SENSE: A Sensor Network Simulator

Gilbert Chen, Joel Branch, Eugene Brevdo, Lijuan Zhu, and Boleslaw Szymanski
Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street,
Troy, NY 12180,
U.S.A.

February 3, 2004

Abstract

A new network simulator, named SENSE, has been developed for simulating wireless sensor
networks. The primary design goal is to address such factors as extensibility, reusability,
and scalability, and to take into account needs of different users. The recent progresses in
component-based simulation, namely the component-port model and the simulation com-
ponent classification, provided a sound theoretical foundation for the simulator. Practical
issues, such as efficient memory usage, fast inter-component communication, were also con-
sidered. More specifically, a memory-efficient packet management scheme was developed to
minimize the amount of memory used for packet allocation, and an optimization technique
was proposed to eliminate inter-component communication overhead.

1 Introduction

The emergence of wireless sensor networks created many open issues in network design [8].
The three main techniques for analyzing performance of wired and wireless networks tradi-
tionally were analytical methods, computer simulation, and physical measurement. However,
many constraints imposed on sensor networks, such as energy limitation, decentralized col-
laboration, and fault tolerance necessitate use of complex algorithms for sensor networks
that usually defy analytical methods. Furthermore, few sensor networks have come into
existence, for there are still many unsolved research, design and implementation problems,
so measurements are virtually impossible. It appears that simulation is currently the only
feasible approach to the quantitative analysis of sensor networks.

ns2 [5], perhaps the most widely used research network simulator, has been extended to
include some basic facilities to simulate sensor networks. However, one of the problems of
ns2 is its object-oriented design that introduces much unnecessary interdependency between

modules. Such interdependency sometimes makes the addition of new protocol models ex-
tremely difficult and possible only by those who have intimate familiarity with the simulator.
Being difficult to extend is not a major problem for simulators targeted at traditional net-
works, for there the set of popular protocols is relatively small. For example, Ethernet is
widely used for wired LAN, IEEE 802.11 for wireless LAN, TCP for reliable transmission
over unreliable media, etc. For sensor networks, however, the situation is quite different.
There are no such dominant protocols or algorithms and there will unlikely be any soon.
A sensor network is often tailored to a particular application with specific features, so it is
unlikely that a single algorithm can always be the optimal under various circumstances.

Many other publicly available network simulators, such as J-Sim [4], SSFNet [7], Glo-
mosim [2] and its descendant Qualnet [6], attempted to address problems that were left
unsolved by ns2. Among them, J-Sim developers realized the drawback of object-oriented
design and tried to attack this problem by inventing a component-oriented architecture.
However, they chose Java as the simulation language, inevitably sacrificing the efficiency
of simulation. SSFNet and Glomosim focus on parallel simulation, with the latter tailored
specifically to wireless networks. They do not appear superior to ns2 in terms of design and
extensibility.

SENSE (SEnse Network Simulator and Emulator), described here, aims to be an efficient
and powerful sensor network simulator that is also easy to use. We identify three most critical
factors in its design as extensibility, reusability, and scalability. We distinguish also three
types of users as high-level users, network builders, and component designers. In the next
section, we explain what each factor implies and how SENSE meets the needs of all users.
In the sections that follow, we present in details the design decisions and implementation
that are centered around these design factors and that take full consideration of needs of all
three types of users.

2 Design Philosophy

2.1 Extensibility, Reusability and Scalability

The enabling force behind the fully extensible network simulation architecture in SENSE
is the recent progress in component-based simulation [14]. A component-port model frees
simulation models from interdependency usually found in an object-oriented architecture,
and a stmulation component classification naturally solves the problem of handling simulated
time. The component-port model makes simulation models extensible: a new component can
replace an old one if they have compatible interfaces, and inheritance is not required. The
simulation component classification makes simulation engines extensible: advanced users
have an option of developing new simulation engines that meet their needs.

The removal of interdependency between models also promotes reusability. A component
developed for one simulation can be used in another if it satisfies the latter’s requirements
on the interface and semantics. In SENSE, another level of reusability can be made possible
by the extensive use of C++ template: a component declared as a template class can handle
different types of data.

