
Efficient Bufferless Routing on Leveled Networks

Costas Busch∗ Shailesh Kelkar† Malik Magdon-Ismail‡

August 23, 2004

Abstract

We study bufferless packet routing in which packets, once injected, cannot be buffered at nodes.
Given a set of preselected packet paths, a well known lower bound on the routing time is
Ω(C + D), where D is the dilation (maximum path length) and C the congestion (maximum
number of times an edge is used). We show that for leveled networks, one can obtain bufferless
routing that is at most one or two logarithmic factors from the lower bound:

i. We give a centralized bufferless algorithm with routing time O(C · log(DN) + D), where
N is the number of packets.

ii. We convert the centralized algorithm to a distributed bufferless algorithm with routing time
O(C · log2(DN) + D · log(DN)). The heart of our approach is a new technique, reverse-

simulation, which constructs an efficient (at most logarithmic extra cost) distributed em-
ulation of the centralized algorithm.

Our algorithms improve the best previously known result specialized for leveled networks by
multiple logarithmic factors.

Keywords: Bufferless Routing; Hot-potato Routing; Congestion; Dilation; Leveled Networks.

1 Introduction

We consider bufferless routing problems, in which packets cannot be stored at nodes while in transit
to their destination. In particular we consider hot-potato-style (or deflection) routing [3], in which
if a packet cannot make progress toward its destination, it must be “deflected” away from its
destination like a “hot potato”. Hot-potato routing algorithms have been observed to work well in
practice [4, 22, 29, 16, 28, 22], and are well-suited for optical networks where it is difficult or costly
to buffer optical messages [1, 15, 22, 30, 31].

We study routing problems on leveled networks. A leveled network with depth L consists of
L+1 levels of nodes, numbered 0 to L. Every node belongs to exactly one level, and the only edges
are between nodes at consecutive levels (Figure 1). Leveled networks are interesting because many
routing problems on multiprocessor network architectures can be represented as routing problems
on leveled networks. Typical examples are routing problems on the N input Butterfly network
and the Mesh network (Figure 1). Further, several routing problems on other multiprocessor

∗Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180. Email: buschc@cs.rpi.edu.
Fax: +1-518-276-4033. Contact author.

†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180. Email: kelkas@cs.rpi.edu.
‡Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180. Email: magdon@cs.rpi.edu.

1

3

Butterfly Mesh

1 L

2

0 1 2 3
4 5 6

0

1

L − 1

......

0 2

General Leveled Network

Figure 1: Leveled networks

architectures such as shuffle-exchange networks, multidimensional arrays, the hypercube, fat-trees,
de Bruijn networks, and the multi-butterfly can also be viewed as routing problems on leveled
networks (see [10, 19] for more details).

We assume a synchronous routing model in which time is discrete, and at each time step, a
node receives packets, makes a routing decision, and then forwards the packets to adjacent nodes.
At each time step, a node is allowed to send at most one packet per link. Note that at any time
step at most two packets can traverse a link, one packet in each direction of the link.∗ We study
many-to-one batch routing problems on leveled networks: we are given N packets where each node
is the source of at most one packet, but may be the destination of many packets. Each packet has
a preselected path from its source to its destination. The paths are selected before routing. Every
preselected path is monotonic in the sense that every edge in a path connects a lower level node
with a node in the next higher level, i.e., a path moves from left to right on the general leveled
network depicted in Figure 1. Here we are only concerned with scheduling the packets given the
paths, and not how to obtain the paths.

A routing algorithm specifies the schedule with which the packets move in the network. The
routing time of an algorithm is the time needed until the last packet is delivered to its destination.
Given the preselected paths, the routing time depends on the congestion C, the maximum number
of packets that traverse any edge, and the dilation D, the maximum length of any path. Since at
most one packet can traverse any edge at a time step, a trivial lower bound for the routing time of
any routing algorithm is Ω(C + D). It is desirable to design routing algorithms with routing time
close to this lower bound.

In hot-potato (bufferless) routing, an interesting situation occurs when two or more packets
appear in the same node at the same time and all of them wish to follow the same link; note
that there could be up to C such packets. This situation represents a conflict among the packets,
because only one of them can follow the link successfully. Since there are no buffers at the nodes,
the remaining packets must be sent on alternative links. We say that such packets are deflected. A
consequence of deflections is that a packet may not always be able to remain on its preselected path,
since when a packet is deflected is may not be possible to send it back on the edge that it traversed
in the previous time step. We only consider bufferless algorithms in which the final path followed
by the packets contains every edge in its preselected path. For such algorithms, the Ω(C + D)
bound on the routing time is still valid. Thus, a routing time close to C +D is optimal with respect
to any routing algorithm, buffered or not, even when we allow path deformation, provided that the
final paths must contain the preselected paths.

∗Our leveled network model follows that in [20], the only difference being that we assume undirected edges, as
opposed to directed edges in [20].

