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Abstract

Clustering is one of the central data mining problems and numerous approaches have been proposed in this
field. However, few of these methods focus on categorical data. The categorical techniques that do exist
have significant shortcomings in terms of performance, the clusters they detect, and their ability to locate
clusters in subspaces.

This work introduces a novel algorithm called Click, which finds clusters in categorical datasets based
on a search method for k-partite maximal cliques. Click is able to detect subspace clusters, and outperforms
previous approaches by a factor of two to three. It scales better than any of the existing method for high
dimensional datasets. These results are demonstrated in a comprehensive performance study on synthetic
and real data sets.

1 Introduction

Clustering is one of the central data mining problems [17, 18]. Generally, the goal in clustering is, given a
dataset, to find “naturally” occurring groups within the dataset, or regions in the space generated by the
dataset where the density of data points is higher than “normally” expected. Figure 1 shows an example of
a two dimensional dataset. One can intuitively identify two dense regions in the figure that should make up
clusters.

Figure 1: Clustering Example
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It is natural to approach this problem by computing the similarities between individual data points in
the dataset and partitioning the data points in a way that yields groups where the similarity of points within
each partition is as high as possible, while points in different partitions are as dissimilar as possible.

Problems arise when it comes to clustering categorical data, i.e. data where the domains of the individual
attributes are discrete valued and not naturally ordered. Roughly, the challenges in clustering categorical
attributes can be grouped into three categories:

No Natural Order The lack of an inherent “natural” order on the individual domains. This property
renders a large number of traditional similarity measures ineffective.

High Dimensionality Categorical datasets are frequently high dimensional.

Subspace Clusters Many categorical datasets do not exhibit clusters over the full set of dimensions.

The remainder of this chapter will give an introduction to the overall problem of clustering, the specifics
of categorical clustering, and then continue to discuss each of the above problems in more detail.

1.1 Clustering in Data Mining

To formalize the task of clustering a dataset consider the following definition of a dataset.

Definition 1.1 (Dataset) Let A1, . . . , An be a set of attributes and D1, . . . , Dn non-empty sets over these
attributes where Di ∩ Dj = ∅ for i 6= j.

A set D ⊆ D1 × . . . × Dn is called a dataset over the domains D1, . . . , Dn. An element (r1, . . . , rn) ∈ D
is called a record or feature vector. Each ri, i ∈ {1, . . . , n} is a field or attribute of its record. The notation
r.Ai is used to refer to the i-th component of the feature vector r. The number n of attributes is also referred
to as the dimensionality of the dataset.

The disjointness constraint in definition 1.1 is exclusively formal. Without loss of generality, disjointness
can be ensured on an arbitrary dataset by mapping value vj of attribute Ai to the unique value (Ai, vj) of
a surrogate attribute A′

i.
Note, that – other than non-emptiness – there is no restriction on the domains underlying the individual

attributes. However, depending on the properties of a concrete domain, it is classified as either categorical
or non-categorical, where non-categorical domains are inherently ordered, and categorical domains are not.
Numerical attributes are typically of the non-categorical type. When a dataset consists solely of categorical
attributes it is said to be categorical itself. This type of dataset will be the focus of the present work.

Given a dataset, clustering can be understood as the optimization problem of partitioning the dataset
into groups, the elements of which are as similar as possible to elements of the same group and as different
as possible from elements of other groups.

Definition 1.2 (Clustering) Let D be a dataset and d : D × D → R
+ be a measure of distance (or

dissimilarity) between feature vectors. Clustering is the task of finding a partition (C1, . . . , Cn) of D such
that

∀i, j ∈ {1, . . . , n}, j 6= i,∀x ∈ Ci : d(x,Mi) ≤ d(x,Mj)

where Mi is one cluster representative of cluster Ci.

This definition leaves some decisive points unclear, such as the distance measure and the cluster represen-
tative to use, or how to obtain the optimal number of clusters. Clearly, partitioning the dataset into clusters
that contain one record each would solve the above problem in a trivial way. [18] addresses these issues in
a general setting, while section 1.2 and chapter 3 more specifically address these problems for categorical
clustering.
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1.2 Categorical Clustering

The categorical clustering problem can be formulated as follows [12]: Let D be a dataset over A1, . . . , An,
and D1, . . . , Dn the associated categorical domains

Definition 1.3 (Interval) A set Si ⊆ Di is called an interval over attribute Ai. A k-interval is a set
S = Si1 × . . . × Sik

over a subset of k attributes Ai1 , . . . , Aik
. If k < n, then S is also called a subspace

interval, otherwise S is an interval over the whole space of n attributes.

Clusters can informally be understood as especially dense interval regions within the dataset. To capture
the density notion, the support of such a region needs to be defined. Especially dense regions can then be
identified by capturing the expected support of a given interval region and comparing it to the support the
region actually has within the dataset. If the actual support is higher than the expected support – possibly
by a user defined factor – the region can be considered dense.

Definition 1.4 (Support) Let S be a k-interval, with k ≤ n. A record r = (r.A1, . . . , r.An) ∈ D, belongs
to S, denoted r ∈ S, iff 1 r.Aij

∈ Sij
for all j ∈ {1, . . . , k}. The support of S in dataset D is given as

σ(S) = |{r ∈ D : r ∈ S}|

Assuming attribute independence, the expected support of S in D is given as

E[σ(S)] = |D| ·
n
∏

i=1

|Si|

|Di|

The expected support notion can be used to formulate a co-occurrence measure that denotes how strongly
attribute values and interval regions interact with each other.

Definition 1.5 (Strongly Connected Intervals) Let S = Si1 × . . . × Sik
be a k-interval. Define an

indicator function σ∗(S) as follows

σ∗(S) =

{

1 if σ(S) > α · E[σ(S)]

0 otherwise

where α ∈ R
>0 is a user defined real number. For any pair of values vi ∈ Si and vj ∈ Sj, we say that vi

and vj are strongly connected iff σ∗({vi} × {vj}) = 1, i.e., the 2-interval {vi} × {vj} has support at least
α times its expected support. We say that vi is strongly connected to interval Sj iff σ∗({vi} × {vj}) = 1 for
all vj ∈ Sj, and we say that the intervals Si and Sj are strongly connected iff σ∗({vi} × {vj}) = 1 for all
vi ∈ Si, vj ∈ Sj.

Definition 1.6 (Cluster) Let Ci ⊆ Di for i ∈ {1, . . . , n}, and α > 0. The k-interval C = (Ci1 × . . .×Cik
)

is a (subspace) cluster over attributes Ai1 , . . . , Aik
iff

1. σ∗(C) = 1, i.e., the support of the cluster is at least α times its expectation.

2. All pairs of intervals Ci, Cj ∈ C (i 6= j) are strongly connected.

3. 6 ∃C ′
i ⊃ Ci, for all i, j ∈ {1, . . . , n}, i 6= j, such that Ci and Cj are strongly connected, i.e. Ci and Cj

are maximal strongly connected intervals.

The interval Ci is also called the cluster projection of C on attribute Ai. If k < n, then C is called a
subspace cluster or a k-cluster, otherwise C is called a cluster.

Given a dataset D and a user specified threshold α, the goal is to find all clusters and also all subspace
clusters if desired.

1if and only if
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1.3 Challenges in Categorical Clustering

Categorical datasets impose a number of challenges on clustering methods, the most significant of which is
the lack of a natural order on the individual domains. This property effectively renders a large number of
traditional similarity measures obsolete. Replacements have been proposed that do not take advantage of the
order or, even more restrictive, numerical operations. Generally, these measures are based on co-occurrence
of attribute values. They may require similarity to be defined even between attribute values that never occur
together in one record. Examples include the Simple Matching Coefficient, and the Jaccard Coefficient [18].

Secondly, categorical datasets are frequently high dimensional. Clearly, high dimensionality is not an
immediate consequence of these datasets. However, practical examples suggest that clustering approaches
for categorical data should be highly scalable in terms of number of attributes. In high-dimensions, it
can be shown that traditional distance measures become ineffective, a phenomenon known as the curse of
dimensionality [6, 27].

Finally, many categorical datasets do not exhibit clusters over all dimensions. This is especially true for
sparse spaces, e.g. in document clustering, where the dictionary can be very large but individual documents
contain relatively few words. Thus it may be desirable to identify clusters in subspaces.

The above discussion entails a number of key characteristics for good categorical clustering algorithms,
which should ideally

• not impose any constraints or assumptions on the underlying domain,

• scale well over the number of attributes, and

• detect clusters not only over all attributes, but also over subsets thereof.

Chapter 2 presents an analysis of existing methods, and highlights areas of improvement. Chapter 3
introduces Click 2, which finds clusters in categorical datasets based on a search method for k-partite
maximal cliques. Click helps address the main shortcomings of existing approaches. It detects subspace
clusters, and outperforms previous approaches by a factor of two to three. It scales better than the existing
method for high dimensional datasets. The performance characteristics of this method are studied in chapter
4 in a comprehensive performance evaluation on real and synthetic datasets. Finally, chapter 5 contains a
discussion, conclusions, and pointers to future work.

2 Related Work

Two areas of previous work are relevant in the context of categorical subspace clustering. Section 2.1 discusses
earlier methods for clustering categorical data. As most of these techniques do not consider subspaces, section
2.2 presents an extended review of general subspace clustering techniques and their relevance with respect
to categorical data.

