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Abstract: 

Different types of feature representation have been investigated to represent the histopathological 

images for the purpose of cancer diagnosis. In this work, we demonstrate that cell-graphs provide 

effective representations as they encode the pairwise relation between every cell by statistically 

assigning a link between them. Working with photomicrographs of 646 archival brain biopsy 

samples from 60 patients, we show that without this pairwise relation, neither the spatial 

distribution of the cells nor the texture analysis of the images yields as accurate results as in the 

case of the cell graphs to distinguish cancerous tissues from non-cancerous tissues with similar 

cellular density levels. We use the global graph metrics that are defined on the entire cell-graph 

as a feature set of a multilayer perceptron for the tissue level diagnosis of a brain cancer called 

malignant glioma. In our experiments, we correctly classify the cancerous and healthy brain 

tissue samples that have significantly different cellular density levels with accuracy greater than 

99 %. Furthermore, we accomplish distinguishing the cancerous tissues from non-neoplastic 

reactive/inflammatory conditions that may reveal an equally high cellular density; with an 

accuracy of at least 92 %.
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1. Introduction 

Automated classification of the histopathological images has been extensively studied for cancer 

diagnosis. These studies make use of different classifiers that employ a subset of different types 

of features. For example, a large subset of these studies uses feature sets that typically consist of 

the morphological features such as the area, perimeter, and roundness of a nucleus [5, 9, 10, 12, 

16, 17, 18, 20, 22, 23] and/or the textural features such as the angular second moment, inverse 

difference moment, dissimilarity, and entropy derived from the co-occurrence matrix [5, 6, 10, 

13, 19, 20, 22]. These studies train their systems to distinguish the healthy and cancerous tissues 

using artificial neural networks [19, 20, 23], k-nearest neighborhood algorithm [6, 9], support 

vector machines [10], linear programming [17], logistic regression [22], fuzzy [16], and genetic

[18] algorithms. Complimentary to the morphological and textural features, a few of these 

studies use colorimetric features such as the intensity, saturation, red, green, and blue 

components of pixels [9, 23] and densitometric features such as the number of low optical 

density pixels in an image [6, 13, 19]. 

 

Another subset of these studies uses fractals that describe the similarity levels of different 

structures found in a tissue image over a range of scales [4, 7]. These studies use the fractal 

dimensions as their features and use k-nearest neighborhood algorithm [7], neural networks and 

logistic regression [4] as their classifiers. Finally, the orientational features are extracted by 
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making use of Gabor filters that respond to contrast edges and line-like features of a specific 

orientation [21]. 

 

Recently, we have demonstrated that the use of cell-graphs generated from the tissue images 

according to the spatial distribution of the cells leads to successful tissue diagnosis of cancer 

[11]. In the generation of such graphs, the nodes correspond to the cells and the probability of a 

link between a pair of nodes is calculated as a decaying exponential function of the Euclidean 

distance between this node pair. We have showed that the topological features defined on each 

node of this cell-graph, i.e., the local graph metrics, carry characteristic properties to distinguish 

the images of cancerous brain tissues from those of healthy or non-neoplastic primary 

inflammatory processes (herein referred to as “inflamed tissues”). The work in [11] introduces a 

novel method of feature extraction for histopathological images and it proposes to use a machine 

learning algorithm that employs this representation for the diagnosis of cancer.

In this work, as our first contribution, we compare the cell-graph approach with two different 

approaches; the first approach uses only the spatial distribution of the cells without defining links 

and the other approach uses textural features. We demonstrate that the cell-graphs provide an 

effective tool to represent tissue images not only because they encode the spatial distribution of 

the cells, but also they encode the pairwise relation between the cells by assigning a link

between them. Our experiments show that this pairwise relation is crucial in obtaining a high 

classification accuracy to distinguish different types of tissue images, even when they have

similar levels of cellular density. For example, although the spatial distribution of cells alone 

provides sufficient information to distinguish the cancerous tissues with higher cellular density 
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(as shown in Figure 1a) from the healthy tissues with lower cellular density (as shown in Figure 

1b), it is not sufficient to distinguish the cancerous tissues from inflamed tissues (as shown in 

