Computing Wrench Bounds Along a Curved
Surface in 2D

Kevin Egan Stephen Berard J.C. Trinkle
Department of Computer Science Department of Computer Science Department of Computer Science
Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute
Troy, NY 12180 Troy, NY 12180 Troy, NY 12180
Email: ktegan@cs.rpi.edu Email: sberard@cs.rpi.edu Email: trink@cs.rpi.edu

Abstract—Often it is useful to account for small error or object multiple contact points must be considered. One com-
variation in a physical simulation. We develop conservative mon question that arises from this scenario is deciding the
bounds for the unit wrenches applied by pushing on a curved giapijity of an object, or what forces are necessary to achieve

surface patch in two dimensions. We discuss subdividing the - . .
surface patch to obtain tighter bounds, and incorporating varying  St@Pility [2], [3]. Constructing an assembly line, when the exact

force directions caused by frictional contacts. orientation of the part is unknown is another research area [4].
However, these approaches tend to make one or more of the
I. INTRODUCTION following assumptions: we are only testing the stability of the

object, all contacts are frictionless, or all objects are composed

] . ) L of polygonal sides. Our approach makes none of the above
The simulation of object contact and response is critical feigsumptions.

a wide range of applications. Often these simulations compute
one result for a specific set of object parameters and contéict Structure of Paper

locations. However, in the real world contact locations and gjpce trying to find exact bounds for the moment at every

other parameters will never be exact, leading to variation in tB%int along a curve is difficult, we instead construct conser-

final result. For this reason it can be useful to know what set @ftive bounds. We assume that it is possible to construct a
wrenches may be produced when pushing at any point aloggnding polygon that encloses the curve segment, and to
a small portion of an object's surface. This paper presentg.gnstruct a bound for all force directions. Using these bounds
method for determining a set containing all possible wrenchgs hosition and force direction we can compute conservative

produced through contact along a surface patch in 2D.  poynds for the moment at all points on the curve segment.

If we are trying to identify locations on the object that \ye first derive the minimum and maximum moment for a
produce wrenches within a set of solutions [1], then usifgeq point with varying but bounded force direction. We then
our method it is now possible to prove that all points alongyamine bounds for the moment at all points on a line segment
a surface patch produce wrenches inside of the solution Sgn, fixed force direction. This then leads to bounds for the
It is also possible to incorporate a frictional contact modghoment for all points on a line segment with bounded force
where the force direction, as well as the contact location, is N@tection.
known precisely..Previoust, for curves of nom.inal C(.)mple>.<ity, We show that the moment bounds for all points along the
it was only possible to prove that discrete points with a fixeghe segments of our bounding polygon also bounds all interior
force direction were contained in the solution set. points, including the curve segment. We then briefly discuss

It is often fairly easy to bound the andy components of ho frictional contact interactions can be incorporated. After
the wrench, but bounding the moment of the contact forceig§s we discuss subdividing the curve segment to achieve
more difficult, because it depends on both the force directig@nter bounds, as well as implementation details.
and the position of the line of action. Defining the moment
analytically in terms of variable is produces extremely 1. BACKGROUND
complicated results even for very simple curves. When friction Assumptions
is present and force direction is uncertain, the moment of the i
contact force becomes a set-valued function of the variable ASsume the following:

In order to avoid the difficulties of determining the moment 1) The surface can be split up into curve segments, where
analytically, we instead generate conservative bounds. each segment is defined parametrically by:

B. Previous Work s(t) = (x(t),y(t)), te][0,1]. 1)

Other researchers have done work in similar areas. Wher2) We can bound all points of within a simple polygon
the side of one object is resting flat against another another composed of vertice&, po, . .., pn).