2.1 Categorical Clustering Techniques

While a lot of work has focused on clustering of numeric data [17], only a limited number of studies have
focused on categorical clustering; these include STIRR [13], ROCK [15], CACTUS [12], COOLCAT [5], k-
modes [19], and others more [8, 37]. Other works have focused more narrowly on binary or transactional data
[25, 32], on a framework to compress high dimensional categorical datasets [22], and on using hypergraph
partitioning to cluster itemsets [16].

The COOLCAT algorithm introduced by Barbara et al. [5] is based on the idea of entropy reduction
within the generated clusters. It first bootstraps itself using a sample of maximally dissimilar points from
the dataset to create initial clusters. The remaining points are then added incrementally. Naturally, this
approach is highly dependent on the order of selection. To mitigate this dependency, the authors propose to
remove the “worst fitting” points at defined times during the execution and re-clustering them.

2CLusterIng Categorical data via maximal K-partite cliques
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Cristofor et al.[8] present another approach based on cluster entropy measures for categorical attributes.
Starting from a seed clustering, it uses genetic algorithms with crossover and mutation operators to heuris-
tically improve the purity of the generated clusters. The quality of the resulting clusters depends on a-priori
knowledge of the “importance” of the individual attributes toward the “natural” clustering.

Huang introduces k-modes [19], an extension to the well-known k-means algorithm for clustering numer-
ical data. By defining the mode notion for categorical clusters, and introducing an incremental update rule
for cluster modes, the algorithm preserves the scaling properties of k-means. Naturally, it also inherits its
disadvantages, such as dependence on the seed clusters, and the inability to automatically detect the number
of clusters.

STIRR was presented by Gibson et al. in [13]. The method encodes datasets into a weighted graph
structure where the individual attribute values correspond to weighted vertices. STIRR iterates multiple
instances (so-called basins) of these graphs using a user defined combination operator to eventually converge
to a fix point. The authors argue that upon reaching this fix point, the weights of the basins can be used
to partition the data points, yielding the final clusters. The dynamical systems approach underlying STIRR
is problematic with regards to the type of detected clusters; the separation of attribute values by their
weights is non-intuitive. Moreover, the number of basins required to attain a sufficiently large probability of
convergence can be significant.

Zhang et al.[37] point out that the lack of a definite convergence is one of STIRR’s shortcomings and
propose a similar method that is guaranteed to converge. However, for both methods, the combination
operator, as well as local modification operations are left to the user to find depending on the concrete data.
Finally, the post-processing required to generate the actual clusters from the basin weights upon reaching
the fix point is non-trivial and impacts the detected clusters. The clusters identified by STIRR were shown
to be incomplete in cases of overlapping cluster projections [12].

Guha et al. present ROCK[15], a clustering algorithm based on the number of links between tuples. The
number of links intuitively captures the number of records that two records are both sufficiently similar to.
This approach yields satisfactory results with respect to comparing attribute values that never co-occur in
a single tuple. ROCK heuristically optimizes a cluster quality function with respect to the number of links
in an agglomerative hierarchical fashion. The base algorithm exhibits cubic complexity in the number of
records, which makes it unsuitable for large datasets. Guha et al. propose a sampling approach to this end.

Ganti et al. introduce CACTUS [12], a combinatorial search based algorithm utilizing summary infor-
mation of the dataset. Unlike earlier algorithms it characterizes the detected categorical clusters. The
algorithm relies on inter- and intra-attribute summaries that are assumed to fit into main memory for most
categorical datasets. CACTUS first computes cluster projections onto the individual attributes. To reduce
the complexity of this step, the authors assume the existence of a distinguishing number κ that represents
the minimum size of the distinguishing sets which are attribute value sets that uniquely occur within only
one cluster. The distinguishing sets are then extended to cluster projections. Finally, cluster projections can
be combined to clusters candidates over multiple attributes which are validated against the original dataset.

The distinguishing sets in CACTUS rely on the assumption that clusters are uniquely identified by a core
set of attribute values that occur in no other cluster. While this assumption may hold true for many real-
world datasets, it is unnatural and unnecessary for the clustering process, as shall be shown later. Moreover,
it is desirable to choose κ as low as computationally possible in order to detect all clusters. A small κ,
however, entails a large number of candidate cluster projections on the individual attributes that lead to a
combinatorial explosion in the number of final clusters.

The cluster projections on single attributes that CACTUS generates are used in its extension phase to
generate cluster candidates of higher dimensionality that are then validated on the actual dataset. The
proposed approach to this end selects as initial one dimensional candidates C1 all cluster projections c1 on
the first attribute. Candidates in subsequent Ck+1 are generated by combining each (c1, . . . , ck) ∈ Ck with
all cluster projections ck+1 on attribute Ak+1. If for all 1 ≤ i ≤ k, (ci, ck+1) is a cluster projection on
(Ai, Ak+1), (c1, . . . , ck+1) is added to the candidate set Ck+1. Clearly, the candidates have to be validated
by scanning the original dataset and counting the support of each candidate.

The available CACTUS implementation from its authors does not include this extension step, and it is
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unclear whether or not the reported performance [12] accounts for extension and validation. A study of the
extension and validation phase shows a significant performance impact (see figure 9). Finally, the proposed
extension does not discover subspace clusters, other than those in the subspaces

(A1, A2), (A1, A2, A3), . . . , (A1, . . . , An)

The authors propose to apply the MDL pruning approach used in [3] for subspace clustering, but it was
never implemented.

2.2 Subspace Clustering Work

Subspace clustering has been explored more extensively in the context of numerical data. Relevant ap-
proaches in this field include CLIQUE [3], MAFIA [23], PROCLUS [1], ORCLUS [2], and others more
[21, 26, 35]. The following presentation is aimed at the subspace functionalities of the respective methods;
strengths and weaknesses of the clustering methods itself are not discussed in detail. After a brief summary
of the individual methods, their applicability to categorical subspaces is presented.

CLIQUE was proposed in [3]. It is a grid-based approach that works on ξ equal-width intervals in each
dimension, where ξ is user defined. The cross-product of one of these intervals per dimension is referred to as
a unit for a given set of dimensions. A unit is considered dense if its support is above a user specified level τ .
Starting from one dimensional dense units D1, CLIQUE generates the higher dimensional dense units (i.e.
candidate clusters) in an a-priori manner [4]. To compute Dk, the algorithm self-joins Dk−1 for units that
share the first k−2 dimensions. Those elements of Ck that have a k−1 dimensional projection not included
in Ck−1 are subsequently pruned. To further reduce the computational cost of the candidate construction,
the authors propose to prune candidates with low coverage where the cut-off point is determined by using
the Minimum Description Length (MDL) principle. Clearly, completeness of the method is lost in this step.
The final clusters are then generated by finding maximally connected sets of dense units, where connections
refer to shared faces in hyperspace. DNF expressions with disjunctions of disjoint intervals on the same
attribute and conjunctions over different attributes are used to describe the resulting clusters.

MAFIA [23] improves CLIQUE by introducing the notion of adaptive grids. Adaptive grids mitigate one
of the core problems of grid-based approach: the trade-off between computationally intensive fine grids, and
imprecise coarse grids. An initially fine-grained histogram is used to merge bins in regions that have a density
below average. The results is a variable-size grid structure with finer resolution in regions with higher density,
i.e. regions that are more interesting. The bottom-up approach used by CLIQUE for candidate generation
is duplicated with the exception that any k − 2 matching dimensions will suffice for two k − 1 dimensional
candidates to be joined into a k dimensional candidate, not necessarily the first k−2 dimensions. Note, that
the cluster notion of both, CLIQUE and MAFIA, is different from that used by the algorithms discussed
below: CLIQUE and MAFIA computer overlapping clusters while the remaining methods are targeted at
computing a partition of the data set.

Aggarwal et al. introduce PROCLUS [2], a projection-based clustering algorithm. PROCLUS creates
subspace clusters by considering for every cluster C a subspace which yields the “best” cluster for the
associated axes-parallel projection of C. The cluster computation itself is based on a hill-climbing technique
similar to the CLARANS local search approach [24]. An initial set of potential cluster medoids M is
chosen based on a modified greedy approach. For every iteration the algorithm then determines the “best”
dimensions of subspaces associated with each medoid in the set of current medoids M ⊂ M. Given a
maximal spherical neighborhood Li of a medoid mi that does not contain any other mj ∈ M, the average
distance Xi,j of a point in Li to mi along dimension j is determined. The “best” dimensions are selected
as the smallest Xi,j , reflecting to the idea that along a relevant dimension of a medoid mi points should be
close to that medoid.

ORCLUS [2] improves PROCLUS by including non-axes-parallel projections. In an effort to decrease the
energy (i.e. the sum of the error squares) of the cluster projections, the algorithm uses the eigenvectors ei of
the covariance matrix of points in a cluster C corresponding to the lowest eigenvalues λi. These eigenvalues
λi correspond to to the variance along the direction ei. In this sense, the ORCLUS projections can be
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understood as an inverted Principal Component Analysis, where the goal is to find projection directions
with minimum variance.