Unlike many parallel network simulators, especially SSFNet [7] and Glomosim [2], par-
allelization is provided as an option to the users of SENSE. That reflects our belief that
completely automated parallelization of sequential discrete event models, however tempting
it may seem, is impossible. Even if it were possible, it would have been doomed to be in-
efficient. Therefore, parallelizable models must require more effort than sequential models,
while a good portion of users are not interested in parallel simulation at all. In SENSE, a
parallel simulation engine can only execute an assemblage of compatible components. If a
user is content with the default sequential simulation engine, then every component in the
model repository can be reused.

2.2 High-Level Users, Network Builders and Components Design-
ers

High-level users solely rely on the model repository and network template library from where
they can retrieve various network models and configurations to construct a sensor network
simulation. For them, the process of building a simulation merely consists of selecting ap-
propriate models and templates and perhaps changing some parameters. Such users may not
have any programming skills. Extensibility and reusability are not their concerns. However,
they require the simulation to be parallelizable.

The network builders are not satisfied with the available network templates, but they still
depend upon the model repository to obtain network models. They may need to create new
network topologies and traffic patterns. These users may not have immediate or knowledge
of popular programming languages, such ¢/c++, Java. Extensibility is not an issue for them,
since they are not interested in modifying the existing models. However, models must be
reusable so that they can be plugged into many simulations.

The component designer may need to modify available models or even build new ones
from scratch. For example, they can develop a new MAC layer protocol and simply replace
the original one with the new one. Their main concern is the extensibility; how easily
existing models can be extended or replaced determines the willingness of these users to use
the simulator. Reusability may or may be an issue, depending on whether the new model
is intended to be used in other simulations. The biggest challenge of the design for these
users is to make the modeling process smoother, faster, and more reliable. There should
be facilities to speed up checking, debugging, and verification of the models; there must be
visualization tools to help identify any problems quickly; there must be standards that these
users follow in order for the models to be more accessible by others.

3 Component-Based Design

SENSE is built on top of COST [9], a general purpose discrete event simulator. The design of
COST was largely influenced by the new understandings of both component-based software
architecture and component-based simulation. Specifically, a component-port model was
proposed to allow complex software systems to be built as a composition of components.
Later, it was extended to the simulation domain where components are categorized into

different types based on how simulated time is dealt with.

3.1 Component-Port Model

In the component-port model, a component communicates with others only via inports and
outports. An inport implements a certain functionality, so it is similar to a function. In con-
trast, an outport serves as an abstraction of a function pointer: it defines what a functionality
it expects of others.

The fundamental difference between an object and a component in the component-port
model is that the interactions of a component with others can be fully captured by the
interface, while this is not the case for an object. For instance, an object is allowed to call
member functions of any other object if it keeps a pointer or a reference to that object.
Such communication, however, is not reflected in the interface or declaration of the object,
and becomes manifest only when the implementation code is being examined. The resulting
problem is that any function call to external objects will introduce implicit dependency
between objects, preventing the object from being reusable.

The existence of outports distinguishes components from objects. Outports impose con-
straints on the dynamic runtime interaction between components. The important conse-
quence of this is that the development of a component is now completely separated from the
application context in which the component will be used, resulting in truly reusable compo-
nents. Besides, components become more extensible, because there are fewer constraints on
a component that provides certain functionality. For instance, in an object-oriented environ-
ment, if an object A is to be replaced by another object B, object B has to be derived from
A. In the component-port model, this constraint is no longer necessary. Any component
providing the satisfied functionality can be used, regardless of its component type.

3.1.1 Implementing Components

The subsequent task for us is to implement the component-port model with C++, a program-
ming language that is usually regarded as object-oriented. Fortunately, we found template-
based techniques can be utilized to archive this goal, although there are certain limitations
due to the object-oriented features of the language.