Figure 1c) whose cellular density is equally high.  However, the cell-graphs defining links based 

on the pairwise relation between every cell successfully distinguish the cancerous tissues from 

both healthy and inflamed tissues regardless of their cellular density. This demonstrates that the 

cell-graph approach provide further information in the classification of different types of tissues 

with different cellular density levels. Moreover, in the distinction of cancerous – noncancerous

tissues, we compare the accuracy of the classifier that uses the cell-graph representation with the 

accuracy of the classifier that employs textural features. While the cell-graph representation 

encodes the pairwise relation between the cells, the textural features reflect the spatial 

interrelationships of pixel gray values. Although the classifier employing the textural features is 

as accurate as in the case of the cell-graph approach to distinguish the cancerous and healthy 

tissues, it yields lower accuracy values than the cell-graph approach to distinguish the cancerous 

and inflamed tissues. 

Figure 1: Microscopic images of brain biopsies stained with hematoxylin and eosin technique: 

(a) a brain tumor sample (i.e. glioma), (b) a healthy tissue sample, and (c) an inflamed tissue 

sample.

(a) (b) (c)
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As our second contribution, we extend the work in [11] to study the topological properties 

defined on the entire graph, i.e., the global graph metrics. While the local metrics provide

information at the cellular level, the global graph metrics provide information at the tissue level. 

We use the global metrics as our feature set and the artificial neural networks as our classifier in 

the diagnosis of a brain tumor called malignant glioma. These global graph metrics include the 

average degree, the clustering coefficient, the average eccentricity, the ratio of the giant 

connected component, the percentage of the end nodes, the percentage of the isolated nodes, the 

spectral radius, and the eigen exponent.

In our experiments, we use a total of 646 images of tissue samples surgically removed from 60 

different patients. For the training set, we use 211 images of tissues taken from 22 different 

patients. For the testing set, we use 435 images of tissues taken from the remaining 38 patients; 

these images are not used in the training set at all. In the classification of cancerous and healthy 

tissues only, we achieve 99.75 % accuracy on the testing set by using the global graph metrics. 

Similarly, we achieve 99.75 % and 98.46 % classification accuracies on the testing set by using 

information extracted from the spatial distribution of the cells (cell-distribution) and by using 

information extracted from texture analysis (texture-based), respectively. On the other hand, in 

the classification of cancerous, healthy, and inflamed tissues of the testing set, the cell-graph

approach leads to accuracy levels of 96.30 % for healthy tissues, 94.00 % for cancerous tissues, 

and 92.19 % for inflamed tissues, whereas the cell-distribution approach yields only accuracy 

levels of 98.34 % for healthy tissues, 71.79 % for cancerous tissues, and 42.97 % for inflamed 

tissues at most and the texture-based approach yields accuracy levels of 96.10 % for healthy 

tissues, 89.60 % for cancerous tissues, and 79.38 % for inflamed tissues. Therefore, the cell-
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distribution and texture-based approaches increase the false negatives and false positives. The 

significant difference in the classification results of cancerous and inflamed tissues using the 

cell-graph and cell-distribution approaches suggests the significance of the pairwise relation 

between the cells (i.e., the links between them), and hence, indicating the effectiveness of the 

edges in the cell-graph. The difference in the classification results of cancerous and inflamed 

tissues using the cell-graph and texture-based approaches suggests the importance of the 

existence of this pairwise relation between the cells, not for example between the gray values of 

pixels, and hence, indicating the effectiveness of the nodes in the cell-graph.

The remaining of this paper is organized as follows. In Section 2, we briefly explain the 

methodology to generate a graph from a tissue image and the definitions of the global graph 

metrics that quantify the topological properties of the generated graphs.  In Section 3, we present 

experimental results. Finally, we provide a summary of our work in Section 4.

2. Methods

2.1. The cell-graph generation

This technique relies on the clustering information of cells in the tissue. We first generate a mesh 

of cells based on the locations of the cells in their two-dimensional tissue image. Then we 

generate a graph by establishing links according to the Euclidean distance between every pair of 

these cells. This resulting cell-graph represents the tissue image and the topological properties of 
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the cell-graph are exploited in the classification of different tissue images. This technique is 

summarized below; the details can be found elsewhere [11].

