhere along the capped corner (diagonal y=-
x) betweenql+1 = [−0.02, 0]T and ql+1 = [0,−0.02]T , or
anywhere along the vertical plane betweenql+1 = [0,−0.02]T

and ql+1 = [0,−1]T . This corresponds to all possibilities
where contact is made with at least one plane, penetration does
not occur, and any combination of positive contact forces can
be used.

The trade of accuracy for efficiency can be justified for cer-
tain classes of simulations. A nonconvex constraint is usually
only necessary if a vertex-to-vertex collision is possible. If the
vertex of a nonconvex constraint is close to a nearby face, then
an intelligent physical simulation will not make a nonconvex
constraint, but rather a single convex constraint that is parallel
to the face (see Fig. 5). When a nonconvex constraint is truly
necessary in the vertex-to-vertex case, contact from either of
the planes will most likely appear plausible.

VI. FRICTION AND MANY CONSTRAINTS

Problem 2: Model the valid region in C-space as an ar-
bitrary combination of unions and intersections for multiple
planes and accurately calculate normal and friction forces.

planar
constraint

Fig. 5. In the vertex-to-face case the face of the upper object will define the
contact plane and a simple convex planar constraint can be used.

Proposition 3: Both the summation and max formulations
can be generalized to an arbitrary set of planes. Once this is
done friction calculations can be added easily.

Using either the max or summation formulations, friction
can be trivially added, since we have not changed the seman-
tics of pl+1

n . In our method, each elementpl+1
in represents the

magnitude of the normal contact impulse just as in the usual
convex formulation. For this reason the friction impulse vector
pl+1

f can friction scaling vectorsl+1 can be calculated using
νl+1 which depends onpl+1

n . The definition for both of these
vectors does not need to be changed from the Stewart-Trinkle
formulation (Eqn. (5).

When dealing with many constraints, we refer to a set of
nonconvex constraints as agroup. Furthermore, we refer to
the planes within one group as thesidesof the group. Two
examples are given in Figs. 6(a) and 6(b).
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(a) 1 nonconvex
group with 4 sides
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(b) 2 nonconvex groups with 2
sides each, and 1 convex planar
constraint on the right

Fig. 6. Two examples of geometry that use nonconvex constraints.

In our previous examples, we showed the formulation for
a single nonconvex group with two sides. Both of these
formulations can be extended to many groups each with many
sides. For the max constraint we have:

(a1 ≥ 0) ∨ (a2 ≥ 0) ∨ . . . (an ≥ 0)
⇐⇒ max{a1, a2, . . . , an} ≥ 0.

(29)

When using many sides the capped corner symptom of the
summation formulation can be further exacerbated if the sides
are very short (see Fig. 7). If extremely sharp corners and
extremely short sides are avoided no nasty cases will be
present and the capped corners will act exactly as they did
for a nonconvex group with two sides. For the summation
constraint we use the following relationship:

max{−ε/h, a1}+ max{−ε/h, a2}+ . . . +
max{−ε/h, an}+ (n− 1)ε/h ≥ 0.

(30)



ε
valid region

valid region

invalid
region

mistaken

Fig. 7. The mistaken valid region can become larger when multiple close
sides are grouped together using the summation formulation.

Variables from our earlier max and summation formulations
that have a 1 or 2 subscript are specific to a side, and variables
that do not have a subscript are specific to a group. The final
matrix form for the LCP is given in the appendix at the end
of this paper.

The number of linear constraints needed for modeling both
convex and nonconvex constraints in C-space with friction is
given below. The variablesx, y and g represent the number
of convex constraints, the number of nonconvex sides, and
the number of nonconvex groups respectively. The variable
k represents the number of friction cone spanning vectors.
The Stewart-Trinkle method can only model locally convex
constraints in C-space.

form number of constraints

max 4y + 2g + x + (k + 1)(x + y)
summation 2y + x + (k + 1)(x + y)
stewart x + (k + 1)(x)

Multiple groups of nonconvex constraints, as well as convex
planar constraints can all be included in the same LCP.
However, it is important to note that it is only desirable to
insert those constraints that may be active during the next time
step. From the table above it is clear that modeling surfaces
as convex half-planes requires less constraints. If geometry is
locally convex in terms of the upcoming time step then it is
more efficient to model the geometry using convex constraints.

VII. I MPLEMENTATION

If either the max or summation formulations are used, care
must be taken when choosing the value ofγ andε respectively.
Most LCP solvers do not test for symbolic equivalence to 0,
but rather numeric equivalence within some small tolerance.
If an extremely large value ofγ or an extremely small value
of ε is used infeasible results may occur. This is because
floating point operations on modern processors can lose large
amounts of precision if the operands are of vastly different
scale. This loss of precision can lead to non-physical results
or an unsolvable LCP.

To make sure that roundoff error does not create an un-
solvable LCP some LCP solvers will let you specify that the
solutionz may have elements that are slightly below 0. This
is equivalent to allowing a small amount of interpenetration.
Another option is to add small constants to the LCP so
that contact forces may occur when objects are separated by
only a miniscule distance. By incrementally increasing these

small tolerances the most accurate solution can be obtained.
Assuring that there are no collinear normal vectors may also
be important for finding a feasible solution [5].

