
Discovering Hidden Groups in Communication Networks ∗

J. Baumes, M. Goldberg, M. Magdon-Ismail, A. Wallace.

Rensselaer Polytechnic Institute

{baumej,goldberg,magdon}@cs.rpi.edu, wallaw@rpi.edu

February 21, 2004

Abstract

We describe models and efficient algorithms for detecting groups (communities) functioning in
communication networks which attempt to hide their functionality – hidden groups. Our results
reveal the properties of the background network activity that make detection of the hidden
group easy, as well as those that make it difficult.

1 Introduction.

The tragic events of September 11, 2001 underline the need for a tool which can be used for detecting
groups that hide their existence and functionality within a large and complicated communication
network, such as the Internet. In this paper, we view communication networks as random graphs.
The nodes in this graph are the individuals or actors of the network, and an edge in the graph
between two vertices represents a communication between the corresponding actors. We assume
the communication infrastructure allows for any two actors communicate if they so choose. The
randomness arises from the fact that two actors do not communicate in a deterministic fashion over
time. Rather, at “random” times they are communicating, and at other times they are not. Thus,
the graph that describes the communication dynamics of a network evolves with time according to
some stochastic process. The question we ask is:

What properties of this evolving random communication graph will change if there is a
hidden group attempting to camouflage its communications by embedding them into the
background communications of the entire communication network?

We must assume that any approach to detecting hidden groups should not rely on the semantic
information contained in the communications. The reason is that communication within a hidden
group on a public network is usually encrypted in some way, hence the semantic information may
be either misleading or unavailable. The idea behind our approach is based upon the following
observation:

Normal communications in the network are voluntary and “random;” however a hidden
group communicates because it has to communicate (for planning or coordination).

Thus, the hidden group communication dynamics will display, out of necessity, certain non-random
behavior. Detecting this non-random behavior will help us establish the presence of a hidden
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group, as well as identify its members. The property which we use to reveal non-randomness is the
connectivity of certain subgraphs of the communication graph. Our analysis and simulations show
that, for reasonable communication models of a society, it is possible to efficiently identify the hidden
group. This forces a hidden group to face one of two outcomes, both of which are detrimental to
the functioning of the hidden group: either continue with its planning or coordination (non-random
communication dynamics) and risk being detected, or lower its planning or coordination activity
to a level indistinguishable from the random background communication dynamics and risk not
achieving its objectives. Our results indicate that there are three major factors that affect our
ability to detect a hidden group.

i. The overall density of communications in the society. A higher density makes it more difficult
to detect hidden groups. More specifically, there is a phase change at which the groups become
significantly more difficult to detect with a relatively small increase in communication density.

ii. The presence of dense clusters. It is more difficult to detect a hidden group when the society
communications are more structured into groups, keeping the overall communication density
constant.

iii. The type of hidden group. We differentiate between trusting and non-trusting (or paranoid)
groups. Trusting groups allow messages among group members to be delivered by non-group
members, whereas non-trusting groups do not. Trusting groups tend to be benign, while non-
trusting groups are more likely to be malicious. The surprising result is that it is easier to
detect non-trusting groups; such groups are undermined by their own paranoia.

The implications of our results are two-fold. First, we can identify when it is feasible to detect
hidden groups. Second, our results allow us to determine how long we must collect communication
data to ensure that a hidden group is discovered.

The study of identifying hidden groups was initiated in [10] using Hidden Markov models. Here,
our underlying methodology is based upon the theory of random graphs [2, 9]. We also incorporate
some of the prevailing social science theories, such as homophily ([11]), by incorporating group
structure into our model. A more comprehensive model of societal evolution can be found in
[8, 14]. Other simulation work in the field of computational analysis of social and organizational
systems [3, 4, 13] primarily deals with dynamic models for social network infrastructure, rather
than the dynamics of the actual communication behavior. Our work is novel because we analyze
the dynamics of communication intensities in order to detect hidden groups.