The RIS algorithm presented in [21] ranks “interesting” subspaces of a data set which can then be used
to pre-process data for other clustering techniques. The method is based on the notions of density and core
objects first defined in the context of the DBSCAN algorithm [11]. In essence, those subspaces are considered
most interesting (have the highest quality) that contain the highest number of points in ε neighborhoods
around core objects in the subspace. To this end, the algorithm first computes for every core object o those
subspaces in which o can still be considered a core object in a bottom-up manner. A related monotonicity
property is exploited in this step. The set of candidate subspaces is subsequently pruned where higher
dimensional subspaces are of higher quality than their lower dimensional projections (downward pruning).
Also, a heuristic approach is presented to prune those k dimensional subspaces that can be thought of as
combination of a high-quality k−1 dimensional subspace and a low-quality one dimensional subspace (upward
pruning). The intuition behind this latter reduction is, that a k dimensional subspace resulting from such
a combination is not the best possible k dimensional subspace for the subsequent clustering, i.e. a higher
quality k dimensional subspace exists.

The problems that the above methods face in the presence of categorical data can be grouped in the
following categories.

Distance notions Distances between categorical data points are problematic, as illustrated in section 1.3.
Categorical distance metrics, such as SMC, can be used but are likely not to produce equivalent result. In
PROCLUS algorithm, for example, the dimensions of the best subspaces for each medoid are determined by
the average distances between the medoids mi and the surrounding data points xk along every dimension.
When using categorical distance measures, the distance along each dimension j degenerates to a boolean
value (i.e. 0 if the value of xk on attribute j is the same as the value of mi on attribute j, and 1 otherwise).
The resulting loss in resolution is likely to reduce the quality of the results. The same observation holds also
true for the RIS algorithm, e.g. for the verification of the core object property in different subspaces.

Combinatorial effects The subspace extension approach of CACTUS and MAFIA could potentially be
extended to capture categorical data. In fact, one of the central elements of the algorithms itself is the
discretization of numerical data into a grid. However, not all numerical information is lost in this process.
An important attribute of the units used in the subspace extension process is their order, i.e. the faces that
they have in common. Clearly, such an order is not present in the case of categorical data. To make the
extension technique applicable to categorical data, every combination of two dense cells would have to be
considered dense, not only those that are neighbors. The effect would be a combinatorial explosion of the
candidate set.

Numerical requirements Finally, methods such as ORCLUS require numerical computations (e.g. to
compute the direction of lowest variance), which are not well suited for categorical data sets.

3 Improved Categorical Clustering

This chapter introduces Click, a novel clustering method that maps the categorical clustering problem
to the problem of enumerating maximal k-partite cliques in a k-partite graph [31, 34]. Like the attribute
summaries used by CACTUS, Click utilizes a compressed representation of the dataset that can be fit into
main memory for many datasets. It can be thought of as an adjacency matrix for a k-partite graph.

Consider the sample dataset D given in table 1 with a total of three categorical attributes A1, A2, A3

and six displayed records. A natural way to depict this dataset is as a simple undirected graph (V,E) where
the vertices V represent distinct attribute values and the edges E indicate co-occurrence of these attribute
values in some record in the database. Such a mapping is shown in figure 2.

The co-occurrence of a1 and b1 in the first record is represented by the edge connecting the vertices
a1 and b1. However, the multiple co-occurrences of a2 and b3 in records 2, 3, and 5 result in only one
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ID A1 A2 A3

1 a1 b1 c1

2 a2 b3 c2

3 a2 b3 c3

4 a2 b1 c1

5 a2 b3 c3

6 a3 b3 c3

...

Table 1: Sample categorical dataset

a1

a2

b1 c1

a3

b2

b3

c2

c3

Figure 2: A sample graph encoding

edge connecting these vertices. Note, that the resulting graph is always k-partite, as values from the same
attribute can never co-occur in the same transaction. In other words, it is natural to model a categorical
dataset as a k-partite graph where the vertex set is partitioned into k disjoint sets (one per attribute) and
edges exist only between vertices in different partitions.

Instead of connecting the vertices v1, v2 ∈ V for any co-occurrence, a more general threshold α can be
introduced, that quantifies the number of co-occurrences that an attribute value pair must have before the
corresponding vertices are connected in the graph model. In particular, α can be chosen to correspond to
the threshold that makes the two values strongly connected. Thus the dataset D can be represented as a
k-partite graph Γ(D) as follows.

Definition 3.1 (k-Partite Graph) Let D be a categorical dataset over attributes A1, . . . , An and V =
⋃n

i=1 Di. Let α ∈ R
>0. The undirected graph Γ(D) = (V,E) where

(vi, vj) ∈ E ⇐⇒ σ∗({vi}, {vj}) = 1

is called the k-partite graph encoding of D.

Definition 3.2 (k-partite (Maximal) Clique) Let D be a dataset with V =
⋃n

i=1 Di, and let Γ(D) =
(V,E) be its k-partite graph. C ⊆ V is a k-partite clique in Γ(D) iff every pair of vertices vi ∈ C ∩ Di and
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vj ∈ C ∩ Dj (with i 6= j) are connected by an edge (vi, vj) ∈ E in Γ(D). If there is no C ′ ⊃ C such that C ′

is a k-partite clique in Γ(D), C is called a maximal clique.

Given the k-partite graph Γ(D), the k-partite maximal cliques of the graph correspond to clusters of the
underlying dataset.

Theorem 3.3 (Cluster/Clique mapping) Given a categorical dataset D and a k-interval C = C1× . . .×
Ck with Cj ⊆ Dij

.

1. If C is a cluster over attributes {Ai1 , . . . , Aik
}, then C is a maximal k-partite clique in Γ(D).

2. If C is a maximal k-partite clique in Γ(D), and σ∗(C) = 1, then C is a cluster over attributes
{Ai1 , . . . , Aik

}.

Proof: ⇒. For i, j ∈ {1, . . . ,m}, i 6= j, Ci and Cj are strongly connected in D, i.e. σ∗(ci, cj) = 1 for all
ci ∈ Ci and cj ∈ Cj . Hence, (ci, cj) ∈ E and C is a k-partite clique in Γ(D). Moreover, 6 ∃C ′

i ⊃ Ci s.t. C ′
i

and Cj are strongly connected, implies that Ci is maximal.
⇐. For i, j ∈ {1, . . . ,m} and ci ∈ Ci, cj ∈ Cj , C is a clique means (ci, cj) ∈ E holds and thus σ∗(ci, cj) =

1. C is a maximal k-partite clique implies that for every possible C ′
i ⊃ Ci, C ′

i is not strongly connected
to at least one Cj . Hence, there is no proper superset of C that satisfies the cluster requirements. Finally,
σ∗(C) = 1 implies σ(C) ≥ α × E[σ(C)]. Thus C is a cluster over {Ai1 , . . . , Aim

}.

3.1 The CLICK Algorithm

By theorem 3.3, to mine all the categorical clusters in D is equivalent to enumerating the set C of all the
maximal k-partite cliques in Γ(D), followed by a validation step that verifies whether σ∗(C) = 1 for all
C ∈ C. Note, that Click can mine maximal k-partite cliques for any 1 ≤ k ≤ n. If k = n, the discovered
cliques are clusters over the full set of dimensions, and if k < n then the discovered cliques are subspace
clusters.

Click(Dataset D, α, minsup)
AttributeValueRanking: R =

⋃n

i=1 Di

Clique C = ∅
CliqueCollection C = ∅

PreProcess(D, α,Γ(D),R)
DetectMaxCliques(Γ(D), C,R, C)
PostProcess(D, C, α, minsup)
return C

Figure 3: The Click algorithm

The basic Click approach consists of the three principal stages, shown in figure 3, as follows:

• Pre-Processing: In this step, the k-partite graph is created from the input database D, and the at-
tributes are ranked for efficiency reasons.

• Clique Detection: Given Γ(D), all the maximal k-partite cliques in the graph are enumerated.

• Post-Processing: the support of the candidate cliques within the original dataset is verified to form the
final clusters. Moreover, the final clusters are optionally merged to partially relax the strict cluster
conditions.

The details of each step appear below.
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3.1.1 Pre-processing

Definition 3.4 (Neighbors) Let D be a categorical dataset over attributes A1, . . . , An and V =
⋃n

i=1 Di.
Let α ∈ R

>0. The neighbors for an attribute value vj ∈ Di are given by the function N : V → 2V , defined as

N(vj) =
{

vk ∈ V : σ∗
(

{vj} × {vk}
)

= 1
}

Note, that the neighbors for an attribute value vj are those other attribute values Vk that are strongly
connected to it. Note also that, by definition, if vj , vk ∈ Di then vk 6∈ N(vj), since if both vj and vk are
values of the same attribute Ai they cannot co-occur in the same database record.

Click generalizes the clique enumeration technique presented in [20] to handle k-partite cliques. Many
clique detection algorithms make use of a heuristic to guide the search for maximal cliques. The number of
vertices in a graph that a given vertex is connected to is clearly a good choice when a next best attribute value
to continue the search is selected. This heuristic is formalized as the connectivity defined below. Intuitively,
it corresponds to number of neighbors (|N |) plus the remaining values of the attribute in question (|Di|−1).
However, if a given value does not co-occur with values of other attributes it cannot be part of a k-partite
clique. Therefore its connectivity should be zero.

Definition 3.5 (Connectivity) Let D be a categorical dataset and vi ∈ Di. The connectivity η(vi) is
defined as:

η(vi) =

{

|N(vi)| + |Di| − 1 if |N(vi)| > 0

0 otherwise

Based on the connectivity, a preference for testing nodes to be added to a clique can be formalized. This
is captured in the following definition.