First, we declare an mfunctor class that represents function objects for member functions
of class Typell. Typell is the main component class, and we will explain why it is so called
later in this section. The mfunctor class overrides the operator() function, so it can be called
the same way as a normal function. Since it keeps a pointer to the component, it can be
used to call the member function of any object derived from Typell, if initialized correctly.

template <class T>
class mfunctor
{
public:
typedef void (TypeIl::*funct_t) (T&);
mfunctor (TypeII* _obj, funct_t _f)
tobj(_obj) ,f(_£f) {3

void operator() (T& t) { (obj->*f)(t); }
private:

TypelI* obj;

funct_t f;
};

The inport class is just a wrapper class that extends mfunctor so that the latter can be
more conveniently initialized and invoked. To initialize an inport, a pointer to the component
and a member function must be provided.

template <class T>
class inport

{
public:
void Setup(TypeIl * c, mfunctor<T>::funct_t f)
{
functor = new mfunctor<T>(c,f);
}
void Write(T& t) { (*functor) (t); }
private:
mfunctor<T> * functor;
};

The outport class maintains a pointer to the inport to which it is connected. The Con-
nect() function can be called to initialize this pointer. When the Write() function of outport
is called, the Write() function of inport will be called, which in turn will invoke the member
function of the component that was used to initialize the inport.

template <class T>
class outport
{
public:
void Connect(inport<T>&_in) { in=&_in;}
void Write(T& t) { in->Write(t); }
private:
inport<T>* in;

};

One drawback of implementing components as stated above is that the inter-component
communication may become quite costly, as the C+4 compiler cannot completely optimize
away the overhead of these function calls. We will present a technique in Section 6 to
eliminate such communication overhead. Another problem is that member functions are
limited to take only one argument, as in standard C++ template classes with different
numbers of template parameters cannot be given the same name. This problem can be
solved by the use of wrapper classes around several arguments to make them appear as a
single argument.

3.1.2 Components for Sensor Network Simulation

The component-port model also gives the users a great deal of freedom in configuring sensor
nodes. Figure 1 shows the internals of a typical sensor node. The sensor node is a composite
component. It consists of a number of smaller primitive components, each implementing a
certain functionality. The inports and outports of the sensor are directly connected to the
corresponding inports and outports of internal components. This structure, is changeable.
The user can freely remove or add a component, as demanded by the particular goal of
the simulation. An entirely new node structure can also be constructed on top of existing
components or components built from scratch.

Sensor Node

app —~K| sensor <{f—

| |

net

| |

mac

| |

battery <{— phy mobility

to_channel from_channel pos out data in

Figure 1: The internal structure of a typical sensor node

When configuring sensor nodes into a network, different configuration languages are avail-
able. Configuration involves setting the parameters of each component and then intercon-
necting their inports and outports. In this phase, components do not communicate with
each other, so an object-oriented language is sufficient to perform the task. Currently, C++
is chosen to be the only configuration language, since it is also the implementation language
for components. The simplicity of the configuration does not preclude the possibility of using
such languages as TCL or XML. In addition, it is quite possible to develop a simple scripting
language specifically for the network configuration phase.

3.2 Simulation Component Classification

The component-port model clarifies the role of components in the development of general
software systems. It still remains unknown, however, how the component-port model can
be applied to simulation. The answer lies in a simulation component classification that
naturally extends the component-port model to the simulation domain [14].

According to this classification, based on the way how simulated time is handled, simu-
lation components are grouped into time-independent, time-aware and autonomous classes,
also named Type I, Type II and Type III classes, respectively.

A Type I component does not have the notion of simulated time. It is passive, as it
never generates events without first having received an event. A Type I component, when
processing an event received from other components, may generate new events that are
required to have the same timestamp as the incoming event that triggered it. Yet, the
component itself is unaware of the time semantics. Neither does it know whether it is
running as a part of a simulation program or a part of a non-simulation program. For this
reason, a time-independent component is said to be time-unaware.

In contrast, Type Il components are time-aware components. They cannot advance the
simulated time themselves, but they can make a time advance request via a special object
called a ttmer. Timers provide a mechanism for Type Il components to generate events
whose timestamp is greater than the current simulated time. To schedule such a future
event, a timer is set with a time increment representing the difference between the current
simulated time and the timestamp of the future event. As soon as the specified simulated
time increment elapses, the component where the timer resides will be activated and then
forced to process the future event.