2

Contributions. We present two new bufferless routing algorithms for many-to-one routing prob-
lems in leveled networks. The first algorithm is centralized, and has routing time O(C log(DN)+D),
which is optimal when C = O(D/ log(DN)), and is at most a logarithmic factor from optimal in
general. The algorithm is centralized in the sense that some node has complete information about
the parameters of the routing problem and decides about the scheduling of all packets. The second
algorithm is distributed, that is, all routing decisions are made locally at the nodes, and has routing
time O(C log2(DN) + D log(DN)) which is a logarithmic factor worse than the centralized algo-
rithm. Both results hold with high probability (w.h.p.), i.e., with probability at least 1−O(1/DN).
The distributed algorithm relies on a new technique, reverse-simulation, which provides an efficient
distributed emulation of the centralized algorithm.

The best known previous result for leveled networks achieved a routing time that is a log9-
factor away from optimal [10], and so our new results represent a significant improvement. An
important property of our algorithms is that the final paths used by the packets contain the original
preselected paths. Further, for the centralized algorithm, a packet never strays away from its
original preselected path. Thus, the performance of our algorithms is controlled by the quality of
the preselected paths (C and D).

A high level description of our centralized algorithm is as follows. We first divide the network
into groups of levels, so that each group consists of 2D levels. The effect of this division is that
each packet path belongs to exactly one group. Packets on each group are routed independently.
We now focus on one such group. We partition the group into areas of the network called frames.
Each frame consists of roughly log(DN) levels. The purpose of the frames is that packets are sent
to the destinations by following their paths from one frame to the next. In order to achieve this,
we partition the packets in the group randomly and uniformly into roughly C disjoint packet sets;
each packet set creates congestion at most log(DN) w.h.p.. We route packets of the same set in
the same frame, and packets of different sets in different frames.

The packets of any particular set follow a schedule computed from a packet dependency graph.
In the dependency graph, two packets share an edge if their paths in the frame conflict. We color
the packets in the dependency graph and send them to the next frame according to their color, so
that packets of different colors are sent in different rounds. Since packets of the same color don’t
conflict, we show that it takes O(log(DN)) time to move all packets from one frame to the next.
In order to get the time to deliver a packet from its source to its destination, we multiply this
by the number of frames which is O(D/ log(DN)); thus, once the packet is injected it takes time
O(D) for the packet to be delivered. We show that the latest possible injection time for a packet
is O(C log(DN)) which leads to our routing time bound for the centralized algorithm.

To obtain the distributed algorithm, we color the dependency graph in a distributed way. To
accomplish this, we use a randomized distributed coloring algorithm: packets randomly pick a color,
and the packets attempt to route according to this coloring (i.e., they attempt to move to the next).
If the result is successful, then the packets can move on; however, if the result is not successful
(some packets conflict), then the packets trace their paths backwards (reverse-simulation) and the
process repeats. We show that the added inefficiency of the distributed coloring is at most one
extra logarithmic factor.

Related Work. Bufferless routing algorithms have been studied for specific network multipro-
cessor architectures such as the 2-dimensional mesh and torus [5, 9, 11, 14, 17], the d-dimensional
mesh [5, 7], the hypercube [8, 14], trees [2, 13]. and vertex symmetric networks [23]. Multiprocessor

3

architectures are extensively covered in [19]. Bhatt et al. [6] study hot-potato routing on leveled
networks, but for different routing problems than the ones we consider here. The most related work
to ours is [10], which is the result we improve by seven logarithmic factors; moreover, that result
was expressed in terms of L instead of D which we consider here. A recent result in [12] shows that
it is possible to obtain a general bufferless routing algorithm for arbitrary networks with routing
time O((C + D) log3(n + N)), where n is the size of the network. However, that result doesn’t
take advantage of the special structure of leveled networks, which allows us to obtain smaller rout-
ing time. Further, our centralized algorithm is one of the few hot-potato routing algorithms that
guarantee that the packets remain on their original preselected paths.

Leveled networks have also been studied in the context of store-and-forward routing (with
buffers), by Leighton et al. [20], where they present an O(C + L + log N) randomized algorithm
with constant size buffers. For store-and-forward routing, there has been a lot of research for
obtaining optimal O(C + D) algorithms for arbitrary networks [18, 21, 24, 26, 27].

Paper Outline. In Section 2 we give some necessary preliminaries. In Section 3 we present our
centralized algorithm and in Section 4 the distributed algorithm.

2 Preliminaries

Here, we give some necessary preliminaries that will be used later in our algorithms. We will need
a Chernoff-type tail inequality.

Lemma 2.1 (Chernoff bound, [25, Exercise 4.1]) Let {Xi}
n
i=1 be independent Bernoulli ran-

dom variables, with Pr[Xi = 1] = pi. Let X =
∑n

i=1 Xi, and set µ = E[X] =
∑n

i=1 pi. For any

δ > 2e, Pr[X > δµ] < 2−δµ.

We now introduce packet paths, oscillations, frames, and the dependencies between packets.

Paths. Consider a packet π with preselected path p which has path length |p|. Its current path at
time step t, denoted p(t), is defined as follows. At time 0, the current path is the preselected path,
p(0) = p. Suppose that at time t, packet π is in node vi, with current path p(t) = (vi, vi+1, . . . , vk).
If at time t, packet π successfully follows the first edge (vi, vi+1) in p(t) (the packet moves forward),
then, at time t + 1, packet π appears in node vi+1 with current path p(t + 1) = (vi+1, . . . , vk).
On the other hand, if at time t + 1 packet π is deflected toward a node vj , then at time t + 1 it
appears in node vj with current path p(t + 1) = (vj , vi, vi+1, . . . , vk). If the packet moves forward,
|p(t + 1)| = |p(t)| − 1 and if it is deflected, then |p(t + 1)| = |p(t)| + 1.