Definition 3.6 (Attribute Value Ranking) Let D be a dataset over attributes A1, . . . , An and V =
⋃n

i=1 Di. Let vi ∈ V for all i ∈ {1, . . . ,m}. The total order v1, . . . , vm such that η(vi) ≥ η(vi+1) for
1 ≤ i ≤ m − 1 is called an attribute-value ranking of V .

The preprocessing step (PreProcess(D, α,Γ(D),R) in figure 3), takes as an input the categorical dataset
D and the threshold α and computes all the strongly connected attribute values to create the k-partite graph
Γ(D). Also a ranking of the set of all attribute values R by connectivity is generated.

3.1.2 Enumerating K-partite Maximal Cliques

The clique detection phase is based on the idea that at each point in time only those vertices can be added
to a clique that are strongly connected to all previous vertices. If more than one such vertex exists, the
attribute value ranking is used to break the tie. It is a recursive algorithm that at each stage tries to expand
the current clique in the above fashion to ensure maximality.

Initially the clique detection DetectMaxCliques is called with the empty clique C and the full ranked
attribute value set R as list of possible vertices to be used for an extension. Upon return, the clique collection
C contains all maximal k-partite cliques in the dataset.

Note, that foreach statements process attribute value rankings in descending order. The predicate Φ(C)
evaluates to true iff subspace clusters are to be mined, or if full space mining is desired (i.e., n-partite cliques)
and C contains at least one attribute value for every attribute of the dataset. Otherwise Φ(C) is false. The
set RD contains all elements of R that have their deleted flag set. Similarly, RP is the subset of R that
contains all elements that have their processed flag set.

DetectMaxCliques starts by checking if the current clique C covers all relevant attributes and contains
all possible attribute values, i.e., it is a maximal clique. Φ(C) is used to configure the algorithm for either full
space clustering or subspace clustering. In the latter case, it always evaluates to true so that only maximality
(R = ∅) remains as a requirement. In the former case, the attribute values in C are checked for coverage of
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DetectMaxCliques(Graph Γ(D)
CliqueList C,
AttributeValueRanking R,
Clique C)

if(Φ(C) ∧ R = ∅)
C = C ∪ C

return

RD = RP = ∅
foreach v in R−RD −RP do

C ′ = C ∪ {v}
R′ = ∅
RD = RD ∪ {v}

foreach v′ in R−RD do
if (σ∗(v, v′) = 1)

R′ = R′ ∪ {v′}
RP = RP ∪ {v′}

if(Φ(R′ ∪ C ′))
DetectMaxCliques(Γ(D), C,R′, C ′)

Figure 4: The Click Clique Detection

all dimensions of the dataset. If the current clique C satisfies these constraints, it is added to the list of all
cliques C and the search is continued at the previous level.

If C does not fulfill the above requirements, the outer foreach loop attempts to add one attribute value
v to C in an effort to create a yet larger clique. Note, that at any given point in time R contains only those
attribute values that are strongly connected to all values in C. Hence, adding v ∈ R to C will yield another
clique C ′. v is marked as deleted (RD = RD ∪ {v}), indicating that it was already considered in the clique
construction.

To maintain the condition that all attribute values in R are strongly connected to all values in C, a R′

matching C ′ needs to be constructed before recursing. To this end, the inner foreach loop scans all attribute
values that were possible extensions to C and selects only those that are also strongly connected to the new
attribute value v that was added to C. A list of these nodes is maintained in RP .

Finally, the algorithm recurses on the newly created clique C ′ with its matching attribute value ranking
R′. If only full dimensional clusters are to be detected, part of the search space can be pruned at this point:
Only if the clique C ′ can be extended to the full space through values in R′ (i.e., Φ(R′ ∪ C ′) is true) does
the algorithm have to recurse.

Both, RD and RP , are also used for pruning. Consider two possible extensions v1 and v2 of a clique C.
If an extension by v1 was attempted before, the set of possible extensions to v2 (R′) does not need to contain
v1. If a clique containing both, v1 and v2 exists, it was discovered when C was extended by v1, because in
that case v1 and v2 are strongly connected and, hence, v2 was part of the R′ accompanying v1. The set RD

prunes these cases by recording every value that has already been used to extend C.
Similarly, if v2 was already part of the R′ accompanying v1, it need not be considered as an extension to

C. This latter case is guarded against by the processed attribute values RP .
Consider the k-partite graph encoding Γ(D) in figure 2, where edges denote strong connectivity. An

attribute value ranking of V is

(a2(7), b1(6), c1(6), b3(6), c3(5), a1(4), c2(4), a3(4), b2(0))

where the connectivities η(v) are given in parentheses.
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a2 b1 c1 b3 c3 a1 c2 a3 b2

b1 c1 b3 c3 a1 c2 a3

c1 b3 c1 b3 c2 a3 b1 c1 a3

c2 c2 a3 c1

Figure 5: DetectMaxCliques example

Figure 5 shows a corresponding run of DetectMaxCliques. Vertices depicted in gray denote search
paths that were pruned due to RP , whereas bold vertices indicate that a clique was found. By following the
edges up to the root one can construct the corresponding cliques. The R′ sets can be read from the figure by
computing the union of all children of a node. For example, the R′ that is created when DetectMaxCliques
is called with the clique {a2, b1} (in the leftmost path) is {c1, b3}. This example shows both full and subspace
cliques. For example {a2, b1, c1} is a full space clique.

3.1.3 Post-processing

Once all the maximal k-partite (or n-partite) cliques C have been mined, the post-processing phase (PostProcess(D,
C, α, minsup)) involves a single scan of the dataset to count – for each candidate clique C ∈ C – the number
of transaction in the dataset that support it. If σ∗(C) = 1, i.e., the support of C is at least α times its
expected support, then C is a valid clique.

Note, that the support counting compromises the completeness of the Click output. While all maximal
cliques are reported by the clique detection phase, some might be pruned out based on the support criteria.
Subcliques of a pruned clique, however, might have had proper support. An exploration of the subcliques
induced by every rejected clique will restore the completeness of Click. The vertical approach presented in
section 3.3 could potentially be used to this end.

The method above works well, but for some datasets it may output too many overlapping clique. This
is mainly because of the strict notion of strongly connected vertices. For instance, consider a clique C =
Ci1 × . . . × Cik

, and consider a vertex vm such that vm is strongly connected to all intervals except for one,
say Cij

= {v1, . . . , vl}. Assume that vm is strongly connected to all vertices in Cij
except for va. In this case

vm cannot belong to maximal C, but it may belong to another maximal clique C ′ that has a high degree
of overlapping intervals with C. Thus it may be appropriate to partially relax the strict clique notion to
generate more meaningful clusters.

As an example, consider again the dataset in table 1. Assume that the clique detection algorithm had
reported two candidate cliques C1 = {a2}×{b3}, and C2 = {b3}×{c3}. Even though a2 and c3 may not be
be strongly connected (say, strong connectivity would require 3 co-occurrences in the example), it might be
reasonable to merge them into the full dimensional cluster C = {a2} × {b3} × {c3}, since a2 and c3 can be
deemed almost strongly connected.

The enhanced post-processing step in Click implements a novel coverage method based on maximal
frequent itemsets that merges the final clusters according to a user specified threshold. By building for
each transaction in D the set of cliques that are supported by it, a maximal frequent set mining problem is
formulated, the solution of which points to cliques that are often co-supported by the same transaction and
should thus be merged. For the example in table 1 (assuming C1 and C2 are the only maximal cliques), the
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frequent itemset problem would be to find maximally frequent sets in

DM =
{

{}, {1}, {1, 2}, {}, {1, 2}, {2}, . . .
}

where the sets contain the respective clique indices. Mining at minsup = 2 yields the maximal frequent set
{1, 2} suggesting that C1 and C2 be merged.

The problem can intuitively be understood as a coverage problem, where one tries to cover the maximal
amount of tuples with the minimal number of cliques, according to the user defined minsup parameter.
Clearly, a range of options exists for merging the candidate cliques based on the result of the above mining
problem. The algorithm hence needs to assign priorities to the maximal frequent itemsets. A good choice is
the number of records that would fall into the interval that results from merging the element cliques of such
a maximal frequent itemset, i.e. its coverage. A low-complexity approximation, the coverage weight, of this
priority measure is defined below.

The following definitions formalize the maximal frequent set mining problem associated with a set of
candidate cliques and provide the necessary tools to formulate the merging algorithm.

Definition 3.7 (C Set) Let D be a dataset, Γ(D) = (V,E) its corresponding graph, and C the maximal
k-partite cliques in Γ(D). For every clique C i ∈ C let i denotes its unique clique id. The C Set of Γ(D) is a
function CSet that maps every record in D to the set of clique ids that the record supports.

CSet(t) = {i : t ∈ Ci}

Definition 3.8 (Maximal Frequent Clique Set) Given the CSet of D, the maximal frequent clique prob-
lem is defined as finding all maximal frequent itemsets at a given minsup level within the problem dataset

DM =
{

CSet(t) : t ∈ D
}

The solution to the maximal frequent clique problem is called the maximal frequent clique set FD

The total number of records that support a maximal frequent clique can be approximated by adding up
the transactions that support each individual element clique and correcting the (m − 1) double countings
due to records supporting more than one clique. This approximation can be done with information from the
validation and maximal frequent clique mining stages, whereas a precise computation would require a full
inclusion/exclusion approach, entailing numerous passes over the dataset.