Type III components are named autonomous components because they maintain their
own simulation clock themselves. The clock indicates the simulated time throughout the
simulation. A sequential simulation is a Type III component by itself, which does not com-
municate with other Type III components. In a parallel simulation, there are usually several
Type III components, each mapping to a process or thread. These Type III components have
to be synchronized by certain algorithms so that they can interact with each other correctly
by exchanging events.

The simulation component classification leads to a hierarchical modeling process in
SENSE. Because of the composability of components, a number of components can be com-
bined into a single component. However, this kind of composition does not change the
component type. If every individual component is of Type I, so will the composite compo-
nent. If at least one of them is of Type II, then the composite component will also be of
Type II. A simulation engine changes the type of the component. A simulation has to be a
Type III component, so usually building a simulation involves deployment of one or several
simulation engines.

This hierarchical modeling process distinguishes SENSE from many other parallel net-
work simulators. There, the simulation engines are often built-in, and therefore users are
forced to use the simulation engines provided by the simulator designers. SENSE users are
given the option of building their own simulation engines, as the particular application they
are investigating may call for a specific simulation algorithm.

4 Packet Management

A network simulation is composed of two types of entities: one are the static components
that simulate various network elements and the other are the dynamic packets that are
created, transmitted, and received by components. The previous sections all dealt with only
the simulation models, and we still need a good packet management scheme to effectively
manipulate the packets. It turns out that this is not a trivial problem.

Our main consideration for the packet management is that it must be memory-efficient.
Memory has become the most serious bottleneck that prevents large programs from running
on computers equipped with limited memory. Because of the extremely slow disk access
speed, programs that rely on virtual memory are often an order of magnitude slower than
programs that fit into the physical memory. For this reason, we decided to design a packet
management scheme that consumes as little memory as possible.

This consideration makes the packet management scheme in ns2 unsuitable. In an ns2
simulation, every packet, no matter which protocol layer it belongs to, has to occupy the
same amount of memory. It works well when protocol layers (other than the top one) do
not create new packets, for instance, when each protocol simply appends its header to the
packet and then forwards it to the lower layer. This is often not the case, however. A lower
layer protocol may break a large packet into many smaller ones, as in fragmentation; it may
also create new control packets, not including the original packet from the higher layer, as in
handshake. In these cases, a considerable amount of memory would be wasted if we treated
all packets as if they were of the same size.

Therefore, we came up with a layered packet structure, as shown in Figure 2. Each layer
maintains its own packets, which usually consist of a header (denoted by H) and a payload
field (denoted by P). The payload field contains either a pointer to, or a copy of, the packet
at the intermediate upper layer. If the size of the upper layer packet is much larger than that
of a pointer, than a pointer can be kept, represented by dotted arrows; otherwise a direct
copy, represented by solid arrows, will be more convenient.

data app
Y
> H P net
> H P mac
H p| phy

Figure 2: The Layered Packet Structure

Another decision we made regarding the packet management is that a packets sent by
one node are shared by all receiving nodes. This is possible because it is usually meaningless
to ‘modify’ the receiving packet. Wireless nodes always share the communication medium
with neighbors, so it is expected that one packet will often be received by many nodes.
Consequently, the amount of memory saved by this approach is considerable.

A standard programming technique, reference counting, is adopted to keep track of pack-

ets. When a node receives a packet, it must increment the reference count of the packet to
indicate that it now partly owns the packet. When a packet is to be released, its reference
count will be decremented. Only when the reference count goes to zero can the packet be
actually deleted.

However, such a packet structure results in an inevitable problem. Assume a scenario in
which a certain layer asks the physical layer to transmit a packet by pointer. The physical
layer may successfully transmit the packet out, in which case the pointer will be forwarded
to other node. However, the problem arises when the transmission fails, for instance, if there
are no other nodes within the transmission range. The packet has to be destroyed by the
physical layer.

This implies the lower layer may need to be responsible for releasing the pointer to the
packet sent from any higher layer, and this problem is not limited to the physical layer,
since other layers may attempt to drop packets under special circumstances. In general, no
reliable transmission is guaranteed.