Proximity detection is necessary to find which sides may
come into contact in the upcoming time step. However, when
using nonconvex constraints it may be necessary to include a
side not because of potential contact, but rather because one
nonconvex side effects another. In Fig. 8 the bottom side of
the nonconvex corner will probably not come into contact with
the object. However, if we do not include the bottom side the
upper side will extend forever. Including the bottom side will,
in effect, shorten the upper side.

invalid region

objectvalid region

additional valid region

Fig. 8. The bottom side of the nonconvex group must be included in the
LCP for the nonconvex constraint to be modeled properly.

VIII. C ONCLUSION

Using nonconvex constraints it is now possible to represent
any 2D polygonal object using the LCP formulation. All
2D polygons can be triangulated and every triangle can be
represented by 3 nonconvex constraints, (the interior of any
triangle is convex, but the exterior is nonconvex). Not all
general polytopes can be triangulated, but all polytopes can
be decomposed into simplices. A simplex is always internally
convex, and its exterior can be represented as a combination
of nonconvex hyper-plane constraints. Using our method it is
now possible to represent any simple polytope using linear
complementarity.

While the nonconvex constraints proposed here follow most
physical properties maintained by the convex constraints, there
is an element of nondeterminism in the nonconvex formu-
lation. Since the interpenetration constraint for a nonconvex
group can be satisfied by any one or more of the many sides,
the LCP solver has a fair amount of leeway in choosing
how to deal with interpenetrating objects. Furthermore, in
the summation case contact force is not restricted to come
from planes that are in contact. This means that when using
the summation formulation the final normal force may lie
anywhere within the cone constructed by the normals at each
nonconvex side. These issues are shown in Fig. 9(a) and 9(b).
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APPENDIX

In this appendix we detail the final form of the LCP for
nonconvex constraints using the max and summation formula-
tions. Both formulations can represent convex and nonconvex
constraints, and both formulations use a frictional contact
model. We assume here that the constraints are sorted so that
the firsty constraints are nonconvex, and the nextx constraints
are convex. The number of nonconvex groups is represented
as g. The vectoren is defined asen = [1, 1, . . . , 1]T ∈ Rn.
The matrix E retains the same definition from our original
dynamics formulation in Eqn. (5). The matrixIn ∈ Rn×n is
defined as the square identity matrix of sizen. The selection
matrix D ∈ Rg×y identifies whether a nonconvex side is a
member of a specific nonconvex group. Each elementdij at
row i and columnj in D has value 1 if nonconvex group

i contains nonconvex sidej, and 0 otherwise. The value
DT D is a square matrix such thatddij is 1 if side i and
side j are in the same group, and 0 otherwise. The value
DT Dey is a vector such thatddei is equal to the size of the
group containing sidei. The unknownpl+1

n and the vectorf l

are both split in two components, where one component has
the first y rows (denoted with a subscripty), and the other
component has the lastx rows (denoted with a subscriptx).
The matricesW n andU , are also split into two components,
where one component has the firsty columns and the other
component has the lastx columns. These new components
pl+1

x , pl+1
y , f l

x f l
y, W x, W y, Ux and Uy are all listed in

Eqn. (31).

pl+1
n =

[
pl+1

y

pl+1
x

]
f l =

[
f l

y

f l
x

]
W n =

[
W y W x

]
U =

[
Uy Ux

]
(31)

Bmax =




Iy 0 0 0 0 W T
y M−1W y W T

y M−1W x W T
y M−1W f 0

0 0 D 0 0 0 0 0 0
Iy DT 0 0 0 0 0 0 0
0 0 0 Iy 0 W T

y M−1W y W T
y M−1W x W T

y M−1W f 0
0 Ig 0 0 0 0 0 0 0
0 DT 0 Iy 0 0 0 0 0
0 0 0 0 0 W T

x M−1W y W T
x M−1W x W T

x M−1W f 0
0 0 0 0 0 W T

f M−1W y W T
f M−1W x W T

f M−1W f E

0 0 0 0 0 Uy Ux −ET 0




(32)

bmax =




W T
y (νl + M−1pext) + f l

y/h− ey

−eg

−γey

W T
y (νl + M−1pext) + f l

y/h
(−γ + 1)eg

(−γ + 1)ey

W T
x (νl + M−1pext) + f l

x/h

W T
f (νl + M−1pext)

0




zmax =




c
d
g
h
p

pl+1
y

pl+1
x

pl+1
f

sl+1




(33)

Bsum =




Iy −W T
y M−1W y −W T

y M−1W x −W T
y M−1W f 0

DT D 0 0 0 0
0 W T

x M−1W y W T
x M−1W x W T

x M−1W f 0
0 W T

f M−1W y W T
f M−1W x W T

f M−1W f E

0 Uy Ux −ET 0




(34)

bsum =




−W T
y (νl + M−1pext)− f l

y/h− (ε/h)ey

−(ε/h)(DT Dey − ey)
W T

x (νl + M−1pext) + f l
x/h

W T
f (νl + M−1pext)

0




zsum =




c
pl+1

y

pl+1
x

pl+1
f

sl+1




(35)