Definition 3.9 (Coverage Weight) For a frequent clique set FD, the coverage weight ω : FD → N is
defined as

ω(X) =
m
∑

i=1

[

σD(Ci)
]

− (m − 1) ∗ σDM
(X)

where X = {1, · · · ,m} ∈ FD is a set of clique ids (corresponding to cliques
{

C1, . . . , Cm
}

) that frequently
occur together and σDM

(X) denotes X’s support within the problem dataset DM from definition 3.8.

After validating candidate cliques, the enhanced post processing computes the maximal frequent clique
set F of D. The implementation uses an existing GenMax implementation [14] to this end.

the individual maximal frequent sets are then processed in order of descending coverage weight. Each
element FD[i] is added to FP , which contains sets of clique ids to be merged in the end. Since no clique can
be merged twice, all clique ids that occur in FD[i] have to be removed from the not-yet-processed FD[j], j > i.

Finally, the new clique set C is created by iterating through the sets of clique ids and merging the cliques
accordingly. Note, that while C contains actual cliques, FP contains only the clique ids used in the maximal
frequent set mining. Hence, a copy C ′ of the original cliques needs to be retained, that can be referenced in
the merging process.
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PostProcess(D, C, α, minsup)
Scan D and check support of each C ∈ C
FD = Maximal Frequent Clique Set of D
Sort FD by coverage weights ω

FP = ∅
for i = 1 to |FD| do

if FD[i] 6= ∅
FP = FP ∪ {FD[i]}
FD[j] = FD[j] −FD[i] for all i < j ≤ |FD|

C′ = C // Save the original cliques
C = ∅
for i = 1 to |FP | do

if ω(FP [i]) ≥ E[ω(FP [i])
// Add union of cliques with indices in FP [i] to C
C = C ∪ C′[FP [i]]

Figure 6: Click Post Processing for Merging Clusters

3.2 Merging Characterization

Clusters computed by the clique generation phase of Click are (after support checking) exactly those
required by the cluster definition as stated in theorem 3.3. However, in favor of a more meaningful output,
the merging phase of the post-processor combines the strict original clusters to final clusters that “almost”
comply with definition 1.6. The present section characterizes these modified clusters based on the merging
phase algorithm.

Consider a set of merged clusters {CM
1 , . . . , CM

m } stemming from applying the Click algorithm to dataset

D with parameters α and minsup. For every CM
i there exists a set of original clusters {C1

i , . . . , C
n(i)
i } such

that
CM

i =
⋃

j=1,...,n(i)

C
j
i

The individual CM
i (or more precisely the indices of the C

j
i in the set of original cliques) are either

elements of the maximal frequent clique set FD from definition 3.8 or subsets thereof. A CM
i is a subset

of a maximal frequent itemset in FD if the corresponding maximal frequent itemset contained cliques that
were already merged with other cliques before the post-processor considered CM

i . Due to this possibility,
the individual CM

i are only guaranteed to be frequent, the maximality is lost.
A frequent CM

i entails, that there are at least r × minsup transactions that support all the component

cliques C
j
i ,where r is the number of records in D that support any clique. In other words, the merged

cliques are supported by a set of core transactions of size at least r × minsup.
Secondly, among all possibilities to form clusters with sufficiently large cores, the Click merging phase

prefers those that yield larger clusters. To this end, Click applies a greedy strategy combined with a
heuristic for the resulting clique size. The coverage weight introduced in definition 3.9 approximates the
number of transactions that will support a given CM

i and the merging phase processes the CM
i in order of

descending coverage weight.
In summary, the Click merging phase produces from the set of originally detected cliques a merged

result with the following properties.

• Final cliques CM
i contain a set of core transactions that support every component clique C

j
i .

• Where more than one way of combining the original clique in that manner exists, Click heuristically
chooses the solution that will yield the largest cliques.
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3.3 Vertical Mining Extension

The Click algorithm as outlined above separates the maximal clique mining step from the validation step,
where the actual support of each clique in the dataset is computed.

A possible alternative formulation for creating the k-partite graph Γ(D) of a dataset D is a vertical
extension that allows direct computation of the support of each clique as it is being mined. One way to
integrate information about the source transactions would be to introduce a new dimension Ao, where the
domain Do of attribute Ao is the set of all transaction ids in the dataset. A new k-partite graph G = (V,E)
can then be constructed as follows: V =

⋃n

i=0 Di, and (vi, vj) ∈ E if vi ∈ Di>0, vj ∈ Dj>0 and σ∗(vi, vj) = 1,
or vi ∈ Do, vj ∈ Dj>0 and vj occurs in transaction with id vi.

Figure 7 shows an example where the attribute value a1, b1, and c1 are not only forming a clique among
themselves. The edges to the transaction nodes 1 and 2 also indicate the transactions that these specific
values occur in.

1

2

a1 b1 c1

Figure 7: Vertical Representation Example

A maximal clique C = Co ∪ Ci1 ∪ . . . ∪ Cik
in the k + 1 dimensional space D0, Di1 , . . . , Dik

has support
σ(C) = |Co|. If the support is at least α times its expected value, then Ci1 × . . .×Cik

is a cluster. Alas, this
approach is very expensive, since edges have to be added from every transaction id to the set of attribute
values in that transaction. The resulting graph would be too large to fit in main memory.

Another alternative is to annotate the vertices of the k-partite graph Γ(D) with the transaction ids that
the vertices are supported by. Consider once again the example dataset D in table 1 and its associated
graph Γ(D) in figure 2. To indicate that the attribute values b1 occurs in transactions 1 and 4, the vertex
corresponding to b1 could be labeled with {1, 4}. More formally, a labeling function λΓ(D) can be introduced
that assigns to each vertex of the graph the transactions that support the vertex in the underlying dataset.

Definition 3.10 (Vertical Labeling) Let D be a categorical dataset with attributes A1, . . . , An. The ver-
tical labeling function on its k-partite graph is defined as follows.

λΓ(D)(vi) = {t ∈ D : t.Ai = vi}
3

λ can be extended to capture the supporting transactions of a clique C = C1 ∪ . . . ∪ Cn according to λ(C) =
⋂

i∈{1,...,n} λ(Ci) with λ(Ci) =
⋃

vi∈Ci
λ(vi).

This corresponds to the intuition that for a transaction to support a clique, its attribute value for each
attribute must match one of the values of the clique for that attribute. The conjunction entailed by each is
reflected in the intersection operator between the attributes, while the disjunction one of is contained in the
union over all attribute values.

Clearly, for vertical mining to be successful, the transaction information needs to be leveraged for pruning
the search space depicted in figure 5 to offset the additional computation. Hence, the supporting transactions
need to be computed every time a clique is extended, and an appropriate pruning criteria has to be defined.

3λ is written in lieu of λΓ(D) where it is clear from the context.
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Consider a clique C = Ci1 ∪ . . . ∪ Cij
and an attribute value vi ∈ Di that is not yet in C but strongly

connected to all elements of C. To compute the transactions supporting the new clique C ′ = C ∪ {vi}
proceed as follows.

• C ∩ Di = ∅. If vi is the first value of attribute Ai that is added to C, the new transaction set is
the intersection λ(C ′) = λ(C) ∩ λ(vi) as all supporting transactions t must now meet the additional
constraint of having t.Ai = vi.

• C ∩ Di = R 6= ∅. If vi is not the first value, the new transaction set can be computed as λ(C ′) =
λ(C)∪λ((C−R)∪vi). In other words all supporting transactions can either come from the supporters
of the original clique or from those transactions that fitted into the old clique except for their Ai value
vi.

The latter case can be computationally expensive as λ((C − R) ∪ vi) is not necessarily derivable from
previous transaction set computations. An appropriate caching strategy needs to be in place, so that the
transactions need not be computed from scratch. One can, for example, store all unions for every attribute
that have been computed so far. The stored unions can then be used as building blocks for the new
transactions set to be computed by performing relatively cheap intersections. Clearly, any caching strategy
is expensive in the presence of large datasets. Complementary techniques such as Diffsets [36] can be applied
to reduce memory consumption.

With transaction information available at every point of the search tree, a pruning criteria can be defined
based on the support of the clique constructed up to that point. Care must be taken not to cut potentially
successful branched. Specifically, a branch can not be pruned as soon as the support falls below the minsup

value (in this case α times the expected support), as it can be in the context of itemset mining [9, 30, 36]. The
reason for this is, that the support is not monotonous along the search path. In the example graph in figure
2 and the associate dataset in table 1, the clique C ′ = {a3, b3, c3} has support 1 (λ(C) = {6}). However,
when extending the clique to the final clique C = C ∪ {a2} the support increases to 3 (λ(C) = {3, 5, 6}).

The underlying question is if, given a frequent clique C = Ci1 ∪ . . .∪Cij
, |λ(C)| ≥ minsup, a lower bound

σ can be obtained for the support along a given search path to C. Clearly, such a lower bound must be of
the form σ = |λ(vi1) ∩ . . . ∩ λ(vij

)| where vik
∈ Cik

. This choice is intuitive as it maximizes the number of
intersections (by choosing at least one value for every attribute), and minimizes the number of unions (by
choosing at most one value for every attribute). It is straightforward to show that no other type of clique
C ′′ ⊆ C can have a lower support.

Let C ′ = {vi1 , . . . , vij
} be the intermediate clique as chosen above. C ′ can be altered in two ways.