On the other hand, if the payload field contains not the pointer to, but a copy of the
packet from the upper layer, then no operation is needed when the packet is to be dropped.
For any intermediate layer, packets from the higher layer could be in the form of either
pointers or plain structures. It seems that we would have to implement two components for
each layer, one accepting pointers and the other copies.

Fortunately, this problem can be elegantly solved by a C++ template technique referred
to as trait. According to Bjarne Stroustrup, a trait is “a small policy object typically used
to describe aspects of a type” [1]. In SENSE, a special packet trait class is declared which
can tell if a certain template parameter is a packet structure or a packet pointer.

The declaration of this packet trait class is shown below. Basically it means that for
general packets, nothing needs to be done with regard to packet deallocation.

template <class T>
class packet_trait
{
public:
static void free(const T&) {};
};

The smart_packet_t class is the main SENSE packet class defined for layers other than
the top one. It consists of a header and a payload field, as well as a reference count.

template <class H, class P>
class smart_packet_t

{

public:

inline void free();
H hdr;

P pld;
private:

int refcount;

};

In the free() function of the smart_packet_t class, it first calls the free() function of the
payload; however it does so via the packet_trait class. It then decrements the reference count,
and if the reference count is zero, both the header and itself will be freed.

template <class H, class P>
void smart_packet_t<H,P>::free()

{

packet_trait<P>::free(pld);

refcount—-;

if (refcount==0)

{
packet_trait<H>::free(hdr);
delete this;

}

}

This is the partial specialization of packet_trait for pointers to smart_packet_t. As a result,
in the free() function given above, if the payload contains a pointer to a smart packet, the
smart packet will be freed; for all other cases nothing happens. If users are to define their
own packet types and keep track of them by pointers, they should specialize the packet_trait
class in a similar way.

template <class H, class P>
class packet_trait< smart_packet_t<H,P>* >
{
public:
typedef smart_packet_t<H,P> nonpointer_t;
static void free(nonpointer_t* const &p)
{
if (p!'=NULL) p—>free();
b
I

5 Component Repository

As the core design of SENSE is being finalized, we have built an extensive set of components
ranging from application layer to physical layer, as well as energy and mobility models
that are specifically targeted at sensor networks. Three components, namely TEEE 802.11,
AODV, and DSR, are the most complicated and consume a large portion of our development
time, so each of them deserves a brief introduction here.

10

5.1 IEEE 802.11

The IEEE 802.11 component in SENSE implemented the distributed coordination function
(DCF) described in the IEEE 802.11 standard [3]. When asked to transmit a data packet,
this MAC component first checks the size of the data packet. If the size is smaller than a
predefined threshold given by a parameter named RTSThreshold, or if the data packet is to
be broadcast, the data packet will be transmitted directly, with a proper header added. If the
size is greater than RTSThreshold, an RTS/CTS exchange mechanism will be invoked prior
to the actual data transmission, in order to reserve the medium for a period of time that is
just sufficient for the entire transmission. A unicast data packet must be accompanied by
an acknowledgment, but not a broadcast data packet. A transmission is deemed successful
only if the acknowledgment packet has been correctly received. Each failed transmission will
double the content window until it reaches the preset maximum value.

The SENSE implementation of IEEE 802.11 closely resembles that of ns2 [5]. However,
the source code in SENSE is twice as short as that in ns2, which can be attributed to the
simplicity and effectiveness of the SENSE API. For example, timers are implemented as a
template class that takes the type of event as a parameter. Defining a timer in SENSE
is as simple as writing a statement to instantiate the timer. On the contrary, in ns2 each
timer instance needs a unique implementation, which greatly degrades the efficiency and
readability.

5.2 AODV

Ad-hoc on demand distance vector routing (AODV) has been well-received as a routing
protocol for MANETs. AODV’s route discovery consists of setting up a forward and reverse
data transmission path between two mobile nodes. After route discovery is complete, each
node belonging to the established path maintains a routing table via sequenced requests
and response messages. A table entry primarily consists of two IDs: one denoting the
destination node and the other denoting the next-hop node along the path to the destination.
The sequence numbers included in the request/response packets ensure that these routes are
loop-free. Other table entry information is used to maintain route freshness, so that outdated
route entries may be properly replaced. AODV’s route maintenance also provides facilities for
replacing damaged routes (e.g., those with broken links). Each node maintains only partial
(local) route information, so full path information is never transmitted between nodes. A
seminal document [12] provides more details about AODV.