The first step is color quantization. In this step, we learn how to distinguish the cells from their 

background based on the color information of the pixels. For that, we use k-means algorithm

[14] to cluster the pixels of training samples and learn the clustering vectors. After that, each of 

these clustering vectors is assigned to be either “cell” or “background” class by a pathologist. We 

use these clustering vectors and their class assignments in the classification of the pixels of 

testing images as either “cell” or “background”.

The next step is node identification where we translate the class information of the pixels to the 

node information of a cell-graph. For that, we put a grid over the tissue image and for each grid 

entry, we compute a probability of being a cell as follows: First, we assign a value of 1 to the 

pixels of “cell” class and a value of 0 to the pixels of “background” class and we then compute 

the average of the values of the pixels located in this grid entry as its probability value. Grid 

entries with probability values greater than a threshold are considered as the nodes of a cell-

graph. In this step, a node can represent a single cell, a part of a cell, or bunch of cells depending 

on the grid size. Because of that, the topological features extracted using this method do not 

require high magnification images to resolve the details of a cell in contrast with the 

morphological features.

The last step is link establishing. In this step, we set the links between the nodes identified in the 

previous step to generate a cell-graph. Therefore, in this step, we translate the pairwise spatial 
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relation between every two nodes to the possible existence of links in a cell-graph. The 

probability of an existence of a link between the nodes u and v is given by α−= ),(),( vudvuP , 

where ),( vud  is the Euclidean distance between the nodes u and v, and α is the exponent that 

controls the density of a graph. This probability quantifies the possibility for one of these nodes 

to be grown from the other. Thus, the links of the cell-graph model the prevalence of cancer. 

More formally, suppose ),( EVG =  be a generated cell-graph with V and E being the set of 

nodes and links of the graph, respectively. After determining V in the node identification step, 

we define a binary relation E on V such that }{ ,,),(:),( VvuvudrvuE ∈∀<= −α , where r is a 

real number between 0 and 1 that is generated by a random number generator.

We use the topological properties extracted from the resulting cell-graph as the feature set of the 

corresponding tissue image. In the classification of a tissue, we use artificial neural networks [1, 

15], where the inputs are these topological properties extracted from the cell-graphs and the 

output is whether the tissue is cancerous, healthy, or inflamed.

2.2. The global graph metrics

In this work, we use eight different topological properties defined on the entire graph (i.e., the 

global graph metrics), namely the average degree, the clustering coefficient, the average 

eccentricity, the ratio of the giant connected component, the percentage of the end nodes, the 

percentage of the isolated nodes, the spectral radius, and the eigen exponent. 
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(1) The degree of a node is defined as the number of its links. Using the distribution of the 

node degrees, we compute the average degree as a global metric. 

(2) The clustering coefficient iC  of a node i is defined as ))1(/()2( +⋅⋅= kkEC ii , where k is 

the number of neighbors of the node i and iE  is the number of existing links between its 

neighbors [3]. This metric quantifies the connectivity information in the neighborhood of 

a node. We use the average clustering coefficient as a global metric. 

(3) The eccentricity of a node i is the length of the maximum of the shortest paths between 

the node i and every other nodes reachable from i. We use the average eccentricity as a 

global metric.

(4) The giant connected component of a graph is the largest set of the nodes where all of the 

nodes in this set are reachable from each other. We use the ratio of the size of the giant 

connected component over the size of the entire graph as a global metric.

(5) A node in a graph is an “isolated node” if it does not have any neighbors, i.e., if it has a 

degree of 0. A node in a graph is an “end node” if it is connected to a single node, i.e., if 

it has a degree of 1. We use the percentages of the isolated and the end nodes in the 

entire graph as global metrics.

(6) The last two metrics are related to the spectrum of a graph, which is the set of graph 

eigenvalues (i.e., eigenvalues of the adjacency matrix of a graph). The spectrum of a 

graph is closely related to the topological properties of a graph such as the diameter, the 

number of the connected components and the number of spanning trees [2]. In this work, 

we use the spectral radius, which is defined as a maximum absolute value of 

eigenvalues in the spectrum, as a global metric. The eigen exponent is defined as the 

slope of the sorted eigenvalues as a function of their orders in log-log scale [8]. As our 
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last global metric, we use the eigen exponent computed on the first largest 50 eigenvalues 

of each graph.