• C ′′ = C ′ ∪ {v′
ik
} for a k ∈ {1, . . . , j}. Then λ(C ′′) = λ(C ′) ∪ λ((C ′ − {vik

}) ∪ {v′
ik
}) ⊇ λ(C ′)

• C ′′ = C ′ − {vik
} for a k ∈ {1, . . . , j}. Then λ(C ′′) = λ(vi1) ∩ . . . ∩ λ(vik−1

) ∩ λ(vik+1
) ∩ . . . ∩ λ(vij

) ⊇
λ(vi1) ∩ . . . ∩ λ(vij

) = λ(C ′).

In a worst-case scenario even an intermediate clique with zero support can be on a specific search path
to a frequent clique, thus negating all pruning strategies for that branch.

However, multiple paths exist to construct a clique. Continuing the example above, the final clique
C = {a2, a3, b3, c3} can alternatively be constructed by extending the intermediate clique C ′′ = {a2, b3, c3}
with a3. In this case the support bottleneck along the search path is the intermediate clique C ′′ with a
support of two. Hence, when pruning at a support of two, the second extension strategy is successful while
the strategy above fails to detect C. In effect, the maximum of the σP for all possible search paths P defines
the admissible cut-off point for pruning.

Consider again a frequent clique C = Ci1 ∪ . . .∪Cij
. The maximum of the σP is obtained by observing an

extension strategy that first extends to an intermediate clique {vi1 , . . . , vij
} covering every dimension with

one value as above. However, for each vik
one chooses the value from Cik

that yields the highest support for
the final clique C. Again, by further extending this clique the support can only grow.
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It is straightforward to show that for any frequent clique C and any dimension Cik
⊆ C there is always

an attribute value vik
that occurs in at least

⌈

σ(C)

|Cik
|

⌉

transactions that support the final clique.
In the example above, from the total support three of C, one transaction involves a3 and two transactions

involve a2. Consequentially, a2 is chosen when constructing the maximum σP . Moreover, the equation above
states that there is an attribute value that occurs in at least two transactions that support the final clique.
Given a final clique supported by three transactions and one dimension with two values, either all transactions
involve one of the values in that dimension, or they are distributed 2:1.

In summary, if all possible search paths to a clique are explored, pruning those where the support of any

intermediate clique drops below
⌈

σ(C)
|Cik

|

⌉

will preserve the completeness of the search strategy. Alas, the value

for |Cik
| is not known in advance, since the clique has not been completely constructed. The only bound

that can be exploited is that for any clique C with σ(C) ≥ minsup > 0 there is always a search path where
the support for any intermediate clique is always above zero. The discussion is summarized in the following
observation.

Observation 3.1 (Vertical Pruning Bound) Let D be a dataset, Γ(D) its k-partite graph, and C a max-
imal k-partite clique in Γ(D) with σD(C) > 0. Then there exists a sequence of sub-cliques

∅ = Co ⊆ C1 ⊆ . . . ... . . . ⊆ Cn = C

with Ci = Ci−1 ∪ {vi}, vi ∈ V (Γ(D)) for i ∈ {1, . . . , n} such that σD(Ci) > 0.

Observation 3.1 can be used to extend the original Click algorithm as shown in figure 8. This algorithm
integrates the pruning ideas discussed above combined with a simple decision criteria for backtracking: If a
certain way of expanding the current clique leads to no branches in the subtree that actually expand to cover
all dimensions, then other expansions must be explored. Clearly, this criteria works only for full-dimensional
clustering. Other criteria will have to be developed for the subspace case.

The procedure has been modified to return whether or not there were branches in the current subtree
that could be extended to cover all dimensions. This information is later on used to decide whether a node
potentially threatens the completeness of the search through pruning.

The pruning decision itself is based on the vertical information computed in λGamma(D)(C
′) for the

current extension candidate C ′. If the support for the current clique falls to 0, observation 3.1 permits
pruning the current branch at the expense of trying other ways to construct potentially pruned maximal
cliques. This is achieved by resetting the markings RD and RP to their state before the current extension
was attempted.

Moreover, multiple levels of backtracking need to be permitted. Consider, a parent clique Cp which is
extended to cliques C1, . . . , Cn. All of the child cliques may still have non-zero zupport. Yet, the way that
Cp is extended may lead to zero support cases further down the subtree, where the actually problematic
extension was the one of Cp itself. By verifying that at least one of the DetectMaxCliquesVertical cases
returns true, recovery is provided from this problem.

The vertical technique obliviates the need for support checking in the post-processing algorithm shown in
figure 6. However, performance studies indicate that the vertical approach does not yield better performance
than the regular approach.

4 Experimental Study

This chapter presents an extensive performance study of Click versus CACTUS and other methods. All
testing was done on a hyper-threaded quad-processor Intel Xeon 2.8GHz with 6 gigabytes of RAM, running
the 2.4.22 SMP Linux kernel. All datasets were stored on an NFS mounted network drive on the same local
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DetectMaxCliquesVertical(Graph Γ(D)
CliqueList C,
AttributeValueRanking R,
Clique C)

if(Φ(C) ∧ R = ∅)
C = C ∪ C

return true

RD = RP = ∅
foreach v in R−RD −RP do

C ′ = C ∪ {v}
R′ = ∅
RD = RD ∪ {v}

P = ∅
foreach v′ in R−RD do

if (σ∗(v, v′) = 1)
R′ = R′ ∪ {v′}
RP = RP ∪ {v′}
P = P ∪ {v′}

if(Φ(R′ ∪ C ′))
if(|λGamma(D)(C

′)| > 0)
if(DetectMaxCliquesVertical(Γ(D), C,R′, C ′) = false)

RD = RD − {v}
RP = RP − P

else
// Prune, but other search paths must be explored
RD = RD − {v}
RP = RP − P

if(No DetectMaxCliquesVertical call returned true)
return false

else
return true

Figure 8: The Vertical Click Clique Detection

100MBit network. The code for CACTUS was obtained directly from its authors. The experiments will show
that Click detects the same clusters as CACTUS while directly computing higher dimensional clusters, and
significantly outperforming it.

All synthetic datasets used in these tests were created using the generation method proposed in [13]; the
code was provided by Ganti et al. The generator creates a user specified number of tuples that are uniformly
distributed over the entire data space. It allows for specification of the number of attributes and the domain
size on each attribute. The generator then injects a user specified number of additional tuples in designated
cluster regions, thus increasing the support of these regions above their expected support.

In the performance studies the clusters were located on the attribute values [0, 9] and [10, 19] for every
attribute unless otherwise specified. Each cluster was created by adding 5% of the original number of tuples
in this interval region. In all performance tests, κ = 3 and α = 3 were chosen for CACTUS as suggested by
Ganti et al. Click was also configured to use α = 3.
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4.1 CACTUS Extension
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Figure 9: Performance Impact of Extensions

As mentioned in section 2, the available CACTUS implementation stops at the stage where it finds the
potential cluster projections on each attribute, and it does not extend these to produce the final n dimensional
clusters or subspace clusters. It is thus unclear whether or not the reported performance in [12] accounts for
extension and validation. To study the impact of these additional steps, the CACTUS implementation was
augmented with the cluster extension and validation steps. Figure 9 shows the running time of CACTUS
with and without the additional steps.

It is obvious that the remaining steps are expensive. CACTUS with extensions is about 3 times slower
than the base-line version, and the gap is increasing. This impact is largely due to the excessive number
of projections that CACTUS generates. In experiments with some of the synthetic datasets and settings
used in [12], CACTUS reported between 10 and 100 cluster projections per dimension. The combination of
these projections resulted in enormous candidate sets. As a trade-off, the validation step could be performed
interleaved with the candidate generation to eliminate false candidates as early as possible and thus prevent
combinatorial explosion. However, this would impact the scalability over large datasets as one pass of the
dataset is required for each validation. The effect of the extension procedure on the overall performance
grows with both, the number of attribute values in the cluster, and the dimensionality of the dataset. In the
remaining performance studies only the base-line CACTUS version is used, since the version with extensions
is too slow.

4.2 STIRR and ROCK

The STIRR [13] algorithm, as implemented by Ganti et al. was also benchmarked. STIRR outputs the
non-principal basins, i.e., weighted vertices, that identify the cluster projection on each attribute. As in the
case of CACTUS, no clusters are actually output. Ganti et al. report in [12] that CACTUS outperforms
STIRR by a factor 3 - 10. These performance gains could not be reproduced in the present tests, even
though the original source code was used. However, it seems clear that the final cluster extraction step in
STIRR would cost at least as much as the extension step in CACTUS.

Like STIRR, the ROCK algorithm does not lend itself well to a direct comparison with Click. While
Click uses about 90% of its execution time for building in-memory representations of the attribute connec-
tivities, the ROCK data format assumes that the similarities between data points are given. Despite this
seeming advantage, the test series depicted in figure 10 shows that Click still outperforms ROCK by orders
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of magnitude. The practical application of ROCK is thus limited to datasets of well below 10000 records
where Click scales into the million record range.
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Figure 10: Click vs. ROCK

The remainder of the performance study hence only compares Click with CACTUS.