Oscillations. Suppose packet π has current path (vi, vi+1, . . . , vk). π oscillates on edge e =
(vi, vi+1) if it moves back and forth on e: if at time t, π appears in vi, then at time t+1, π appears
in vi+1, and at time t + 2 it is back in vi, and so on. When a packet oscillates, the length of its
current path increases and decreases by one each time. Oscillations are useful because they provide
a way to “buffer” packets on edges instead of at nodes.

Frames. We partition the levels of the network into γ non overlapping frames F1, F2, . . . , Fγ , each
containing λ levels (except for the last frame, which may contain fewer). Frame Fi, 1 ≤ i < γ,

4

consists of the λ levels (i−1)λ, . . . , iλ−1. Frame Fγ consists of the levels (γ−1)λ, . . . , L. Note that
γ = d(L+1)/λe. We will pick λ = 4α log(DN), where α is a parameter to be defined later; thus, the
frames have logarithmic size. (We assume that log(DN) is an integer, if not we use d log(DN) e.)

We refer to the levels that comprise frame Fi as the inner-levels of Fi, and we number them
from 1 to λ. Thus, inner-level k of frame Fi corresponds to real level (i − 1)λ + (k − 1), where
1 ≤ k ≤ λ. The odd inner-levels are numbered 1, 3, . . . , λ−1 (recall that λ is even). The inner level
of an edge is the smaller of the inner-levels of the nodes it is incident with. Thus, corresponding to
odd inner-levels are odd inner-edges, and similarly even inner-levels and even inner-edges.

Packet Sets and Dependency Graphs. We partition the set of packets Π into s = 8αeC
sets, Π1,Π2, . . . ,Πs. Each packet is placed into one of these sets uniformly at random. Thus,
Π =

⋃s
i=1 Πi, and Πi ∩ Πj = ∅ for i 6= j, so |Π| =

∑s
i=1 |Πi| = N .

Consider the packets in Πi, and two consecutive frames Fj and Fj+1. For each packet π ∈ Πi

denote by qπ the sub-path of the preselected path that consists only of edges in Fj and Fj+1. We
define the packet dependency graph G(i,j) = (V(i,j), E(i,j)) as follows. The nodes of V(i,j) correspond
to the packets in Πi, so |V(i,j)| = |Πi|. Let π, σ ∈ Πi, then (π, σ) ∈ E(i,j) if and only if the paths qπ

and qσ share some edge in (Fj , Fj+1), i.e., if the paths collide.
The degree of a packet π in G(i,j), denoted d(i,j)(π), is the number of edges incident with π. The

degree of G(i,j), denoted d(i,j), is the maximum degree of any packet in V(i,j). Let d = max{i,j} d(i,j),
i.e., d is the maximum degree of any of the graphs G(i,j), for any i and j.

We show that d cannot be too big. In fact, a packet path collides with at most 2λC other
paths over two consecutive frames. Only approximately 2λC/s = O(λ/α) of these packets are in
the same set, so we expect that d = O(λ/α). The next lemma formalizes this notion.

Lemma 2.2 d ≤ λ/α = 4 log(DN), with probability at least 1 − 1/DN .

Proof: Consider d(i,j)(π), for π ∈ Πi. Note that |qπ| ≤ 2λ. Let R denote the set of packets

that collide with π on qπ, |R| ≤ |qπ|C ≤ 2λC. Let σ ∈ R, then Pr[σ ∈ Πi] = 1
s
. Therefore,

µ = E[d(i,j)(π)] =
∑

σ∈R Pr[σ ∈ Πi] = |R|
s

≤ λ
4αe

. Since the events σ ∈ Πi are independent

Bernoulli trials, we can apply Lemma 2.1 with δ = 2e + λ
2αµ

to obtain

Pr[d(i,j)(π) > λ
α
] < 2−(2eµ+ λ

2α
) ≤ 2−

λ
2α

d is the maximum degree over any node in any G(i,j). Since every packet has path length at most
D, a packet appears as a node in at most D of the G(i,j)’s. Thus,

∑
i,j |V(i,j)| ≤ DN . We now

succesively apply the union bound to obtain the desired result:

Pr[d(i,j) > λ
α
] = Pr[max

π∈V(i,j)

d(i,j)(π) > λ
α
] ≤ |V(i,j)|2

− λ
2α ;

Pr[d > λ
α
] = Pr[max

i∈[1,s],j∈[1,γ]
d(i,j) > λ

α
] ≤

∑

i,j

|V(i,j)|2
− λ

2α ≤ DN 2−
λ
2α .

Since λ = 4α log(DN), the lemma follows.