3. Experiments

3.1. Methodology

In our experiments, we use a data set that consists of 646 microscopic images of brain biopsy 

samples of 60 randomly chosen patients from the pathology archives. All patients were adults 

with both sexes included. This data set includes samples of 41 cancerous (glioma), 14 healthy 

and 9 reactive/inflammatory processes; for 4 of these patients, we have both cancerous and 

healthy tissue samples. The training data set consists of 211 images taken from 22 different 

patients and the testing data set consists of 435 images taken from the remaining 38 patients.

Each sample consists of a 5-6 micron-thick tissue section stained with hematoxylin and eosin 

technique and mounted on a glass slide1. The images are taken in the RGB color space with a 

magnification of 100X and each image consists of 480x480 pixels. After taking the images, we 

convert the RGB values of the pixels into their corresponding values into the La*b* color space.

Unlike the RGB color space, the La*b* color space is a uniform color space and the color and 

detail information are completely separate entities. Therefore, using the La*b* color space yields

better quantization results in our experiments. We cluster the La*b* values of the pixels using k-

1 The identifiers were removed, and slides were numerically recoded corresponding to diagnostic categories by the 
pathologist, prior to obtaining digital images of the tissues. Therefore, the remaining two investigators had access to 
images and diagnoses only, without retraceable personal identifiers.
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means algorithm, where the value of k is 16. We observe that the values of k greater than 16 do 

not introduce a significant change in the resulting processed images. 

In identifying the nodes of the cell-graph, we have two control parameters: the grid size and the 

probability threshold. We select a grid size of 6 that matches the size of a typical cell in the 

magnification of 100X. The probability threshold determines the density of the nodes in a cell-

graph. A larger threshold produces sparser graphs, whereas a smaller threshold makes the 

assignment of the nodes more sensitive to the noise arising from misassignment of “cell” classes 

in the color quantization step. Therefore, we choose a reasonable threshold value of 0.25 that 

yields dense enough graphs eliminating the noise. In establishing the links of the cell-graph, we 

use an exponentially decaying probability function with an exponent of –α with 0 ≤ α. The value 

of α determines the density of the links in a cell-graph; larger values of α produce sparser graphs. 

α values close to 0 produce the graphs that are almost connected and from such graphs, it is not 

possible to extract the distinguishing topological properties. On the other hand, as the value of α

increases, the resulting graphs can have only a few links and from such graphs, it is also not 

possible to compute the distinguishing properties. Considering these, we choose α to be 3.6 that 

produces dense enough graphs to capture the distinguishing properties of these graphs.

To compare with the cell-graph approach and investigate the significance of encoding the 

pairwise relation between the nodes, we separately use (i) features extracted from the spatial 

distribution of the cells that do not include any link information and (ii) textural features derived 

from the gray-level co-occurrence matrix in the classification of different tissues.
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We extract the features of the cell-distribution approach that only uses the spatial distribution of 

the cells as follows: After the node identification step, we embed a grid on the resulting mesh of 

nodes instead of establishing links and extracting a cell-graph. For each grid entry, we average 

the values of the mesh entries located in a particular grid entry of interest, assigning a value of 1 

to each mesh entry consisting of a node and a value of 0 otherwise. Then we use these average 

values of grid entries as the feature set of the cell-distribution approach. 

The co-occurrence matrix C computed on a gray-level image P is defined by a distance d and an 

angleθ . C(i,j) indicates how many times the gray value i co-occurs with the gray value j in a 

particular spatial relationship defined by d and θ. Mathematically, it is given 

as jdndmPinmPnmjiC =++== )sin,cos(and),(:},{),( θθ . We compute 12 different 

normalized gray-level co-occurrence matrices at four different angles (0, 45, 90, and 135
o
) and 

three different distances (1, 5, and 9). On each normalized co-occurrence matrix, we compute six 

different features, including the angular second moment, the contrast, the correlation, the inverse 

difference moment, the dissimilarity, and the entropy. More on these features and their 

derivations can be found in [6].