A. Motivation



3) Itis possible to calculate bounds for the direction of thé/e can also define an angle for the position ve¢tor
force vectorf:

¢ = atanry, 7). @)
estart S 0 S 967Ld7 (2) 7
0 < Ocna — Ostart < 2. (3)
Methods for calculating the bounding polygon and force 8 e
direction interval are discussed in sections VIl and VIII. K/ 0,
bounding polygon ’ £?
CoaT Y
curve | k} Torce =
%gmenti | direction .
Fig. 2. An example showing, d, 0 and¢
center of ; o<
mass
. Converting the cross-product term in Egn. (5) to an equiv-
(a) Surface (b) Curve Segment alent sine expression:
Fig. 1. The part is shown on the left. On the right a curve segment from
the shape, the bounding polygon surrounding the segment, and the unit force ¢(9) — HFH ||d|| sin(9 _ ¢) (8)

vectors at the endpoints are shown.

In the above equatiofjr|| and ¢ are fixed for a single point,
B. Variables and||d|| is 1 for all points. This lets us express the moment
at a fixed point as a scaled and offset sine function involving

For a single point we construct a position vecfoas well only 6, as can be seen in Eqn. (8).

as an inward facing unit force vectar The wrench exerted
by pushing at a point in the direction d@fwith magnitudef

can be expressed as: A. Unbounded Force Direction
dy, We designat@* andé** as the angles of force direction that
w=f cZy . (4) respectively minimize and maximizg at a single poinf. We
F® d first examine the case where the force direction is completely

. ) unrestricted, allowing to be any value withirR:
The momenty), is the third element of the wrenah. For the

time being we assume that the force magnityfde 1: 0* = argmin{t(0) : 6 € R}, ©)

O = Fody — 7yd,. (5) 0" = argmaxy(0) : 6 € R}. (10)

, We designate)y,in and ¢nq, as the minimum and max- Examining Egn. (8) and using well known properties of the
imum moment values that can be produced. As the paR&he function we can state(6) is a periodic function with

progress?s we g_xam_me Iargber ‘;’]‘nd larger domains where €ith&fio g9 it is monotonic between local minima and maxima
position, force direction, or both may vary. and all minima and maxima are global minima and maxima.

IIl. FIXED POINT WITH BOUNDED FORCEDIRECTION Furthermore, the global minima and maxima have values

We start by examining howy changes with respect to the Drmin = —|I7l (11)
angle of the force direction. This is equivalent to finding the e e
moment bounds produced when pushing at a fixed point with Ymaz = |I7]]- 12)

varying force direction (such as in a frictional contact model

We look at two cases: when the force direction can be ak)i[""_‘”y’ expressing the set of all integers @s the global
angle, and when the force direction is bounded within gHinima and maxima occur at the following angles:
interval.

3
Since the unit force direction vector is length 1 it can be 0" =¢+ g + k(27),k € Z, (13)
entirely expressed as an angle. We use the function gfanp . T
to robustly find the polar angle for a vectar, 4|7 in Cartesian 0" =9+ 9 +k(27), k € Z. (14)

coordinates. This function is well defined for all coordinates
(unlike arctan) and always returns angles within the rangeThis confirms the intuitive notion that the moment is either
[—m, 7). Using this function we definé as the angle for the maximized or minimized when the force direction is perpen-
unit force vectord: dicular to the position vector. It is also important to note that
SO all possible angle8* refer to one force vector direction since
0 = atand,, d.). (6)  all angles are separated by