The outline of the remainder of the paper is as follows. First, we describe random graph
models of communication networks. Then we discuss hidden groups and algorithms for detecting
them, followed by extensive simulations that justify our conclusions in Section 5.

2 Random Graphs as Communication Models.

Social and information communication networks, such as the Internet and World Wide Web, are
usually modeled by graphs (see [12, 3, 4, 13]), where the actors of the networks (people, IP-addresses,
etc.) are represented by the vertices of the graph, and the connections between the actors are
represented by the graph edges. Since we have no a priori knowledge regarding who communicates
with whom, i.e. how the edges are distributed, it is appropriate to model the communications using
a random graph. In this paper, we study hidden group detection in the context of two random
graph models for the communication network. In describing these models, we will use standard
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graph theory terminology (see [15]), and its extension to hypergraphs (see [1]). In a hypergraph,
the concept of an edge is generalized to a hyperedge which may join more than two vertices.

Random Model. A simple communication model is one where communications happen at
random uniformly among all pairs of actors. Such a communication model can be represented by
the random graph model developed and extensively studied by Erdős and Rényi, [5, 6, 7, 2]. In
this model, the graph is generated by a random process in which an edge between every pair of
nodes is generated independently with a given probability p. The class of graphs generated by such
a random process is denoted G(n, p).

Group Model. The G(n, p) random graph model may not be a suitable model for large
communication networks. Actors tend to communicate more often with certain actors and less
frequently with others. In a more realistic model, actors will belong to one or more social groups
where communication among group members is more frequent than communication among actors
that do not belong to the same group. This leads us to the hypergraph model of the communication
network, in which the actors associate themselves into groups. In this paper, we assume that each
group is static and contains m actors. While this is a simplification, it serves to illustrate all
the essential ideas and results without undue complication. A group of actors is represented by
a hyperedge in the graph, and an actor may belong to zero or more hyperedges. The set of all
hyperedges represents the structure of the communication network. Since groups tend to be small,
it is appropriate to model the communications within a group as a G(m, pg), where pg is the
probability within the group. We also allow communication between two actors that do not share a
group in common; we denote such communications as background. The probability of a background
communication is pb; we further assume that pb � pg because intra-group communications are much
more likely than extra-group communications.

Connectivity of Random Graphs. The key idea of our algorithms is based on the following
observation. For any subset of actors in a random model network, it is very unlikely that this
subset is connected during a “long” consecutive period of time cycles, while a hidden group must
stay connected (for its operations) as long as it functions as a group. Thus, we summarize here
some results from random graph theory that we will use regarding how the connectivity of a G(n, p)
depends on n and p, [5, 6, 7, 2]. These results are mostly asymptotic (with respect to n) in nature,
however, we use them as a guide that remains accurate even for moderately sized n.

Given a graph G = {V,E}, a subset S ⊆ V of the vertices is connected if there exists a path
in G between every pair of vertices in S. G can be partitioned into disjoint connected components
such that every pair of vertices from the same connected component is connected and every pair
of vertices in different connected components is not connected. The size of a component is the
number of its vertices; the size of the largest connected component is denoted by L(G).

The remarkable discovery by Erdős and Rényi, usually termed The Double Jump, deals with the
size of the largest component, and essentially states that L(G) goes through two phase transitions
as p increases beyond a critical threshold value. All the results hold asymptotically, with high
probability, i.e., with probability tending to 1 when n → ∞:

p = c
n p = lnn

n + x
n , x > 0

L(G(n, p)) =











O(ln n) 0 < c < 1

O(n2/3) c = 1

β(c)n c > 1, β(c) < 1

L(G(n, p)) = n with probability e−e−x

Note that when x → ∞, the graph is connected with probability 1. Thus, for p = constant or
p = d ln n/n with d > 1, the graph is asymptotically connected. However, when p = constant,
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connectivity is exponentially more probable, which will have implications on our algorithms.

