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ABSTRACT

We introducetransactors a fault-tolerant programming model for
composing loosely-coupled distributed components rugirinan
unreliable environment such as the internet into systerasrit
liably maintain globally consistent distributed state.eTihansac-
tor model incorporates certain elements of traditionahgeetion
processing, but allows these elements to be composed aretiff
ways without the need for central coordination, thus ftatilng the
study of distributed fault-tolerance from a semantic poihtiew.
We formalize our approach via thecalculus, an extended lambda-
calculus based on tteetor model, and illustrate its usage through a
number of examples. Thecalculus incorporates constructs which
distributed processes can use to create globally-consisbeck-
points We provide an operational semantics for thealculus,
and formalize the following safety and liveness propertifist,
we show that globally-consistent checkpoints have egeitatxe-
cution traces without any node failures or applicatioreldsilures,
and second, we show that it is possible to reach globallsistent
checkpoints provided that there is some bounded failwee-fiter-
val during which checkpointing can occur.
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1. MOTIVATION

Many distributed systems must maintalistributed state By
this, we mean that the states of several distributed commsiire a
network-connected system are interdependent on one an®tre
classical example of such a scenario is a bank transactiotving
the transfer of money from one account to another, where wst mu
ensure that it is not possible (even in the presence of amyfsié
ure) for one account to be debited without a correspondieditr
being made to the other account, and vice-versa.

Ensuring that these interrelated states are maintaineccana
sistentway in a wide-area network—where transmission latencies
may be high, and where node and link failures are relativetyp-c
mon occurrences—is difficult. By exposing key semantic con-
cepts related to maintenance of distributed state in a comwell-
foundedlanguage rather than relegating these issues to system or
middleware, composite distributed applications can neasmout
the failure semantics of their components, and, if appederisup-
ply extra protocol layers (e.g., logging, rollbacks, restireplica-
tion, etc.) to add additional reliability.

To better illustrate the complexity of maintaining distribd
state in a loosely-coupled distributed system, considellaation
of web services that are combined dynamically to manageuhe p
chase of a house. Such a purchase is a complex multi-stegatran
tion involving many interacting participants. In the U.Bwould
not be unusual for the list of participants to include, in itidd
to the buyer and seller, real estate agents, lawyers, barggec-
tors, mortgage brokers, mortgage issuers, municipal atit®
and more.

Today, many of the steps required to purchase a house esitail t
dious requests and responses for information via telepbaltg,
faxes and paper documents. A few of those steps, such asisearc
ing for candidate houses to purchase and choosing amorausari
mortgage lenders, can now be facilitated by interactivénerder-
vices. However, in the future, it should be possible foruaity all
the information generated during the process to be excldaage
managed electronically.

There are a number of challenges to designing a distributed
web services infrastructure to support complex transast&uch
as house purchases: We would like to allow various servicée t
assembled dynamically, to manage the flow of informatiorr ave
extended period of time, to cope with the possibility of e or
network failures while the transaction is pending, to alfowrecti-
fication of various failures of semantic consistency (eg.attempt
to overdraw a bank account), and to ensure that all of théegart
complete the transaction in a consistent, durable state.

Figures 1 and 2 depict a subset of the operations that might be
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Figure 1: A collection of interacting web services managing
(part of) the purchase of a house. buySrv, sellSrv, lend-

Srv, apprSrv, and srchSrv represent services for the buyer,
seller, lender, appraisal service, and title search servig re-

spectively. lendTrns, apprTrns, and srchTrns represent sub-
processes spawned specifically to manage the interactionthvi
buySrv. Portions of the vertical process bars that are black
represent “stable states”.

performed by a collection of web services involved in theatieg
tion of a house purchase, and serve to illustrate many ofthes
that arise in building an infrastructure to support suckises. We
will consider such services to be concurrent processesamesgend
and receive messages to other processes as well as spawnorew p
cesses. Fig. 1 depicts a portion of a successful negotjatibite
Fig. 2 depicts the more interesting case (from our persgEctf
failure and subsequent recovery of several sub-procekstm fig-
ures, the vertical bars labeled byySrv andsellSrv represent web
services acting on behalf of the buyer and seller, respgtiend-
Srv, apprSrv, andsrchSrv represent web services for a lender,
appraisal service, and title search service, respectivehdTrns,
apprTrns, andsrchTrns represent sub-processes spawned by the
lender, appraisal service, and search service specificathanage
the interaction with the particular buyer in this exampleridontal
arrows depict messages sent between processes or themcrefti
new processes. Portions of the vertical process bars thdtlack
represent “stable states”, where the state maintainedebgrticess
should not subsequently change. Process rollback (arfsimg
various forms of failure) is depicted by dashed diagonaivast

We will now consider the scenario of Fig. 2 in more detail. ®om
of the key steps in this process are as follows:

1. The buyer chooses a candidate house, and initiates the

buySrv web service (perhaps via a real estate agent) to man-
age the house purchase process.