B. Bounded Force Direction As was discussed earlier, if we choose one force direction
If the force direction is restricted to lie within the anglesnd graph the moment produced versus the parametric variable
[Bstart Bena) for a fixed point there are two possibilities. Eithef @l0ng a line segment we get a straight line. In this case
a global minimum for) can be achieved by a force directioVe have chosen one value 6f but when graphing maximal
Within [Bstars, Benal, OF it cannot. We assume for the momenfnoment we can select any value OWithin [s;ar¢, fend] to
that we want to find a minimal momeai,,.,,. find the maximum value ofy at each positior”. This means
A global minimum ofi; for a fixed point is achieved when that the graph of maximal moment will have vaIues_ that are
6 = ¢+ 2, as shown in Eqn. (13). Hytar < ¢+ 25 < fepa greater than or equal to the graph Qf moment for a fixed force
then i = (¢ + 25). If ¢+ 32 is not in the interval, then direction. Another way of saying this is that we know that all
since there are no other local minima the minimum momeWglues for the graph of maximal moment must lie above the
must be either) (Osiqr:) OF ¥)(Bena). From this we can expressh?l'f'space produced by th_e graph of moment for a fixed force
6* and6** for bounded force direction as the following:  direction. If we graph two lines we know that all values for the
graph of maximal moment must lie within the intersection of
the upper half-spaces produced by the lines. When graphing
}, (15) minimal moment we would use the intersection of the lower

9*:{ 93tart§¢+37ﬂ-§0€nd7 ¢+%T
half-spaces of the lines.

else al’gmll’l{lli(g) : Ostart, eend}

g — { Ostart < @+ 5 < Ocna, ¢+ 5 } . (16) The graph of maximal moment along a line segment can
else  argmax+(0) : Ostart, Oenat be seen as the boundary of the intersection of many half-
IV. LINE SEGMENT WITH FIXED FORCEDIRECTION spaces produced by individual force directions. Stating it this

In this section we examine the moment bounds for all poinY%ay we can make a few observations about the final graph

: . ! L .. of maximal moment. Since a half-space is a convex set, and
along a line segment using a fixed force directtbnThis is P

equivalent to finding the moment bounds for applying forcy® are ta"”?g the mtersecuon of convex sets, the. set of all
PII’]'[S that lie above the maximal moment graph is convex.

at any point along a line segment with a frictionless contag . .
y P 9 g ince the graph of maximal moment is the boundary below

model.
. . . a convex set, there may be a local minimum, but there can
wchlz\;ndt::\;%g c;nl—itra]c;u;vea;;netn?cggzt@m’p 1) and (p2z, p2y) never be a local maximum. Sim_ilarly, the graph of r_ni_nimal
moment may contain a local maximum, but no local minimum.
u(t) = ((t)p1z + (1 = t)p2z, (E)p1y + (1 — t)p2y), 17y In both cases the local extrema are of no interest since we
t € [0,1]. n are searching for the largest value of maximal moment along
a line segment, and the smallest value of minimal moment
along a line segment. Since we do not have to worry about
o= —(P1z = P22)* — (P1y — p2y)? (18) local extrema it is only necessary to find minimal and maximal
\/(plx —D22)? + (p1y — p2y)2’ moment values at the two endpoints of the line segntesat()
- Paz(—P1a + Paz) — (D1y — Pay)P2y (19) andt = 1. This methodology wogld not work if tr_]e set of valid
\/(plw o)t D1y — D2y)? ) forces changed for different points along the I'me segmen.t.
When 6 extrema are present along a portion of the line
»(t) = at +b. (20) segment the graph of momentversust can be computed by

This gives the interesting result that the moment for each poRI9ging in the line segment definition defined by Eqn. (17)
along a line segment with a fixed force direction varies linearifito Eqns. (11) and (12). In the end we get/at® + bt + c,

with ¢. Since linear functions do not have local minima owherea, b and ¢ are constants that depend on the location
maxima it is only necessary to check the values/oét the Of the line segment, and the sign depends on whether we are

two endpoints of the line segment to find the minimum anfénding a minimum or maximum value fap.
maximum values of). In Fig. 3 we see an example of these ideas. At the spot

pictured in the left image the force direction A maximizes

V. LINE SEGMENT WITH BOUNDED FORCEDIRECTION  However, for other points along the line segment, A is non-

In this section we examine the moment bounds for all poinggptimal. This relationship is shown in the right image. The
along a line segment using a bounded force direction. Thisualue ofy produced by using fixed force direction A intersects
relevant to finding the moment bounds obtained by pushitige maximal curve at exactly one point. Every force direction
anywhere along a line segment with a frictional contact moddhat is not perpendicular to the line segment corresponds to a
This will be useful later when we examine the boundintine that is tangent to either the maximal or minimal moment
polygon of a curve segment. curves.