3 Hidden Groups.

The hidden group uses the normal society communications to camouflage communications of its
members. On account of the planning activity, the hidden group members need to stay “connected”
with each other during each “communication cycle.” To illustrate the general idea, consider the
following time evolution of a communication graph for a hypothetical society; here, communica-
tions among the hidden group are in bold, and each communication cycle graph represents the
communications that took place during an entire time interval. We assume that information must
be communicated among all hidden group members during one communication cycle.

cycle 1 cycle 2 cycle 3 cycle 4

Note that the hidden group is connected in each communication cycle, i.e., information can pass
from any one group member to another, perhaps using other actors as intermediaries, which is a
requirement of our assumption that a message is passed from some group member to every other
during every communication cycle. A hidden group may try to hide its existence by changing its
connectivity pattern, or by throwing in “random” communications to non-hidden group members.
For example, at some times the hidden group may be connected by a tree, and at other times by a
cycle. None of these disguises changes the fact that the hidden group is connected, a property we
will exploit in our algorithms.

Trusting vs. Non-Trusting Hidden Groups. Hidden group members may have to pass
information to each other indirectly. Suppose that A needs to communicate with B. They may
use a number of third parties to do this: A → C1 → · · · → Ck → B. Trusting hidden groups are
distinguished from non-trusting ones by who the third parties Ci may be. In a trusting hidden
group, the third parties used in a communication may be any actor in the society; thus, the hidden
group members (A,B) trust some third-party couriers to deliver a message for them. In a non-
trusting hidden group, all the third parties used to deliver a communication must themselves be
members of the hidden group, i.e., no one else is trusted. One expects that the more malicious a
hidden group is, the more likely it is to be non-trusting.

Hidden groups that are non-trusting (vs. trusting) need to maintain a higher level of connec-
tivity. We define three notions of connectivity as illustrated by the shaded groups in the following
figure.

(a) Internally Connected (b) Externally Connected (c) Disconnected

B

A

B

A C

B

A
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A group is internally connected if a message may be passed between any two group members
without the use of outside third parties. In the terminology of Graph Theory, this means that the
subgraph induced by the group is connected. A group is externally connected if a message may be
passed between any two group members, perhaps with the use of outside third parties. In Graph
Theory terminology, this means that the group is a subset of a connected set of vertices in the
communication graph. For example, in Figure (b) above, a message from A to B would have to use
the outside third party C. A group is disconnected if it is not externally connected. The following
observations are the basis for our algorithms for detecting hidden groups.

(i) A trusting hidden group is externally connected in every communication cycle.
(ii) A non-trusting hidden group is internally connected in every communication cycle.

We can now state the idea behind our algorithm for detecting a hidden group: a group of actors is
persistent over communication cycles 1, . . . , T if it is connected in each of the communication graphs
corresponding to each cycle. The two variations of the connectivity notion, internal or external,
depend on whether we are looking for a non-trusting or trusting hidden group. Our algorithm is
intended to identify persistent groups over a long enough time period as potential hidden groups.
A hidden group can be hidden from view if, by chance, there are many other persistent subgroups
in the society. In fact, it is likely that there will be many persistent subgroups in the society
during any given short time period. However, these groups will be short-lived on on account of the
randomness of the society communication graph. This is the reason our algorithm performs well
over a long enough time period.

3.1 Detecting The Hidden Group.

The task of our algorithms is to efficiently identify maximal components that are persistent over
a time period Π, and to to ensure with high probability that, over this time period, no persistent
component can arise by chance, due to background communications.

Select ∆ to be the smallest time-interval during which it is expected that information is passed
among all group members. Index the communication cycles by t = 1, 2, . . . , T . Thus, T = Π/∆.
The communication data is represented by a series of communication graphs, Gt for t = 1, 2, . . . , T .
The vertex set for each communication graph is the set V of all actors.