In the classification of the images of tissue samples, we use multilayer perceptrons. For each 

classifier, which uses features extracted from using the cell-graph, cell-distribution or texture-

based approaches, we choose the number of hidden units as to optimize the classification 

accuracies. We train each classifier on 20 different runs and the results presented in this section 

are obtained averaging the accuracies over these runs.
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3.2. Results

3.2.1. Classification of cancerous and healthy tissues

In this subsection, we provide the accuracy of each approach in the classification of cancerous 

and healthy tissues that have dense and sparse cellular density levels and compare these accuracy 

values. In Table 1, we report the average accuracy values and their standard deviations obtained 

in the classification of the cancerous and healthy tissue images by using cell-graphs. In addition 

to the overall accuracy obtained on the entire data set (including both cancerous and healthy 

tissues), we report the accuracy levels for each class type. This table shows that using topological 

properties of the cell-graphs extracted from the tissue images, all samples in the training set are 

correctly classified. It also indicates that the topological properties of the cell-graphs distinguish 

the cancerous and healthy tissues in the testing set with a high level of accuracy >99 %. 

Table 1: Cancerous and healthy tissue classification using the cell-graph approach.

Training set accuracy Testing set accuracy

Overall 00.000.100 m 00.075.99 m

Cancerous 00.000.100 m 00.000.100 m

Healthy 00.000.100 m 00.035.99 m

In the cell-distribution approach, the grid size determines the dimension of the extracted feature 

set. Since the dimension of the mesh for the images used in this work is 80x80, we choose the 

grid size ranging from 1 to 20. For different exemplary values of the grid size, the average 
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classification accuracy levels and their standard deviations obtained using the cell-distribution 

approach are presented in Table 2 and Table 3 for the training and testing data sets, respectively. 

For the texture-based approach, the average classification accuracies and their standard 

deviations are reported in Table 4.

Table 2: Cancerous and healthy tissue classification using the cell-distribution approach on the

training set.

Training set accuracyGrid 

size Overall Cancerous Healthy

1 38.090.98 m 64.013.98 m 00.000.100 m

2 00.000.100 m 00.000.100 m 00.000.100 m

4 00.000.100 m 00.000.100 m 00.000.100 m

8 00.000.100 m 00.000.100 m 00.000.100 m

10 00.000.100 m 00.000.100 m 00.000.100 m

16 00.000.100 m 00.000.100 m 00.000.100 m

20 00.000.100 m 00.000.100 m 00.000.100 m
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Table 3: Cancerous and healthy tissue classification using the cell-distribution approach on the 

testing set.

Testing set accuracyGrid 

size Overall Cancerous Healthy

1 24.047.99 m 21.040.99 m 58.048.99 m

2 37.048.98 m 64.075.97 m 00.035.99 m

4 00.008.99 m 00.080.98 m 00.035.99 m

8 00.075.99 m 00.000.100 m 00.035.99 m

10 00.075.99 m 00.000.100 m 00.035.99 m

16 00.075.99 m 00.000.100 m 00.035.99 m

20 00.075.99 m 00.000.100 m 00.035.99 m

Table 4: Cancerous and healthy tissue classification using the texture-based approach.

Training set accuracy Testing set accuracy

Overall 00.000.100 m 31.046.98 m

Cancerous 00.000.100 m 21.076.99 m

Healthy 00.000.100 m 63.036.96 m

Similar to Table 1 (cell-graph approach), Table 2 (cell-distribution approach) indicates that the 

training samples are almost classified correctly, except a few of the cancerous tissue samples 

when the grid size is 1 and Table 4 (texture-based approach) indicates that all the training 

samples are correctly classified. The tissue samples in the testing sets are also classified with 

accuracy greater than 95 % for all three approaches (Tables 1, 3, and 4). 
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3.2.2. Classification of cancerous, healthy, and inflamed tissues

Tables 1–3 demonstrate that the spatial distribution of the cells provides sufficient information to 

distinguish different class types when their cellular density is significantly different. To show 

that the cell-graph approach does not solely rely on the difference in the cellular density of 

different classes, we also use the images of the inflamed tissues that are as dense as the 

cancerous tissues. In Figure 2, the histogram of the amount of nodes is given for each class type. 

This figure exhibits that there is a significant difference between the number of nodes, i.e., 

cellular density, in the graphs of healthy and cancerous tissues. However, the numbers of nodes 

in the graphs of inflamed and cancerous tissue fall in the same range.

Figure 2: The histograms of the number of nodes in the graphs extracted from the different types 

of tissue images.