5

3 Centralized Algorithm

Here, we give the centralized algorithm. Let γ′ = 2dD/λ e. A group is a collection of γ′ consecutive
frames (at most 2D + 2λ levels). Let S1, S2 be two sets of groups given by S1 = {[1, γ′], [γ′ +
1, 2γ′], . . .}, and S2 = {[γ′/2+1, 3γ′/2], [3γ′/2+1, 5γ′/2], . . .}, where [i, j] denotes the set of frames
Fi, . . . , Fj . We treat the last set of frames in S1, S2 as a group even though they may contain fewer
than γ′ frames. The groups in S1 do not share any levels, and similarily for S2. Note that the
groups in S2 are shifted by γ′/2 frames with respect to the groups in S1. A packet belongs to S1

(resp. S2) if its path lies entirely within some group in S1 (resp. S2). Since each group contains
at least 2D levels, every packet belongs to either S1 or S2 (or both). If it belongs to both, then we
assign it to S1.

We route the packets in two sessions. In the first session, we route the packets belonging to
S1. The second session begins after the first session ends, and in the second session, we route the
packets belonging to S2. Having two sessions contributes at most a factor of 2 to the routing time.
In a particular session, because the groups are (framewise) disjoint, the packets in one group can be
routed simultaneously with all the packets in another group without any possibility of interfering.
Thus it suffices to describe the algorithm to route the packets. This algorithm runs simultaneously
in all the groups of the first session, and then again in all the groups of the second session.

Let Πi(g, sess) denote the packets in Πi that belong to group g in session sess. For example,
Πi([1, γ

′], 1) are the packets in Πi whose paths lie entirely in the frames [1, γ′]. Let Φ1 = ∪i,gΠi(g, 1)
denote the packets that will be routed in the first session and Φ2 = ∪i,gΠi(g, 2) those that will be
routed in the second session. An overview of the algorithm is given below.

Algorithm: Centralized Algorithm

Input: Routing problem with packets Π on a graph G;

Output: A bufferless packet routing schedule with routing time O(C log(DN) + D);

begin
α = 3; λ = 4α log(DN); γ = d (L + 1)/λ e; γ′ = 2dD/λe; s = 8αeC;
m = 2s + γ′ − 1; χ = d + 1; τ = 2(χ + λ − 1);

1 Partition G into frames F1, . . . , Fγ of width λ; Construct the group sets S1 and S2;
2 Partition Π uniformly at random into sets Π1, . . . ,Πs;
3 Divide time into two sesssions each consisting of m · τ time steps. The packets in Φ1 are

routed in session 1, and then the packets in Φ2 are routed in session 2.
4 for session sess = 1, 2 do
5 for each g simultaneously do
6 Route Group(Π1(g, sess),Π2(g, sess), . . . ,Πs(g, sess))

end

We now describe algorithm Route Group(Π1(g, sess),Π2(g, sess), . . . ,Πs(g, sess)). The input is
a set of packets of a particular group. We will describe the algorithm for group g = [1, γ′] and
sess = 1, hence the packets are to be routed in the frames F1, . . . , Fγ′ . The algorithm for other
groups is identical excepting for a change in the the indices. Since we focus on a particular group
in the first session, we will simplify the notation by dropping the g and sess dependence. Hence
Πi will denote Πi([1, γ

′], 1). The algorithm consists of m phases, φ1, φ2, . . . , φm, each of duration τ
time steps. To each packet set Πi, we associate a wave which will route the packets in Πi, as we
describe next. An outline of the algorithm is sketched below.

6

Algorithm: Route Group

Input: Routing problem with packets Π(g) in group g consisting of frames F1, . . . , Fγ′ ;

Output: A bufferless packet routing schedule for the packets in the group;

begin
1 Obtain G(i,j), compute d, and greedily color each G(i,j) with at most χ colors;
2 Divide time into phases φ1, . . . , φm, each phase consisting of τ time steps;
3 Define waves ω1, . . . , ωs, where wave ωi enters the network at phase φ2i−1;
4 for each packet set Πi do
5 Packets of set Πi follow wave ωi as follows;
6 for each phase φ in which wave ωi points to frame Fj do
7 // Packets in Fj will move to Fj+1;
8 Initially, only packets of Πi oscillate in Fj , and Fj+1 is empty;
9 Phase φ consists of time steps t1, t2, . . . , tτ ;

10 Define boats b1, . . . , bχ, where boat bk enters the network at time t4k−3;
11 Packets of color k follow boat bk to target inner-level `k = λ− (2k−1) in Fj+1, where

they will oscillate until the next phase;

end

3.1 Waves

A wave ω is a pointer to a frame. Initially the wave is NULL. The wave enters the network (points
to frame F1) at some phase φi. At each subsequent phase the wave points to the next higher frame,
so in phase φi+k, it points to frame Fk+1. Eventually, ω points to the last frame Fγ′ , after which it
leaves the network and becomes NULL. There are s waves ω1, ω2, . . . , ωs (as many waves as there
are packet sets). Wave ωi enters the network at phase φ2i−1. Note that waves are spaced 2 frames
apart, which will be useful for moving packets (see below). The last wave ωs enters in phase φ2s−1

and after γ′ phases, it has left the network, so the number of phases is m = 2s + γ′ − 1. We use
the wave to also denote to the frame it points to.

The purpose of wave ωi is to route the packets in set Πi along with it, as it moves from lower to
higher levels. Packet π ∈ Πi is injected when wave ωi contains π’s source. The packet is absorbed
either when the wave contains its destination or its destination is one frame ahead of the wave.