(a) Finding externally persistent components (b) Finding internally persistent components

1: Ext Persistent({Gt}
T
t=1

, U)
2: //Input: Graphs G1, ..., GT and U ⊆ V .
3: //Output: A partition of U .
4: Use DFS to get the connected components

of every Gt;
5: Partition U into components {Ui}

K
i=1

such
that two vertices are in the same compo-
nent iff they are connected in every Gt;

6: return {Ui}
K
i=1

;

1: Int Persistent({Gt}
T
t=1

, U)
2: //Input: Graphs G1, ..., GT and U ⊆ V .
3: //Output: A partition of U .
4: {Ui}

K
i=1

= Ext Persistent({Gt}
T
t=1

, U)
5: if K = 1, then

6: return {U1};
7: else

8: return ∪K
k=1

Int Persistent({Gt}
T
t=1

, Uk);
9: end if

The efficient implementation of step 5 in algorithm (a) above and the runtime analysis of these
algorithms are postponed to a later exposition, as they are not central to our results.

Let h be the size of the hidden group we wish to detect. Let X(t) denote the size of the
largest persistent component over the communication cycles 1, . . . , t that arises due to normal
societal communications. X(t) is a random variable with some probability distribution, since the
communication graph of the society follows a random process. Given a confidence threshold, ε,
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we define the detection time τε(h) as the time at which, with high probability governed by ε, the
largest persistent component arising by chance in the background is smaller than h, i.e.,

τε(h) = min{t : P [X(t) < h] ≥ 1 − ε}.

Then, if after τε(h) cycles we observe a persistent component of size ≥ h, we can claim, with a
confidence 1 − ε, that this did not arise due to the normal functioning of the society, and hence
must contain a hidden group. τε(h) indicates how long we have to wait in order to detect hidden
groups of size h. Another useful function is hε(t), which is an upper bound for X(t), with high
probability, i.e.,

hε(t) = min{h : P [X(t) < h] ≥ 1 − ε}.

If, after a given time t, we observe a persistent component with size ≥ hε(t), then with confidence
at least 1− ε, we can claim it to contain a hidden group. hε(t) indicates what sizes hidden group we
can detect with only t cycles of observation. The previous approaches to detecting a hidden group
assume that we know h or fix a time t at which to make a determination. By slightly modifying
the definition of hε(t), we can get an even stronger hypothesis test for a hidden group. For any
fixed δ > 0, define

Hε(t) = min{h : P [X(t) < h] ≥ 1 − δ
t1+δ ε}.

Then one can show that if X(t) ≥ Hε(t) at any time, we have a hidden group with confidence 1− ε.
Note that the computation of τε(h) and hε(t) constitute a pre-processing of the society’s

communication dynamics. This can be done either from a model (such as the random graph
models we have described) or from the true, observed communications over some time period.
More importantly, this can be done off-line. For a given realization of the society dynamics, let
T (h) = min{t : X(t) < h}. Some useful heuristics that aid in the computation of τε(h) and
hε(t) by simulation can be obtained by assuming that T (h) and X(t) are approximately normally
distributed, in which case,

Confidence level τε(h) hε(t)

50% E[T (h)] E[X(t)]

84.13% E[T (h)] +
√

V ar[T (h)] E[X(t)] +
√

V ar[X(t)]

97.72% E[T (h)] + 2
√

V ar[T (h)] E[X(t)] + 2
√

V ar[X(t)]

4 Experiments.

In our simulations, we vary the size n of the society from n = 1000 to n = 5000. The results for
both communication models, the random model and group model, are presented in parallel. For
each model, ten-time series of graphs are generated for communication cycles t = 1, 2, . . . , T , where
T = 1000. In order to estimate hε(t), we estimate E[X(t)] by taking the sample average of the
largest persistent component over communication cycles 1, . . . , t. Given h, the time at which the
plot of E[X(t)] drops below h indicates the time at which we can identify a hidden group of size
≥ h.