The average accuracy levels obtained in the classification of the cancerous, healthy, and 

inflamed tissues and their standard deviations using the cell-graph approach are presented in 

Table 5. This table demonstrates that the samples in both of the training and testing sets are 
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classified with accuracy > 94 %. In addition to the high accuracy in classification of the healthy 

tissues, the cancerous and inflamed tissues are distinguished from each other as well as from the 

healthy tissues with accuracy > 92 %. 

Table 5: Cancerous, healthy, and inflamed tissue classification using the cell-graph approach.

Training set accuracy Testing set accuracy

Overall 14.193.95 m 71.068.94 m

Cancerous 46.195.93 m 79.000.94 m

Healthy 00.000.100 m 16.130.96 m

Inflamed 03.202.95 m 90.119.92 m

In Table 6 and Table 7, we report the average accuracy levels and their standard deviations 

obtained using the cell-distribution approach on the samples of the training and testing sets,

respectively. We observe that the healthy tissue samples of the training set are almost classified 

correctly and the healthy tissue samples of the testing set are classified with accuracy greater 

than 93 %, regardless of the grid size. For all the grid sizes ranging between 1 and 20, the 

training samples of the cancerous tissues are also classified with a high accuracy level. On the 

other hand, approximately 30 % of the testing samples of cancerous tissues are misclassified for 

all of the exemplary values of the grid size. Note that, although the cell-distribution approach 

leads to higher accuracy on the training samples of cancerous tissues, the cell-graph approach 

yields significantly better testing accuracy, which is the real criterion to assess a classification in 

machine learning, than the cell-distribution approach. The classification accuracy of the training 

samples of inflamed tissues increases with the grid size. The maximum of these values is 98 % 
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when the grid size is 20; for this grid size, the overall accuracy is better than 99 %. On the other 

hand, for the grid size of 20, the classification accuracy of the testing samples of inflamed tissues 

is only 43 %. This accuracy for other grid sizes smaller than 20 is even lower indicating that the 

system cannot distinguish the inflamed tissues.  We conclude that the pairwise relation encoded 

in the link establishing step of graph extraction provides critical information to distinguish 

different types of tissue samples regardless of their cellular density levels.

Table 6: Cancerous, healthy, and inflamed tissue classification using the cell-distribution

approach on the training set.

Training set accuracyGrid 

size Overall Cancerous Healthy Inflamed

1 70.204.91 m 50.9587.93 m 00.000.100 m 15.933.81 m

2 30.277.93 m 63.213.97 m 00.000.100 m 15.653.85 m

4 83.209.96 m 50.287.98 m 80.082.99 m 51.833.90 m

8 02.144.98 m 93.056.99 m 00.000.100 m 98.207.96 m

10 36.199.97 m 56.069.99 m 65.073.99 m 20.487.94 m

16 10.146.98 m 18.138.99 m 00.000.100 m 40.333.96 m

20 69.012.99 m 86.038.99 m 00.000.100 m 90.120.98 m
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Table 7: Cancerous, healthy, and inflamed tissue classification using the cell-distribution

approach on the testing set.

Testing set accuracyGrid 

size Overall Cancerous Healthy Inflamed

1 29.586.77 m 52.979.71 m 64.138.93 m 04.941.26 m

2 41.461.76 m 51.766.69 m 22.234.98 m 95.909.26 m

4 37.648.74 m 39.1268.65 m 78.102.98 m 31.1269.29 m

8 23.385.71 m 65.585.62 m 89.112.94 m 40.669.34 m

10 81.224.76 m 55.474.70 m 67.380.93 m 75.953.34 m

16 24.337.77 m 62.466.70 m 81.124.97 m 35.1191.33 m

20 39.229.75 m 43.447.66 m 30.227.96 m 41.897.42 m

Table 8 demonstrates the classification accuracy and their standard deviations obtained using 

texture analysis. This table indicates that the classification accuracies of the training set obtained 

using the texture-based approach (> 99 %) are higher than those obtained using the cell-graph 

approach (> 93 %). On the other hand, for the testing set, the texture-based approach yields 

lower classification accuracies in the classification of the cancerous and inflamed tissues (89.60 

% and 79.38 %) than the cell-graph approach (94.00 % and 92.19 %). For both of the 

approaches, the healthy tissues are classified with a similar level of accuracy of ~ 96 %. 