. In order to determine an appropriate price to offer thiesel
buySrv contacts an appraisal servie@prSrv, whose job is
to estimate the “market value” of the house.

tion with buySrv. apprSrv requests basic information about
the house (location, size, condition, amenities, etcmftioe

seller's web servicesellSrv.

. apprSrv combines the house specifications with historical
information in a database of recent house purchases to com-
pute a “tentative” market price, which is stored and trans-
mitted to the seller. The tentative price is normally acteira
(within the limits of subjectivity that such a valuation en-
tails). However, before producing a “definitive” appraised
value, the appraisal process requires an on-site visit (by a
person) to the house to verify the accuracy of the specifica-
tions originally sent by the seller’s service.

. The buyer decides to offer the seller the price computed by
the appraisal service. As is typically the case, the offer is
made contingent on the buyer’s ability to find a mortgage
lender and on the absence of misrepresentations about the
house’s specifications and condition. This offer is tratsmi
ted tosellSrv.

. buySrv connects to a title search serviGchSrv, which
ensures that the owner of the house has the legal right to sell
it. srchSrv spawns a subprocessichTrns, to manage the
interaction withbuySrv.

. buySrv contacts a mortgage lender servitendSrv, for a
guote on a mortage, giving the lender the (electronic) ad-
dress ofapprTrns (the lender service needs professional ap-
praisal information to ensure that the buyer is not borrgwin
more money than the house is worth as collatetahdSrv
spawns a subprocesendTrns, to manage the interaction
with buySrv.

. The appraiser visits the house in person, and discovats th
the house specifications transmitted by the seller's agent
were inaccurate. The new information results in a house
value lower than the tentative value computed earlier. &inc
the appraisal service already transmitted the tentatilteeya
which is now incorrect, it (voluntarilyjolls backto its initial
state, then (re-) processes the human-gathered housé-speci
cation information.

. lendTrns contactsaapprTrns to determine the appraised price
of the house. At this point, the price information used to ap-
prove the mortgage differs from the price information origi
nally transmitted byapprTrns to the buyer.

10. The lender approves the mortgage, and sends the approval

notice to the buyer.

After step 10 abovehuySrv has received two pieces of semanti-

cally inconsistentinformation: the tentative price transmitted ini-

tially to apprTrns, and the mortgage approval message, which was

computed based on the new price information computecpy
prTrns after rolling back. As a result of this inconsistenboyySrv
must now roll back in order to attempt to re-establish a <iast

state. AfterbuySrv rolls back, the buyer may, e.g., wish to invoke
the contingency clause in the contract to renegotiate tleepsize.

The transactor model serves to maint@é@pendenceformation
needed to detect semantic inconsistencies such as thatetbpi
Fig. 2, and to cause the rollback of theySrv process to occur
automatically. In addition to such “semantic” failuresppess or
network failures during the course of the transaction mighise
information loss that requires an orderly re-establishnaérthe

. apprSrv spawns a process specifically to manage the interac- transaction’s distributed state. Note, however, thaiesteps of
the transaction, such as the title search, need not be ristego

after a semantic or system failure, since the results of daech
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Figure 2: A house purchase scenario involving the “seman-
tic failure” and rollback of the apprTrns sub-process due to
inconsistent information about house specifications. Thisiti-
mately results in the rollback of thebuySrv process itself, due
to the inconsistency between the appraised price used to tii
ate the buying process, and the differing price incorporatd in
the mortgage approval sub-process.

are unaffected by the inconsistent appraisal values. Sepls san

be committedearly in the process, while other steps (such as the
final transfer of the purchase price) might require mutuedament
between multiple parties to be reached before becomingotiura
and binding.

In this paper, we describe thansactormodel, a fault-tolerant
programming model for composing loosely-coupled distebu
components running in an unreliable environment such asmthe
ternet into systems that reliably maintain consistentrithisted
state. Our model isot concerned with certain aspects of tradi-
tional “ACID” transactions [13] such as isolation or centdbrms
of atomicity. While such features are beyond the scope sffiai
per, they can be explicitly coded in our model if desired,,grga
manner similar to [11]; instead, we focus on ensuring coesty
of distributed state in the presence of certain types of rmodienet-
work failures. In particular, we assume that a node failseziby
stopping, or by reverting to a programmatically-defirvbéckpoint
saved to stable storage, then restarting.