We first describe the experiments with the random model (G(n, p)). The presence of persistantly
connected components depends on the connectivity of the communication graphs over periods
1, 2, . . . , T . When the societal communication graph is connected for almost all cycles, we expect the
society to generate many large persistent components. By the results of Erdős and Rényi described
in Section 2, a phase transitions from short-lived to long-lived persistent components occur at
p = 1/n and p = ln n/n. Accordingly, we present the results of the simulations with p = c/n,
p = c ln n/n, and p = c/10 for c ∈ {0.75, 1, 1.25} and n ∈ {1000, 5000}. The rate of decrease of
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Figure 1: The largest internally persistent component X(t) for the G(n, p) model with n = 1000 (top) and
n = 5000 (bottom). In (a)p = c/n; in (b) p = c log n/n; and in (c) p = c. Note the phase transition at
p = log n/n. When p is a constant, the graph is almost always connected.

E[X(t)] is shown in Figure 1. For p = c/n, we expect exponential or super-exponential decay in
E[X(t)] because L(G) is at most a fraction of n (Figure 1 (a)). An abrupt phase transition occurs
at p = c ln n/n (Figure 1 (b)). When c < 1, the detection time is relatively short (easy detection).
When c = 1, the task is feasible. However, when c > 1, it becomes large, especially for large n.
For constant p, the graph is connected with probability equal to 1, and it becomes impossible to
detect a hidden group (Figure 1 (c)) using our approach without any additional information.

The parameters of the experiments with the group model are similar to that of the G(n, p)-
model. We pick the group size m to be equal to 20. Each group is selected independently and
uniformly from the entire set of actors; the groups may overlap; and each actor may be a member
of zero or more groups. If two members are in the same group together, the probability that they
communicate during a cycle is pg, otherwise the probability equals pb. It is intuitive that p is
significantly bigger than pb; we picked pb = pg/n. The values of pg that we use for the experiments
are pg = c/m, pg = c ln m/m and pg = c/2 for c ∈ {0.75, 1, 1.25}, n ∈ {1000, 5000} and the number
of groups g ∈ {250, 500, 1000}. The behavior of E[X(t)] is similar to that of random graphs, as
illustrated in Figure 1. While the average communication density parameters are similar to the
random model, the theoretical results on connectivity do not immediately apply, since the resulting
graph is not a G(n, p), but rather is similar to a collection of G(m, p) graphs, with fixed m = 20.
For the selected values of g, each actor is, on average, in 1, 2 and 4 groups, respectively. When g
is 250, an actor is, on average, in approximately one group, and the overlaps of groups are small.
However, when g is 1000, each actor, on average, is in about 4 groups, so there is a significant
amount of group overlap. The goal of experiments is to see the impact of g on finding hidden
groups. Note that as as g increases, any given pair of actors tends to belong to at least one group
together, so the communication graph tends toward a G(n, pg) graph.
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G(n, p) 250 groups 500 groups 1000 groups
degav T (2) degav T (2) degav T (2) degav T (2)

0.75 2 0.75 3 1.50 5 3.00 11
1.00 2 1.00 3 2.00 7 4.00 25
1.25 3 1.25 5 2.50 11 5.00 55
6.39 120 2.25 18 4.50 70 9.00 > 1000
8.52 720 3.00 50 6.00 270 12.0 � 1000
10.7 > 1000 3.75 125 7.50 > 1000 15.0 � 1000
37.5 � 1000 7.50 � 1000 15.0 � 1000 30.0 � 1000
50.0 � 1000 10.0 � 1000 20.0 � 1000 40.0 � 1000
62.5 � 1000 12.5 � 1000 25.0 � 1000 50.0 � 1000

Table 1: Times of hidden group discovery for various amounts of group structure; each group is indepen-
dently generated at random and has 20 actors. In all cases, n = 5000, and the group size m = 20.