At the beginning of each phase, packets appear inside their respective waves, and frames between
waves are empty of packets; this property is essential for moving packets along their waves. Consider
a phase φ during which wave ωi points to frame Fj . At the beginning of φ, Fj contains only packets
from Πi, and Fj+1 is empty of packets. By the end of phase φ, the packets in Fj will move from
frame Fj to frame Fj+1. Thus, at the beginning of the next phase, all these packets are still in
the wave ωi, and frame Fj is empty (which allows packets of Πi+1 to move along wave ωi+1). We
continue by describing in detail how the packets of Πi move from Fj to Fj+1 during phase φ.

3.2 Initial and Target Levels

Suppose that phase φ consists of time steps t1, t2, . . . , tτ . At the beginning of phase φ, the packets
of Πi that are already in wave ωi are oscillating on odd inner-edges of Fj . Suppose π ∈ Πi is
oscillating on odd inner-edge e = (v`, v`+1) of Fj , where the inner level of v` is ` (which is odd).
The packet oscillates on e so that at odd time steps t1, t3, . . . , packet π appears in v`. We say that
π oscillates at inner-level `, which is the initial inner-level of π in phase φ.

7

Now suppose that the current path of π at its initial inner-level ` is a sub-path of its preselected
path. During phase φ, packet π will follow its current path until it reaches a target inner-level `′

in Fj+1, where it will oscillate for the remainder of the phase. At its target level, π’s current path
will remain a sub-path of its preselected path. The target level will become the new initial level at
the next phase, when the wave ωi points to Fj+1.

We define χ(i,j) different target inner-levels `1, `2, . . . , `χ(i,j)
in Fj+1, where `k is inner-level

λ − (2k − 1) in Fj+1. (Note that target inner-levels are odd, because λ is even.) The parameter
χ(i,j) is the chromatic number of the dependency graph G(i,j). Since d(i,j) ≤ d, a trivial polynomial
time coloring algorithm using d + 1 colors shows that χ(i,j) ≤ χ = d + 1. Each packet in Πi is thus
assigned a color between 1 and χ(i,j). Denote by Πi(k) the respective subset of Πi with color k.
Packets in Πi(k) have target level `k. Note that in the above discussion we assume that j < γ′.
If j = γ′ then all the target inner-levels are set to real level 2D − 1, which are still in Fj . By
construction, the paths of packets of same color are conflict-free, i.e. don’t share any edge, and
thus can be routed together in “boats” (see below). Further, the fact that the last frame extends
beyond level 2D does not cause a problem because no packet will every need to move into that
region, as it will be absorbed before that.

3.3 Boats

A boat b is a pointer to a level. We have χ(i,j) boats b1, . . . , bχ(i,j)
. Initially, bk is NULL. At time step

t4k−3, boat bk points to the first inner-level of Fj (the boat enters the wave). At each subsequent
step, the boat points to the next higher inner-level, so that at time step t4k−3+l it points to inner-
level l + 1. After the boat reaches the last inner-level of Fj it continues to the inner-levels of Fj+1

until the boat reaches the target level `k of Fj+1, after which bk becomes NULL again. Note that
boats are spaced 4 levels away from each other, which will be important when an oscillating packet
needs to be deflected (see below). When the context is clear, we use boat to refer to the inner-level
it points to. Note that the last boat enters at t4χ(i,j)−3, and takes 2λ− 2χ(i,j) + 1 steps to leave the
wave, so the number of time steps per phase is τ = 2(λ + maxi,j χ(i,j) − 1) ≤ 2(λ + χ − 1).

The packets of Πi(k) will use boat bk to move to their target level `k in Fj+1. Suppose π ∈ Πi(k)
is oscillating with initial level ` at the beginning of phase φ. Packet π will continue to oscillate
until its boat bk is at inner-level `, at which time packet π will “catch its boat” and move along
with it. While on its boat bk, π follows its current path until it reaches its target inner-level `k in
Fj+1. If, during this trip, π passes through its target node it is absorbed; otherwise π reaches its
target inner-level `k at which it will oscillate for the remainder of the phase. Note that bk passes
through odd inner-levels (in particular π’s initial level) at odd time steps, so π is at its initial level
when bk passes through it.

Packet Injection. A packet π ∈ Πi(k) with source node in frame Fj , is injected into the network
when its boat bk passes through the source node. π then moves along with bk, following its current
path, until it reaches its target level `k. While packets move along their boats they may conflict
with other packets; we now describe how to handle such conflicts.

3.4 Packet Conflicts

Suppose π ∈ Πi(k) is on its boat bk, progressing along its current path to its target level `k. π
cannot conflict with another packet of Πi(k) because their current paths are conflict-free (Πi(k) is
an independent set in G(i,j)). Earlier boats bk′ with k′ < k are ahead of bk, so π cannot conflict with

8

packets in Πi(k
′). π can only conflict with packets in Πi(k

′′) for k′′ > k, which are oscillating in
Fj . In such a conflict, the oscillating packet is deflected (i.e., oscillating packets have lower priority
than packets on boats). We show below that this does not disrupt the algorithm.