4.3 Performance Comparison

Three test series on synthetic datasets were performed to compare the time performance between Click and
CACTUS: Performance over tuples, attributes, and domain sizes.
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Figure 11: Click vs. CACTUS (Tuples)

Performance vs. Dataset Size: Synthetic datasets with 10 attributes, and 100 attribute values per
dimension were used for this test, while the total number of tuples was varied from one to five million. Both
methods scale linearly over the number of tuples in the source dataset, as can be seen in figure 11. Click

outperforms CACTUS in this category by an average of 20%.
Performance vs. Domain size: Datasets with one million tuples and four attributes were used to measure
the performance in relation to the domain size. The number of attribute values per attribute were varied
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from 50 to 500. Figure 12 shows that both methods perform equally well for less than 400 attribute values
per domain. At this point, the runtime of CACTUS dramatically increases, most likely due to memory
shortage. Ganti et al. use a “multi layered approach” in their own experiments to compress the memory
consumption of their approach. Click scales well beyond this point without a need for additional memory
compression.
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Performance vs. Dimensionality: Click is especially scalable with regards to higher dimensional data.
On a dataset with 1 million tuples and 100 attribute values per dimension, Click outperforms CACTUS by
a factor 2 - 3 when varying the number of attributes from 10 to 50 as shown in figure 13.

4.4 Vertical Mining Performance

Section 3.3 presents a vertical mining extension to the standard Click algorithm that mitigates the need
for a second pass over the dataset. Instead, the vertical Click method requires additional memory and
additional CPU time for set computations.

21



The vertical extension was implemented in Click and benchmarked against the Click baseline version.
As in the previous performance study, the number of tuples, attributes, and attribute values were varied to
study the effect of these parameters.
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Performance vs. Dataset size: Figure 14 shows the execution time of both versions versus the dataset
size. Clearly, the vertical extension introduces a large performance penalty. Harddisk operations would have
to be more expensive by an order of magnitude to justify the additional computation. The pruning during
the clique generation phase cannot offset this additional cost.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100 120 140 160 180 200

T
im

e 
(s

ec
.)

Domain size per Attribute

Time vs. Domain Size

CLICK (vertical extension)
CLICK (baseline)
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Performance vs. Domain size: As in the previous case, the Click baseline version yields better results
than the vertical implementation (figure 15).
Performance vs. Dimensionality: Finally, the execution time was measured versus against the number
of attributes in the dataset (figure 16). Again, the vertical extension was proven to be computationally more
intense than the baseline version.

Overall, the vertical extension increases the computational cost of the algorithm instead of reducing it.
The overhead of the additional initialization and interleaved set computations could be acceptable if the

22



 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30  35  40  45  50

T
im

e 
(s

ec
.)

# Attributes

Time vs. Attributes

CLICK (vertical extension)
CLICK (baseline)

Figure 16: Click Vertical Performance (Attributes)

algorithm gained advantages with the number of tuples, as expected. However, the cost of hard disk access
would have to be one order of magnitude higher for this effect to present itself. As mentioned above, the
test machine read the datasets from a network drive already. A local hard drive would further improve the
relative performance of the Click baseline version.

4.5 Clustering Quality

To evaluate the quality of the clusters generated by Click, three basic scenarios were tested on synthetic
datasets and compared to the output of other categorical clustering algorithms. For the following experi-
ments, α was set to 3 and the post-processing was turned off in order to verify the actual reported cliques
before merging.
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Figure 17: Cluster Quality Comparison

Scenario 1 A dataset with clear separation of two clusters. Click detected both individual clusters on
the appropriate attribute values.

The available CACTUS implementation reported a total of 480 cluster projections, 240 per attribute.
These represented all subsets of size 3 of the sets {0, . . . , 9} and {10, . . . , 19}. Clearly, these subsets are part

23



of the cluster projection. However, they do not satisfy the maximality condition of the final clusters. The
extension implementation then connected all subsets of {0, . . . , 9} on the first attribute with the correspond-
ing subsets on the second attribute. Similarly, all subsets of {10, . . . , 19} were connected on both attributes.
Overall, the extension reported 115.200 clusters, reflecting the lack of maximality of the cluster projections.

The STIRR algorithm reported weights of about 0.15 for the attribute values [0, 19] on both attributes,
while the weights of the attribute values in [20, 99] were computed to be about 0.08. According to the
interpretation in [13] this corresponds to a single cluster on [0, 19]× [0, 19], confirming the lack of separation
found in [12].

Scenario 2 A dataset with a slight overlap between two clusters on one attribute. Click detected three
initial cliques, two of which represented the original clusters and an additional clique on [7, 9] × [0, 19]. The
post processing step could optionally merge this third clique with one of the two primary cliques. Note, that
the third clique is nevertheless correctly reported according to the cluster definition 1.6.

CACTUS, again, reported 480 cluster projection. In this scenario, these were all subsets of size 3 of
{0, . . . , 9} and {7, . . . , 16}. The extension procedure was then used to confirm that all extended cluster
projections were indeed subsets of the three clusters that Click reported.

STIRR reported weights of about 0.15 for the attribute values [0, 6] and [10, 16] on the first attribute,
and for the values [0, 19] on the second attribute. The overlap in clusters was reflected in weights of about
0.21 for the values [7, 9] on the first attribute. All other attribute values were reported to be about 0.08. A
non-trivial post-processing step external to STIRR could be able to locate this overlap.

Scenario 3 A dataset with two clearly separated clusters and a third cluster that fully overlaps with the
first cluster on attribute A1, and with the second cluster on the remaining attributes. Click reported two
initial cliques on [0, 19] × [10, 19] × [10, 19] and [0, 9] × [0, 9] × [0, 9], respectively. These cliques were also
the final clusters generated by Click. This behavior is correct with respect to the cluster definition 1.6, as
[10, 19] × [10, 19] × [10, 19] is not maximal.

CACTUS reported all subsets of size 3 of {0, . . . , 20} on attributes one and three, and all subsets of
size 3 of {0, . . . , 9} and {10, . . . , 19} on attribute two, yielding a total of 312 million extension candidates.
Validation of this candidate set was not possible on the available machine. However, the reported subsets for
attribute two are likely erroneous. In fact, they should be the same as for attribute three. If this correction
was made, an extension should theoretically yield the same final clusters that Click reports.

As in scenario 2, STIRR reported weights of about 0.15 where a single cluster is present, 0.21 where
clusters overlap, and 0.08 on all other attribute value.

4.6 Real Data Clustering

Four datasets were studied in an effort to judge the quality of the Click results on real data. These datasets
were

Mushroom Dataset The Mushroom dataset is part of the UCI Machine Learning Repository 4 and con-
tains 8124 records and 22 attributes. Each record describes one Mushroom specimen in terms of 22
physical properties (e.g., color, odor, and shape) and contains a label designating the specimen as
either poisonous (3916 records) or edible (4208 records). All 22 attributes are categorical.

Congressional Votes Dataset The Congressional Votes dataset is also part of the UCI repository. It
contains 435 records indicating the voting behavior of Congressmen in terms of their votes in 16
different polls in 1984. Each record is labeled to be either Republican (168 records) or Democratic
(267 records). The individual attributes are boolean valued (yes or no vote).

Bibliographic Dataset The bibliography dataset used in [12] contains 7766 records of database publica-
tions [33], and 30919 records of papers on theoretical Computer Science [29]. Each records has four

4http://www.ics.uci.edu/˜ mlearn
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None C1 C2 C3 C4 C5 C6 C7 C8

P 5.1% 0.0% 21.3% 0.0% 0.0% 3.5% 0.0% 0.0% 0.0%
E 3.8% 2.4% 0.0% 0.8% 6.3% 0.0% 9.5% 0.6% 1.6%

C9 C10 C11 C12 C13 C14 Others
P 0.0% 0.0% 2.4% 0.0% 0.0% 16.0% 0.0%
E 1.8% 17.9% 0.0% 2.4% 0.6% 0.0% 4.0%

Table 2: Confusion Matrix Mushrooms (Full Space)

None C1 C2 C3 C4 C5 C6 C7 C8 C9

P 0.0 % 0.0% 21.3% 0.0% 0.0% 3.5% 0.0% 0.0% 0.0% 0.0%
E 0.0 % 2.4% 0.0% 0.8% 6.3% 0.0% 9.5% 0.6% 1.6% 1.8%

C10 C11 C12 C13 C14 C15 C16 C17 C18 C19

P 0.0% 0.0% 0.1% 0.0% 0.5% 0.4% 2.8% 0.0% 0.1% 19.5%
E 17.9% 0.1% 0.3% 0.6% 0.5% 0.0% 0.0% 0.0% 9.4% 0.0%

Table 3: Confusion Matrix Mushrooms (Subspace)

attributes, namely the first and second author, the conference, and the year it was published. Where a
paper was written by a single author, the name is replicated to the second attribute. The challenge of
this dataset lies within the large domain sizes of over 10.000 values for each of the authors, over 2.300
values for the conference, and 52 values for the year attribute.

Reuters 21578 Dataset The Reuters dataset is a standard benchmarking dataset for text categorization
and is also included in the UCI repository. It contains 21578 articles from the Reuters news agency
as well as a number of meta information, such as places and people the article talks about, as SGML
markup. To make the data accessible to Click the articles were pre-processed using a morphology
function [10] to collapse different verb forms and tenses (e.g. am, was, is are all mapped to be). A
frequency dictionary was built and pruned to the 193 most frequent words. Finally, the first 10000
articles were encoded according to the scheme presented in section 1.3. The result was a boolean
dataset with 193 attributes and 10000 records on which Click could be used.