Looking at Eqgns. (15) and (16) it would seem important to While we do not need worry about local minima or maxima
know if anglesg + 2%, ¢ + Z, or both lie within the interval for points along the interior of the line segment, we do need to
[Ostart, Oenal. Originally we split the line segment up into subworry about? extrema on the endpoints of the line segment, as
segments based on the existencé@ ektrema. It turns out that documented in Eqns. (15) and (16). To do this we must check
this is not necessary. if ¢+ 37” or ¢ + 5 are within [0,;4r¢, feng]. This can be seen

The moment can then be defined as:




perpendicular line  maximal moment arm

ithi 2 _
along the line segment so we bound all wrenches to be within thé + 42 = 1

linesegment cylinder. Thirdly we use the intervat),,in, ¥maz] to bound
forcedirectioln/ﬁ/\/\ﬂ\ the ¢» component of the yvrench. This cre_ates a quadrilateral
! v on the 22 + y? = 1 cylinder. To normalize all wrenches
center Omeass L to unit length we project onto the unit sphere as shown in
t moment arm for Fig. 5. On the unit sphere the longitude is restricted to be
fixed force direction A within [fstqrt, Bena] @and the latitude is restricted to be within

[arctan (min ), arctan(y.mq, )] If the force magnitudef can

Fig. 3. The left shows a line segment with force direction A, the right shomﬁe any non-negative value. then the set of of all resulting
a graph of moment for all maximal force directions and for the fixed force !

direction A wrenches is a four sided convex polyhedral cone.
U]

visually by drawing two lines through the origin at angles e

perpendiculat,,; and f.,4. Any points that fall between ﬂ

these lines will have eithe;lur%’r or ¢+% within [Ossart, Oend)- ' h

In Fig. 4 left endpoint of the line segment tests three different X

values off). The ¢+ 7 is tested to find the maximum value of

1, and both,,,,» andé., 4 are tested to find minimum values

of 1.
' perpendicular lines Fig. 5. Bounds are projected onto the sphere of unit wrenches
\6‘?\ . ’7 \\\\ \\\
N 9 Q VIl. VARYING FORCEDIRECTION DUE TO FRICTION
o start__ - - . .
P _ RN For a frictionless contact model the inward facing normal
RS possble g will always equal the inward facing force direction vector.
force directions For a single point the force directichwill always equal the

Fig. 4. A third value of9 must be tested for the left endpoint because thgormal direction which we will Ca”Y:

extraf value is perpendicular t¢ and within [0start, Oendl-
estart = Vstart, (21)

aend = Yend- (22)

If we use a frictional contact model, things are slightly more

We assume that the curve segmeft) is contained within complicated. Using a Coulomb friction contact model with
some known closed polygon. We solve for the minimum argbsitive coefficient of frictionu, the force direction can be
maximum moments on each line segment of the boundiagy vector that lies lies inside of the friction cone. The angle
polygon. Comparing all values @p,,;,, and ¢, for each between the edge and center of the conerigan(u). Using
line segment we find values fap,,;, and,,,, that bound this we can can bound the possible force directions with the
the moment for all points on the boundary of the polygomormal direction and coefficient of friction:
From here we can prove that we have also bounded all points
contained in the interior of the polygon.