Suppose π deflects packet σ ∈ Πi(k
′′) which oscillates on edge e = (v`, v`+1) (` is σ’s inner-level

in Fj). Packet π deflects σ at the (odd) time step tk at which π passes through `. Assume that
σ followed edge e′ = (vl−1, vl) to reach v`. We deflect σ along edge e′ to inner-level ` − 1, (so
that at time step tk+1, σ appears in vl). Note that this is always possible because no other packet
oscillating at v` arrived there using edge e′, because the packets that are oscillating at v` all followed
the same boat, and hence had edge disjoint paths. Note also that a packet oscillating on the first
inner-level may be deflected into the previous frame Fj−1 by an injected packet, but this causes no
problem. Packet σ now follows edge e′ to appear back in vl at the (odd) time step tk+2. This is
possible because at time step tk+1 there is no boat passing through inner-level ` − 1 (boat bk+1 is
two levels away), and thus σ cannot be deflected further. When packet σ is back at inner-level `,
it continues to oscillate in `. Therefore, σ is always at level ` at odd time steps, and thus it can
move with boat bk′ , when it passes through `. Clearly, deflected packets remain on their path.

3.5 Routing Time

The only parameter that remains to be specified is α. This parameter determines the frame size λ
which must be large enough to accommodate 2χ levels (at least χ odd target inner-levels) in Fj+1.
Since χ ≤ d + 1, it suffices that λ = 4α log(DN) ≥ 2(d + 1). From Lemma 2.2, d ≤ 4 log(DN)
w.h.p., so ignoring the trivial case D = N = 1, α = 3 will do.

The routing time is at most m · τ (m phases, each of duration τ). Since m = O(s + γ′) =
O(C + D/ log(DN)), and τ = O(λ + χ) = O(log(DN)) w.h.p. (Lemma 2.2), we obtain:

Theorem 3.1 The routing time of the centralized algorithm is O(C log(DN)+D), with probability

at least 1 − 1/DN .

4 Distributed Algorithm

We show how to make the centralized algorithm (Section 3) distributed. We assume that all nodes
know the parameters C, D, and N . (This assumption is common to routing algorithms [10, 18, 24].)
Given C,D,N , every node can compute λ, γ′, s,m, χ, τ . Note, that nodes do not need to know the
paths of the other packets, they only need to know the path of the packet they inject.

The setup of the distributed algorithm is similar to the centralized algorithm: packets follow
boats on waves to reach their destinations. The entire centralized algorithm would work verbatim
if not for the coloring of the dependency graphs G(i,j), which is the main centralized computation
(since nodes need to know all the packet paths). Thus, we need a distributed coloring algorithm,
which will compute a coloring as the packets follow the waves. We introduce the notion of reverse
simulation to accomplish this.

4.1 Reverse Simulation

Let χ = 2λ/α (λ/α is an upper bound on d, w.h.p., by Lemma 2.2). During phase φ, suppose that
wave ωi point to frame Fj . Packets of set Πi follow wave ωi. In Fj and Fj+1 we define the initial
and target levels as in the centralized algorithm. Consider the set of packets A ⊆ Πi which are

9

oscillating at their initial inner levels in frame Fj , at the beginning of the phase. These packets
will move to Fj+1, where they will oscillate in their target levels.

As in the centralized algorithm, packets will use boats to move to their target levels. There are
χ boats. In order to follow the boats in a collision-free manner, the packets need to be colored so
that packets of same color have conflict-free paths. In order to obtain the colors, the packets will
simulate a distributed coloring algorithm, which consists of several rounds. In the first round each
packet chooses a color randomly and uniformly among χ colors. Packets can then be divided into
two disjoint sets: those that obtained a valid color (one that is different from the color of each of
their neighbors in G(i,j)); those that obtained an invalid color (one that coincides with the color of
at least one neighbor). Packets now attempt to reach their target inner-levels. Packets assigned
invalid colors will detect this when they collide with non-oscillating packets, and will attempt to
correct this in the next round. This process continues until all packets have obtained valid colors.
We now give the details.

A phase is divided into ξ rounds r1, r2, . . . , rξ, and each round consists of 2τ time steps, which
is twice the duration of a phase in the centralized algorithm; this is because packets will need to
attempt to reach their target level, and return to their initial level in each round. Each round has
χ boats and target levels (similar to the centralized algorithm). At the beginning of round r1, each
packet in A chooses a color uniformly and randomly among χ colors. Let A1 be the set of packets
with a valid color, and A′

1 the packets with an invalid color. Note that A = A1 ∪ A′
1.

During round r1, all packets in A will follow their respective boats. The packets in A1 will not
be deflected, and they follow their respective boats to successfully reach their target levels where
they will oscillate for the rest of the round. Some packets, A′′

1 ⊆ A′
1, will collide with non-oscillating

packets as they follow their boats. Such packets can mark themselves as members of A′
1. These

packets need to choose new colors and try again. At the end of round r1, all packets in A return
to their initial level (see below). In round r2, packets in set A′′

1 choose a new color, and a subset
A′

2 ⊆ A′′
1 will still have an invalid color. A subset A′′

2 ⊆ A′
2 will collide with non-oscillating packets,

and will need to choose new colors in the next round. Continuing in this way, in round k, the
packets in A′′

k−1 choose new colors, and those in A′
k ⊆ A′′

k−1 still do not have a valid color. Of
these packets, A′′

k will collide with non-oscillating packets. We will show A′
ξ is empty w.h.p, i.e.,

all packets have a valid color by the last round. Thus, in the last round, all the packets reach their
target inner-levels, where they will oscillate till the next phase. We give the details below.