Full dimensional clustering as well as subspace clustering were applied to each of the datasets.

The Mushroom Dataset The mushroom dataset is rather sparse with 22 attributes and typically 6-10
values per attribute and only about 8000 records. Assuming an average of 8 values per attribute, one obtains
822 ≈ 74×1018 possible tuples. For that reason, Click was configured to run with a low α value of 0.4. Not
surprisingly, many of the candidate clusters were overlapping. By assigning each tuple to the first cluster
that contains it, tables 2 and 3 were generated for full dimensional and subspace clustering, respectively. The
two rows represent the two original classes (poisonous and edible) while the columns represent the clusters
that Click generated.

Full dimensional clustering (table 2) initially yielded 256 candidate clusters which were then reduced to
213 clusters using a minsup value of 0.5% for the post processing step. While about 9% of the tuples could
not be clustered (column None), the remaining clusters exhibit perfect purity with respect to the original
labeling.

The subspace clustering produced 596 initial clusters. This figure was reduced to 553 by merging with a
minsup setting of 5%. As in the full dimensional case, a large number of clusters overlapped. By assigning
each tuple to the first cluster that contains it, table 3 was obtained. The subspace procedure clearly improved
the result with respect to the unclustered tuples (0% down from 9% in the full dimensional case). Alas, some
of the generated clusters now show impurities with respect to the original labeling. Since this figure is below
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None C1 C2 C3 C4 C5 C6 C7 C8

R 1.9% 0.0% 0.2% 0.0% 36.5% 0.0% 0.0% 0.0% 0.0%
D 0.6% 4.4% 0.5% 0.7% 3.2% 4.4% 45.6% 1.8% 0.2%

Table 4: Confusion Matrix Votes (Full Space)

None C1 C2 C3 C4 C5 C6 C7 C8 C9

R 0.5% 0.0% 0.2% 0.0% 36.5% 0.0% 0.0% 0.0% 0.0% 0.5%
D 0.4% 4.4% 0.5% 0.7% 3.2% 4.4% 45.6% 1.8% 0.2% 0.2%

C10 C11 C12

R 0.5% 0.2% 0.2%
D 0.0% 0.0% 0.0%

Table 5: Confusion Matrix Votes (Subspace)

1% it is potentially acceptable. By using all 553 clusters a perfectly pure clustering is obtained. However,
this level of granularity will be inappropriate for most applications.

The Congressional Votes Dataset As with the Mushroom dataset, the Congressional Votes dataset is
relatively sparse with a total of 216 = 65536 potential tuples, while the dataset contains only 435 records.
An α value of 0.1 was used in this experiment.

Table 4 shows the results for a full dimensional clustering with Click. The rows indicate the two original
classes (Republican or Democrat). The post processing step proved to be especially useful in this case, as
it reduced the original 51 cluster candidates down to 13 at a minsup level of 5%. Of these 13 clusters, the
first 8 contained almost 98% of all tuples. Only 2.5% of the voting behaviors could not be clustered using
this approach.

Using subspace clustering, the rate of unclustered tuples was reduced to about 1% while increasing
the number of relevant clusters to 12 (table 5). The actual number of detected clusters was 30, down
from 68 candidates before the merging procedure. Interestingly, the subspace clustering preserves all full
dimensional clusters (C1 - C8) and adds four subspace clusters that capture previously unclustered voting
behavior. This intuitively models the fact that there are strong Democratic and Republican positions but
that some Congressmen may not be in line with the party’s overall policy on individual issues. By not
considering these issues (i.e. by leaving out these dimensions) the algorithm can capture “non-standard”
voting behaviors. This effect is emphasized by a number of missing values in the voting behavior records.

The Bibliographic Dataset The bibliographic dataset did not lend itself well to clustering. In a number
of experiments a maximum of 12% of the publications could be clustered. However, those clusters that were
detected provided insightful summaries on groups of authors that were active at certain conferences at a
certain time. Table 6 shows an excerpt from one of the eight clusters that were detected using α = 65 and
minsup = 0.005 when performing full-dimensional clustering. This particular cluster captured a total of 260
publications in theoretical Computer Science by authors that co-published or appeared at the same time at
the same conferences.

The Reuters 21578 Dataset Due to the specific classification of articles in the document base (e.g.
places and people that articles report about), no confusion matrix could meaningfully be generated. Instead,
the reported clusters were verified manually. However, by manually adjusting the words in the frequency
dictionary Click could be used to cluster according to such specific dimensions.

Click was configured to run a subspace clustering with α set to 0.5 and minsup set to 1%. The result
were 7 clusters as shown in table 7. Clearly, the clustering found by the algorithm gives a meaningful picture
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Dimension Values
Author 1 {Abadi Hromkovic Goldberg Papadimitriou . . . }
Author 2 { Seymour Yung Watanabe Schneider Gunopulos Motwani . . . }

Conference {ALGORITHMS DMATH ESA EUROCRYPT IEEETC . . . }
Year {1991 1988 1989 1992 1990 1993 1995 1996 1994 }

Table 6: Sample clique for the bibliographic dataset

Cluster Support Words
1 119 net, tax, share, revenue, profit, . . .

2 73 low, fund, firm, credit, decline, american, commission, . . .

3 168 say, agree, product, business, financial, investment, . . .

4 199 reuter, record, . . .

5 230 new, york
6 58 reuter, say, capital
7 200 march, company, exchange, . . .

Table 7: Clusters for Reuters 21578

of the articles within the collection. The second most frequent cluster 7 can, for example, be interpreted as
a large number of articles reporting on the situation of publicly listed companies in the month of march, or
in other words the stock exchange impact of their Q1 results. Similar meaningful interpretations exist for
the other clusters.

4.7 Post-processor Performance

The CLICK post-processing allows for merging “almost strongly connected” cliques based on a user defined
similarity threshold. The effectiveness and performance of this merging step were evaluated on the biblio-
graphic dataset used in [12]. Because of the low number of attributes (4) and the high density within the
dataset, CLICK was configured to use an α value of 75 yielding 258 initial cluster candidates.
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While varying the minsup value from 0.1% to 30%, the duration of the post-processing phase and
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the number of final clusters were recorded. The cluster reduction shown in figure 18 demonstrates the
effectiveness of the merging procedure in reducing the number of output clusters, as well as its responsiveness
to the user determined minsup threshold.
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Figure 19: Post-processor Performance

Moreover, the merging performance is not affected by the chosen minsup value, as can be seen in figure 19.
On a moderately sized dataset such as the bibliographic dataset (≈ 38000 records) used for this experiment,
only between 1 and 2 percent of the total execution time are spent validating and merging clusters.

5 Discussion and Conclusions

This work introduced Click, a novel clustering algorithm for categorical data based on enumerating maximal
cliques in k-partite graphs. A new merging procedure was introduced as part of the work on Click. By
leveraging existing maximal frequent set algorithms, the post-processing phase of the algorithm relaxes the
strict cluster definition based on a user defined parameter. The algorithm performance and cluster quality
were evaluated. The experiments indicate substantial performance gains of factor two to three over previous
approaches, especially on high dimensional datasets.

An extension to Click was studied that uses a vertical representation of the original dataset. But while
vertical technique have been successfully applied in association rule mining, the vertical approach delivers
unsatisfactory results in the context of clique-based clustering. The theory behind this phenomenon was
developed in this text.

In summary, the following contributions were made in this work.

Clique-based categorical clustering . The Click algorithm is the first categorical clustering algorithm
to be based on an intuitive mapping between the categorical clustering problem and a well-known graph
problem. It was formally proved that this mapping retains soundness and completeness of clustering
techniques in the new space with respect to the cluster definition. This alternative representation opens
a new perspective for future work in this field.

Direct subspace clustering . Click naturally integrates subspace clustering capabilities into the clus-
tering process. This is significant step forward from previous methods that first clustered data in low
dimensional subspaces and then combined low dimensional clusters into higher dimensional ones. It
thus mitigates the need for expensive combinatorial post-processing steps.
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A novel cluster merging approach . A new technique for merging clusters that are “almost” strongly
connected was introduced. The merging step generates alternative output clusters that have a user
defined set of common transactions and a number of non-core transactions that prevented the clusters
from being merged in the first place. Experiments on various real datasets demonstrated that this
technique can generate cluster outputs that are small in the number of clusters but still retain good
separation characteristics.

Results in vertical clustering . The vertical mining approach known from association rule mining was
explored. It was shown that the bar for a successful vertical approach is relatively high in clique-based
clustering as the few additional pruning possibilities are easily outweighed by the additional search
paths. This effect is directly related to a non-monotonicity property shown in this text.

A number of possible directions exist for future research. Firstly, alternative clique extension heuristics
can be explored, especially with respect to vertical techniques. Even if the pruning capabilities of such
techniques are inherently limited, an extension heuristic that guides more clique extensions to an immediate
success could mitigate some of these drawbacks.

Secondly, vertical techniques can potentially be used to extend Click to detecting all maximal frequent
cliques. Since the algorithm detects for each maximal frequent clique at least a super clique, the search space
for this post-processing step would be limited in a way that makes vertical approaches feasible.

Thirdly, the merging phase could be improved by allowing the user to specify the number of clusters
desired in the final output, as opposed to the rather cryptic minsup specification.

And finally, other graph-based techniques should be explored toward improved categorical clustering.
The mapping between the two domains developed in this text can serve as a basis for future research in this
direction.
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