Our implementation in SENSE is based on the most current AODV internet draft [13].
We have implemented the operative components essential to AODV’s basic operation. This
set includes all steps required to actually build routes. However, selected route maintenance
functions have not been included in the current simulation. For example, provisions noted
in section 6.8 of [13] for handling of unidirectional links have not been implemented. This is
primarily because we only assume bi-directional links in our simulation. For similar reasons,
we have not yet included full facilities for maintaining local connectivity, processing route
error packets, or implementing local repair functions. All these are expected to be completed
in the near future.

11

5.3 DSR

The Dynamic Source Routing protocol for Mobile Ad Hoc Networks (DSR) [10] is an espe-
cially efficient implementation of on-demand routing for ad hoc networks. DSR provides the
mechanisms of “Route Discovery” and “Route Maintenance”; these enable nodes to rapidly
converge on recent changes in topology at need, without wasting energy and bandwidth at
the physical layer on unneeded routing updates.

As of time of this writing, the DSR Routing Component for SENSE is under active devel-
opment. Initial design is a complete rewrite of the simple base Flooding Routing component
to satisfy DSR simulation parameters. The DSR component attempts to model the IETF
MANET Internet Draft recommendations [11] for DSR as closely as possible, specifically by
implementing the structure required to test any variation of the “Protocol Constants and
Configuration Variables” as defined in section 9 of the draft [11].

Our initial implementation of DSR makes certain restrictive assumptions within DSR
specifications. Specifically, all nodes are assumed to be bi-directional, without support for
promiscuous communications, and running in a homogeneous link layer environment. More-
over, we assume that the link layer provides acknowledgment for unicast packet transmission.
Our testing environment currently consists of DSR running on top of the 802.11 link level
component, for which all of these assumptions are valid.

As DSR matures, and new upper-level and lower-level networking components are cre-
ated, a number of the current limitations will be removed. Immediate plans after finalizing
the basic DSR component include support for promiscuous-mode operation, as the DSR defi-
nition takes advantage of this mode for passive data collection, and Route Maintenance tasks.
Other plans include support for the optional DSR Flow State Extension, uni-directional links,
and a data link layer which does not provide acknowledgment information for unicast packets.

6 Component Merging

As stated in Section 3.1.1, one problem associated with the component-oriented design is the
inter-component communication overhead. For an event to pass between two components
via a pair of an outport and an inport, several layers of function calls have to be involved.
The C++ compiler cannot optimize away the overhead by treating these functions as ‘inline’
functions, because connection of ports is done during the runtime. To explain this point, let
us consider a simple example illustrated in Figure 3.

component ¢

outWrite() |- N OUt

Figure 3: Communication between a Pair of Inport and Outport

Suppose there is a component ¢ of class C that has an inport ¢n. This inport is bound

12

to a member function f of ¢. An outport out of another component has been connected to
the inport in. So when out is written by out.Write(), the Write() function of the inport in
will be called, which will in turn invoke the member function f of c.

The statement out.Write() is equivalent to c— > f(), so why not just replace the former
by the latter? However, the C+-+ compiler cannot perform this optimization, since out is
connected to in during the runtime by a Connect() function that belongs to the COST API.

Yet we realize that it is possible to optimize a composite component, using a technique
we refer to as component merging. A composite component is composed of several internal
components (or subcomponents). The sensor node shown in Figure 1 is such a compos-
ite component. The connection between subcomponents within a composite component is
usually static, making it possible to merge the subcomponents.