We give a detailed comparison between the society with structure (group model) and the one
without (random model) in Table 1. The table shows T (2), which is the time at which the size of
the largest internally persistent component down to 1. For reference when comparing across tables,
the average degree of the graph is given for each case. A similar average degree indicates that two
test cases have a similar total number of communications per time step, while the structure of the
graph may be entirely different. This is the time at which any hidden group would be noticed,
since the group would persist beyond the time expected in our model.

The data is reorganized in Table 2 to more clearly show the relationship between unstructured
and structured communication graphs. We have also run the simulations for trusting groups.

degav T (2) with no groups T (2) with groups

0.75 2 3
≈ 1.4 3 5
≈ 6.2 120 270
≈ 8.7 720 > 1000

Table 2: Time of hidden group discovery expiration comparing G(n, p) graphs with no groups to graphs
with group structure that have similar degav.

While we do not present the detailed results here, the general result is that for the corresponding
society communication model, the trusting group is much harder to detect. For comparison with
some of the data in Table 1, for the random model with degav = 1.25, T (2) = 8 and for degav = 6.39,
T (2) > 200.
Summary of Experimental Results. If the background society communications are dense, then
it is harder to detect the hidden group. In fact, a phase transition occurs when the average node
degree exceeds ln n, at which point hidden groups of moderate size become hard to detect. If the
hidden group is trusting, or the background society communications are structured, the hidden
group is also harder to detect.
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5 Discussion.

The experiments run in this study show that it is possible to discover malicious groups based upon
structural properties of the communication graph, without using the contents of communications
which may be misleading or difficult to decipher. Group identification done by an algorithm, such
as the one proposed in this paper, could be used as the initial step in narrowing down the vast
communication network to a smaller set of groups of actors. The communications among these
potential hidden groups could then be scrutinized more closely.

Our results indicate a phase transition at lnn for the average number of communications that
the average actor makes in one communication cycle. For moderately sized societies, from 10,000
to 100,000 actors, this phase transition occurs at about 10; i.e., if the average number of com-
munications is 10 per actor per communication cycle, then it becomes hard to detect the hidden
group. Thus, depending on the type of communication, the duration of the communication cycle
may have to be made shorter to ensure that one is in the regime where a hidden group could be
detected. Such an adjustment of the duration of a communicationb cycle may not match the time a
hidden group ordinarily spends for a complete information exchange among its members. However
closer to the planned event, they may need to communicate much more frequently, at which point
they can be detected.

While the background communication density seems to be the dominant factor affecting our
ability to detect the hidden group, we also find that if the society already has some structure (as
with the group model), then it is harder to detect the hidden group. This result seems somewhat
intuitive. However, a surprising result is that if the hidden group tries to hide all important
communications within itself (a non-trusting group),it is easier detectable!

The value T (h) that we compute in our simulations, is actually an upper bound on the time
to hidden group discovery. We assume that the hidden group is clever enough to hide among the
very “heart” of the communication network, the part that stays connected longest. If instead, the
hidden group is extracted from the large component earlier, a simple extension of our algorithm
would find the group much more quickly. Also note that this analysis uses no semantic information
whatsoever. If there is any additional information available, such as certain individuals who should
be watched, or certain type of messages, our algorithms can be modified to yiled a more efficient
procedure for identification hidden groups.

Our results are of course only as accurate as our model is valid. However, we expect that the
qualitative conclusions are robust with respect to the model, The extension of this work will explore
more robust and realistic models of communication networks. Such models may explore the notion
of a conversation between two actors, where their communication tends to persist over a certain
length of time instead of being random at every time period. Another Also the groups can be made
dynamic, where actors sometimes decide to enter or leave groups depending their preference.

The properties unique to the hidden group may also be modified for better results. A hidden
group may not communicate at every time step, but may be connected more often than legitimate
background groups. Also, a property not used in this analysis is that a hidden group is likely to
be sparse (i.e. very nearly to a tree) to avoid detection. If there is a often-connected group that is
sparse, it could be noted as more suspicious.
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