We define 4 levels of priority, 0, 1, 2, 3. When two or more packets collide, the packet with
highest priority always wins, and ties are broken randomly. A packet which successfully reachs
its target level in round k (without being deflected by non-oscillating packets) keeps its color in
all subsequent rounds and attains priority 3 for the remainder of the phase, whenever it is not
oscillating. An oscillating packet has priority 1. A packet that chooses a new color in a round
attains priority 2 for the round. If, during the round, it collides with any priority 2 or 3 packet,
it immediately attains priority 0 for the remainder of the round, and will select a new color in the
next round. Such priority 0 packets do not “distract” other forward going packets, and they follow
arbitrary paths, due to deflections, for the remainder of the round.

At the end of a round, all packets in A (with valid or invalid coloring) need to appear back at
their initial levels. Let t be the time step that the last boat in the round leaves the network. After
time t, all packets follow, in reverse, the path that they followed from the beginning of the round.
Thus, by the end of the round, they appear at their initial level where they oscillate until the next
round. The path reversal is accommodated by having the nodes store all their computations from

10

the beginning of the round up to time t. After time t, the nodes simply do the reverse computations,
since routing is a reversible operation. (This is why we need the round to be twice as long as τ .)

4.2 Packet Injections

So far we considered only the oscillating packets in Πi, that already appear in Fj at the beginning
of phase φ. We also need to consider the set of packets B ⊆ Πi that will be injected in Fj during
φ. Packets of B can be further partitioned into two sets: B1, which are the packets of B whose
source are at odd inner-levels of Fj , and B2, which have sources at even inner-levels of Fj . Packets
of B1 and B2 are treated separately so that they can not interfere with each other.

We divide phase φ into three sub-phases φA, φB1 , and φB2 in which we send the packets of
the respective sets A, B1 and B2 to Fj+1. Each sub-phase consists of ξ rounds. We also divide
the frame Fj+1 into three disjoint regions FA, FB1 , and FB2 , each consisting of 2χ inner-levels and
containing χ target levels. Region FA occupies the upper one-third (right) inner-levels of Fj+1, FB1

the middle one-third inner-levels, and FB2 at the lower (left) one-third inner-levels. Packets of set
A,B1 and B2, have their target levels in FA, FB1 and FB2 , respectively.

During phase φA the packets of set A will move to region FA, using the algorithm we described
in Section 4.1. During φB1 , the packets of B1 are injected into the network, and then they move to
their target levels in region FB1 using the reverse simulation technique that was used for packets in
set A. The initial levels of the packets in B1 are the inner-levels of their sources, and the packets
are injected at the beginning of phase φB1 . Since a node injects at most 1 packet, the packets are
guranteed to be able to oscillate on their initial inner-levels during the reverse simulation. At the
beginning of phase φB2 , the packets of set B2 are injected into the network. Those packets will
move to their target levels in region FB2 during phase φB2 using the reverse simulation technique
that was used for packets in set A. Those packets will also oscillate on their initial inner-levels,
which are even (as opposed to packets in A and B1 which have odd initial inner-levels). In order
to handle the even levels, during this phase the boats enter the frame Fj from inner-level 2.

4.3 Routing Time

First we determine an acceptable value of parameter α. A frame needs 2χ inner-levels for each of
FA, FB1 , and FB2 , so λ ≥ 6 · χ Since χ = 2λ/α, we obtain α ≥ 12, so α = 12 will do.

We now choose the parameter ξ so as to ensure that the routing is succesful w.h.p.. Assume
that χ ≥ 2d. Then, in a round, a packet picks a valid color with probability at least 1

2 . We denote
a phase in which a packet eventually picks a valid color in one of the rounds as a succesful phase
for the packet. If ξ = 2 log(LN), then a particular phase will be unsuccesful for a particular packet
with probability 2−2 log(DN) = 1/(DN)2. The distributed algorithm will be succesful if every phase
that a packet participates in is succesful. A packet participates in at most D/λ phases (as its path
length is at most D). A packet is unsuccesful if one of its phases is succesful, therefore, by the
union bound, a packet will be unsuccesful with probability at most D/λ(DN)2. The distributed
algorithm will be unsuccesful if one of the packets is unsuccesful, so applying the union bound
again, the probability of failure is at most DN/λ(DN)2 < 1/DN . Finally, by the union bound and
Lemma 2.2, the probability that χ < 2d or some packet fails in some phase is at most 2/DN .

There are m phases, and each phase has 3ξ rounds (since each sub-phase to route A,B1, B2

consists of ξ rounds), each of length 2τ time steps. Therefore, the routing time is O(mξτ). Since
τ = O(log(DN)), m = O(C + D/ log(DN)), and ξ = O(log(DN)), we obtain:

11

Theorem 4.1 The routing time of the distributed algorithm is O(C log2(DN)+ D log(DN)), with

probability 1 − O(1/DN).

References

[1] A. S. Acampora and S. I. A. Shah. Multihop lightwave networks: a comparison of store-and-forward and
hot-potato routing. In Proc. IEEE INFOCOM, pages 10–19, 1991.

[2] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Direct routing on trees. In Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 342–349, 1999.

[3] P. Baran. On distributed communications networks. IEEE Transactions on Communications, pages 1–9, 1964.