For any point within the polygon, draw a line in any Ocna = v + arctan(u). (24)

direction and find the intersection with theT line and the polyg9Q e want to bound force direction for more than one point,
boundary. We have found that the possible valueg dor a 5 points can have different normal directionsthen our

point on a line segment are bounded by the values possml%q&e direction interval[fs;q,¢, fcna] Needs to contain any

the endpoints of the line segment. For this reason we can . . .
. . ) Aue in[— arctan ,arctan summed with any value in
that v,,,;, and ¢, for the internal point will be bounded [ . (1) ()] y
tv\;gstartv 'Vend} .

by the points on the boundary of the polygon. Since the

VI. WRENCHBOUNDS FOR ACURVE

Hstart =79 arctan(u), (23)

endpoints lie on the boundary of the polygon, and since we Ostart = Vstart — arctan(u), (25)
have bounds for all points on the boundary of the polygon we Ocnd = Yend + arctan(p). (26)
can say that our final global bouns, ., t¥ma.] bound the

moment for all points interior points using any force direction VIII. | MPLEMENTATION

[Ostarts Oend)- Finding force direction bounds robustly for a curve can be

At this point we have three bounds, the intersection of whicurprisingly difficult. It is easy to make an implementation
make up our final conservative bounds in thgy wrench which produces incorrect results suchfag,,.; = %W, Ocna =
space. First we use the intervi@l;q,t, Ocnal 1O bound ther —%w. In this casefsqrt > Beng, Most likely due to the
andy direction of all wrenches. Secondly, we knad\|| =1 discontinuity of atan2 at = =. Offsets of27x can be used



to properly order the intervals. Rotating the curve such thablution set can be most easily accomplished when the solution

Ostqrt = —m IS another option. set is convex. In this case it is only necessary to check whether
The easiest way to calculate the normal direction interviide four edge wrenches of the polygonal cone lie within the

[Vstart, Yena) fOr @ curve segment is to split the curve intasolution set. If the solution set is not convex, then convex

entirely concave or convex sub-segments. In this case tiecomposition can be used to try to find convex regions to

direction of the normal vectors at the endpoints bound a#st against. Otherwise other geometric methods need to be

normal directions. However, depending on the curve, findirnployed.

inflection points may not be trivial. For cubic curves it is In Fig. 7(a) and 7(b) we show results from our implemen-

possible to find whether an inflection point exists by solvingation. In Fig. 7(a) we show a Java program that allows the

a quadratic equation [5]. Using this, one can classify most gpecification of B-spline control points, and then calculates

the surface patch as either convex or concave using a divitlee wrench bounds for every curve segment. In Fig. 7(b) we

and-conquer method. It is also possible to solve for the exattow another application that visualizes both the conservative

location of an inflection point along a cubic curve segment tyounds (the shaded rectangles), as well as the results obtained

solving a cubic equation [6]. The presence of straight surfacesm high resolution point sampling (thick lines).

and cusps require special cases. For straight surfaces only one

surface normal is possible along the line segment, and when

dealing with cusps many possible surface normals may exist

for a single point. Force applied along a line or at a single

point is discussed in earlier sections of the paper. :l

Once curve segments are split at inflection points it is x

important to know whether the curve segment is concave or . "
convex, since this will determine whether the normal direction \‘ . e @
will sweep clockwise or counter-clockwise. One way to check : y

is by examining whether the second derivative points into or () Surface (b) Wrenches
away from the the surface. Another approach to finding Whi(,jn , ,

B . . ) _Fig. 7. Two curve segments along a surface are shown in the left figure.
way the normal direction sweeps is to test the normal directigiithe right figure the frictionless wrenches and bounds are mapped onto the
at internal points along the curve segment. unit sphere.

Our method uses uniform B-splines to define curved sur-
faces. Using B-splines the convex hull of the four control
points for any curve segment creates a bounding polygon for ) ) )
the curve segment. It is also fairly easy to determine areas ofl '€ authors wish to thank Jong-Shi Pang and Liu Guanfeng
concavity and convexity using B-splines. Finally, a single glor t_helr technical guidance and suggestions. The authors were
spline curve segment can be subdivided into two smaller cu@rtially supported by NSF grant #0139701.
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