Although the results presented in Table 8 are not as low as in the case of the cell-distribution 

approach (Table 7), the cell-graph approach improves the accuracy of the texture-based approach 

in the classification of cancerous and inflamed tissues, indicating the effectiveness of the nodes 

in a cell-graph.
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Table 8: Cancerous, healthy, and inflamed tissue classification using the texture-based

approach.

Training set accuracy Testing set accuracy

Overall 20.062.99 m 03.115.91 m

Cancerous 53.000.99 m 97.160.89 m

Healthy 00.000.100 m 00.010.96 m

Inflamed 00.000.100 m 18.238.79 m

3.3. Comparison of the local and global graph metrics

The local graph metrics provide the information for each individual node of a graph and enable 

the cancer diagnosis at the cellular level. However, the global metrics provide the information for 

the entire graph, and thus, enable the detection of cancer at the tissue level. Since the global 

metrics are typically computed on the distributions of the local metrics, they are expected to be 

more reliable. This is also observed in the comparison of the accuracies obtained on the local 

graph metrics in [11] and on the global graph metrics in this study. For the classification of 

cancerous and inflamed tissue samples, we have obtained accuracy levels of 83–88 % and 92–95 

% on the local and global metrics, respectively. For the classification of healthy tissue samples, 

we have obtained similar levels of accuracies.

In [11], we also used the classification results of the nodes (at the cellular level) to determine 

whether the tissue is correctly classified (at the tissue level) by examining the percentages of the 

nodes with correct classes. If this percentage is larger than an assumed N percent, we consider 
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that the tissue is classified correctly; otherwise we consider that it is misclassified. That is an 

indirect way of tissue classification necessitating to set the appropriate value for N. In this work, 

using the global metrics as the feature set in the classification introduces a direct way of tissue 

classification and eliminates the need of setting a value of N.

4. Conclusion

This work investigates the strength of the cell-graph representation in the diagnosis of cancer. In 

addition to encoding the spatial distribution of the cells, the cell-graphs encode the pairwise 

relations between the cells by assigning links between them. We demonstrate that this pairwise 

relation is crucial in classifying different types of tissues with similar cellular density levels.

In our experiments, we use 646 images of brain tissue samples surgically removed from 60 

patients. We demonstrate that the cell-graph representation successfully distinguishes the images 

of cancerous tissues from the images of both healthy and inflamed tissues by using the global 

graph metrics. We obtain 94.68 % accuracy on the overall testing samples; the percentages of 

correct classification of the testing samples of healthy, cancerous, and inflamed tissues are 96.30

%, 94.00 %, and 92.19 %, respectively. On the other hand, the cell-distribution approach 

successfully classifies only the healthy tissues, but fails to distinguish the cancerous and 

inflamed tissues from each other. The maximum accuracy on the overall testing samples is 77.86 

%; the percentages of correct classification of the testing samples of healthy, cancerous, and 

inflamed tissues are 98.34 %, 71.79 %, and 42.97 % at most, respectively. The texture-based 

approach successfully classifies the healthy tissues (96.10 %), as well. Although the testing set 
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accuracy in the classification of cancerous and inflamed tissues is not as low as in the case of the 

cell-distribution approach, it yields lower accuracy levels; 89.60 % and 79.38 % for cancerous 

and inflamed tissues, respectively. The summary of the classification accuracies of the cell-

graph, cell-distribution, and texture-based approaches for the testing sets is given in Table 9. In 

this table, we report the value belonging to the grid size that leads to the maximum classification 

accuracy for the cell-distribution approach.

Table 9: Comparison of the classification accuracy obtained using the cell-graph, cell-

distribution, and texture-based approaches on the testing sets.

Cell-graph Cell-distribution Texture-based

Overall 71.068.94 m 29.586.77 m 03.115.91 m

Cancerous 79.000.94 m 52.979.71 m 97.160.89 m

Healthy 16.130.96 m 22.234.98 m 00.010.96 m

Inflamed 90.119.92 m 41.897.42 m 18.238.79 m

This work also compares the global graph metrics defined in this paper and the local graph 

metrics previously defined in [11]. We see that the global graph metrics yield better accuracy 

results than the local metrics to distinguish the cancerous, healthy, and inflamed classes.
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