[4] Constantinos Bartzis, Ioannis Caragiannis, Christos Kaklamanis, and Ioannis Vergados. Experimental evaluation
of hot-potato routing algorithms on 2-dimensional processor arrays. In EUROPAR: Parallel Processing, 6th
International EURO-PAR Conference, pages 877–881. LNCS, 2000.

[5] A. Ben-Dor, S. Halevi, and A. Schuster. Potential function analysis of greedy hot-potato routing. Theory of
Computing Systems, 31(1):41–61, January/February 1998.

[6] Sandeep N. Bhatt, Gianfranco Bilardi, Geppino Pucci, Abhiram G. Ranade, Arnold L. Rosenberg, and Eric J.
Schwabe. On bufferless routing of variable-length message in leveled networks. IEEE Trans. Comput., 45:714–
729, 1996.

[7] A. Borodin, Y. Rabani, and B. Schieber. Deterministic many-to-many hot potato routing. IEEE Transactions
on Parallel and Distributed Systems, 8(6):587–596, June 1997.

[8] J. T. Brassil and R. L. Cruz. Bounds on maximum delay in networks with deflection routing. IEEE Transactions
on Parallel and Distributed Systems, 6(7):724–732, July 1995.

[9] A. Broder and E. Upfal. Dynamic deflection routing on arrays. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, pages 348–358, May 1996.

[10] C. Busch. Õ(Congestion + Dilation) hot-potato routing on leveled networks. In Proceedings of the Fourteenth
ACM Symposium on Parallel Algorithms and Architectures, pages 20–29, August 2002.

[11] C. Busch, M. Herlihy, and R. Wattenhofer. Hard-potato routing. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, pages 278–285, May 2000.

[12] Costas Busch, Malik Magdon-Ismail, and Marios Mavronicolas. Universal bufferless routing. In Proceedings of
the 2nd Workshop on Approximation and Online Algorithms (WAOA), September 2004. To appear.

[13] Costas Busch, Malik Magdon-Ismail, Marios Mavronicolas, and Roger Wattenhofer. Near-optimal hot-potato
routing on trees. In Proceedings of the 10th International Conference on Parallel and Distributed Computing
(Euro-par), August-September 2004. To appear.

[14] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In IEEE, editor, Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science, pages 553–562, Pittsburgh, PN, October 1992.

[15] A. G. Greenberg and J. Goodman. Sharp approximate models of deflection routing. IEEE Transactions on
Communications, 41(1):210–223, January 1993.

[16] W. D. Hillis. The Connection Machine. MIT press, 1985.

[17] C. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato routing on processor arrays. In Proceedings of the 5th Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 273–282, Velen, Germany, June 30–July 2,
1993.

[18] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-scheduling in O(congestion + dilation)
steps. Combinatorica, 14:167–186, 1994.

[19] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays - Trees - Hypercubes.
Morgan Kaufmann, San Mateo, 1992.

[20] Frank Thomson Leighton, Bruce M. Maggs, Abhiram G. Ranade, and Satish B. Rao. Randomized routing and
sorting on fixed-connection networks. J. Algorithms, 17(1):157–205, 1994.

[21] Tom Leighton, Bruce Maggs, and Andrea W. Richa. Fast algorithms for finding O(congestion + dilation) packet
routing schedules. Combinatorica, 19:375–401, 1999.

12

[22] N. F. Maxemchuk. Comparison of deflection and store and forward techniuques in the Manhattan street and
shuffle exchange networks. In Proc. IEEE INFOCOM, pages 800–809, 1989.

[23] Friedhelm Meyer auf der Heide and Christian Scheideler. Routing with bounded buffers and hot-potato routing
in vertex-symmetric networks. In Paul G. Spirakis, editor, Proceedings of the Third Annual European Symposium
on Algorithms, volume 979 of LNCS, pages 341–354, Corfu, Greece, 25–27 September 1995.

[24] Friedhelm Meyer auf der Heide and Berthold Vöcking. Shortest-path routing in arbitrary networks. Journal of
Algorithms, 31(1):105–131, April 1999.

[25] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[26] Rafail Ostrovsky and Yuval Rabani. Universal O(congestion+dilation+log1+ε N) local control packet switching
algorithms. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pages 644–653,
New York, May 1997.

[27] Yuval Rabani and Éva Tardos. Distributed packet switching in arbitrary networks. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing, pages 366–375, Philadelphia, Pennsylvania, 22–24
May 1996.

[28] C. L. Seitz. The caltech mosaic C: An experimental, fine-grain multicomputer. In Proceedings of the 4th Symp.
on Parallel Algorithms and Architectures, June 1992. Keynote Speech.

[29] B. Smith. Architecture and applications of the HEP multiprocessor computer system. In Proceedings of the 4th
Symp. Real Time Signal Processing IV, pages 241–248. SPIE, 1981.

[30] T. Szymanski. An analysis of “hot potato” routing in a fiber optic packet switched hypercube. In Proc. IEEE
INFOCOM, pages 918–925, 1990.

[31] Z. Zhang and A. S. Acampora. Performance analysis of multihop lightwave networks with hot potato routing
and distance age priorities. In Proc. IEEE INFOCOM, pages 1012–1021, 1991.

13