The transformation from a composite component into a primitive component must follow
several rules:

e Each subcomponent must be converted to a nested class, with all inports and outports
being removed.

e If an outport of a subcomponent is connected to an inport of the same or another
subcomponent, then every write to this outport must be replaced by a call to the
member function bound to the inport.

e If an outport of a subcomponent is connected to an outport of the composite compo-
nent, then every write to this outport must be replaced by a write to the outport of
the composite component.

e Every timer of any subcomponent must be moved to the composite component.

e Every inport of the composite component must be now bound to the member func-
tion that was bound to the inport of a subcomponent connected to the inport of the
composite component.

800000

B

700000 e R -

600000 .~

500000 //.“.—./M‘o—o“."

400000 [

ssing Rate (events/sec)

300000

vent Proce:

W 200000

100000

Original —+—
) Opnmlzeq e

1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
Transmission Power

0

Figure 4: Performance Improvement with Component Merging

Figure 4 compares event processing rates before and after component merging is applied.
The experiments were all conducted on a simulation of the flooding algorithm. The sensor

13

node structure is similar to that shown in Figure 1, except that there is no sensing data
input. The application layer generates packets periodically, according to a constant bit
rate model. The network layer is an implementation of the flooding algorithm, which re-
broadcasts every received packet if the packet has reached its destination. For simplicity,
a simple mac layer component is used, which is based on an unrealistic assumption that
the bandwidth is infinite, so all transmissions are instantaneous and no collision would ever
occur. The network consists of 100 nodes on a 5km by 5km territory, with the transmission
power ranging from 50mW to 500mW. The conversion was done by hand. A performance
improvement of roughly 30% can be clearly seen.

7 Conclusion and Future Work

The most significant feature of SENSE is its balanced consideration of modeling methodology
and simulation efficiency. Unlike object-oriented network simulators, SENSE is based on a
novel component-oriented simulation methodology that promotes extensibility and reusabil-
ity to the maximum degree. At the same time, the simulation efficiency and the issue of
scalability are not overlooked. We observed that memory is the major factor that limits the
size of simulation that can be actually performed, and that many other simulators contain
too much overhead with respect to memory usage. We also proposed an optimization tech-
nique that can optimize away inter-component communication overhead. The simulator is
therefore memory-efficient, fast, extensible, and reusable.

What is left to be done is to build a comprehensive set of models and a wide variety of
configuration templates for wireless sensor networks. Besides, a visualization tool is desirable
which can quickly track down what goes wrong during the simulation. Without such a tool,
the output of the simulation is hard to interpret. The visualization tool can also facilitate
the configuration phase by allowing networks to be constructed graphically.

References

[1] Bjarne stroustrup’s homepage. http://www.research.att.com/ bs/glossary.html.
[2] Global mobile system simulator. http://pcl.cs.ucla.edu/projects/glomosim/.

[3] Ieee 802.11, 1999 edition. http://standards.ieee.org/getieee802/802.11.html.

[4] J-sim. http://www.j-sim.org/.

[6] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[6] Qualnet. http://www.scalable-networks.com/.

[7] Scalable simulation framework. http://www.ssfnet.org/.

[8] L. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cyirci. Wireless sensor networks:
A survey. Computer Networks, 38(4):393-422, 2002.

14

[9] Gilbert Chen and Boleslaw K. Szymanski. COST: Component-oriented simulation
toolkit. In Proceedings of the 2002 Winter Simulation Conference, 2002.

[10] D. Johnson, D. Maltz, and J. Broch. Ad Hoc Networking, chapter DSR The Dy-
namic Source Routing Protocol for Multihop Wireless Ad Hoc Networks, pages 139-172.
Addison-Wesley, 2001.

[11] David B. Johnson, David A. Maltz, and Yih-Chun Hu. The dynamic source routing
protocol for mobile ad hoc networks (DSR), April 2003. Work in progress.

[12] C. Perkins. Ad hoc on demand distance vector (AODV) routing, 1997.

[13] C. Perkins, E. Belding-Royer, and S. Das. Rfc 3561 - ad hoc on-demand distance vector
(AODV) routing, 2003.

[14] Boleslaw K. Szymanski and Gilbert Chen. Lecture Notes in Computer Science, Parallel
Processing and Applied Mathematics: 4th International Conference, chapter A Compo-
nent Model for Discrete Event Simulation, pages 580-594. Springer-Verlag, 2002.

15