The remainder of the paper is structured as follows: Se@ion
introduces related work. Section 3 informally describesttians-
actor model. Section 4 introduces the syntax of thealculus,
an extended lambda-calculus based ondatter model. Section 5
illustrates some representative transactor examplesio8dcpro-
vides an operational semantics for thealculus. Section 7 formal-
izes safety and liveness properties of the model. Fina#gtiSn 8
concludes with a discussion and potential future direstion

2. RELATED WORK

The transactor model is based on #wtor model introduced by
Hewitt [15], and further refined and developed by Agha et Hl. [
3, 22]. Actors are inherently independent, concurrent, and
tonomous which enables efficiency in parallel executior] &l
facilitates mobility [2]. The actor model and languagesvide a

very useful framework for understanding and implementipgro
distributed systems. Transactors can be regarded cammina-
tion model[12, 11, 24], in the sense that they are intended pri-
marily to express the semantics of timeractionsamong various
distributed components, rather than to describe the catipas
local to a node in the system.

Traditionally, distributed state maintenance has beemvede
primarily as a systems or “middleware” [5] problem, in which
e.g., system infrastructure for message-passing proygdasan-
teed message delivery on an unreliable network substrat23]6
or where distributed databases or transaction systemssupp il-
lusion of shared, atomically-updatable state across pieltiodes
[17, 20]. A number of projects are underway to realize disiied
programming models for the internet, e.g., theb servicesnodel
based on exchange of XML data [26].

Distributed transaction management systems, e.g., thasae-
plement the XA system-neutral transaction API [27], typicee-
quire that all of the participants in the transaction cooaté their
work with a pre-designatettansaction managerand that every
transaction has well-defined beginning and end points. & pesp-
erties make it difficult to build open distributed systemsenehthe
topology of the system is determined dynamically, wheresttupe
of—and even the need for—a transaction is situation-degrend
and where transactional and non-transactional componantsas-
ily interact. While there is much existing foundational wawn
languages for concurrent, and to a lesser extent, distdbsys-
tems (e.g., actors [1, 3], the-calculus [18], the join calculus [10],
and mobile ambients [7]), formalisms that provide prim@svfor
reasoning about the consistency of distributed state inpthe-
ence of failures are not well developed. At the other end ef th
spectrum, distribution in “industrial” languages or laage mod-
els, e.g., Java RMI [21], Jini [25], CORBA [19], and COMH+, is
generally based on remote procedure call models that haited
mechanisms for dealing with failure, and are best suitetidbtly-
coupled, centrally-managed applications.

Liskov's Argus language [17] incorporates constructs faim
tenance of distributed state (vigested transactions Liskov in-
troduced two principal abstractions: guardians and astio&
guardian is an abstract object whose purpose is to encépsla
resource or resources. Special procedures, called handian
be used to access a guardian. An action is essentially adneste
atomic transaction. Argus essentially provides a progrargrm-
terface onto centrally-managed nested transactions. Birasi,
with transactors, we intend to uniformly model a varietyaifure-
management techniques, including transactions and apipls
with weaker consistency semantics. Haines et al. designex-a
tension to ML to modularly support first-class transactifib$)].
That is, atomicity, isolation and durability propertiesxdze com-
posed as desired. We are concerned with distributed statisco
tency and durability, and do not explicitly model isolatidktomic-
ity within a transactor is inherited from the actor model erdneach
transactor represents a unit of concurrency and procesbesme
message at a time. Other actor-based abstractions (suphchss
nizers [11]) can be used to provide atomicity for actiongqrened
by groups of co-related actors.

Chotia and Duggan’s abstractions for fault-tolerant glamen-
puting [8] include conclavesas groups of correlated processes
which fail atomically, andogswhich abstract over persistent stor-
age. Berger and Honda provide an extension tonttelculus to
model the two-phase commitment protocol [4]. While the moti
vation of their work is similar to ours, the approaches ariequ
different. The transactor model does not assume atomitipyd-
cess group failures: transactors can fail independentlycamisal



dependencies are carried along with messages to ensurentijat
globally consistent checkpoints can be reached by apjaicétvel
protocols. Our calculus also enables reasoning about angas
ing modules with different transactional semantics anthbdity
properties.

A preliminary account of the ideas underlying the transacto
model was published as [9]; it contained no correctnessferoo
While the work presented here shares some of the ideas oéthe e
lier paper, almost all of the semantic components-clculus have
been updated and simplified.

3. TRANSACTOR MODEL

The goal of the transactor model is to enable developinghkdi
systems composed from potentially unreliable componevtigch
may suffer both system failures and application-specifinas#ic
inconsistencies. We show that given any two checkpointetad|
statesk and &’ of a distributed system such thatand £’ are re-
lated by an execution trace containing inconsistent statadting
from node failures, application-level failures, and lostssages,
there exists an equivalent execution trace containing mgsage
losses.
about the possibility of lost messages, not about the otbrens
of failure.

Transactors extend the actor model [1] by explicitly maulgli
node failures, network failures, persistent storage, date Sm-
mutability. A transactor encapsulates state and commtesaaith
other transactors via asynchronous message passingptmessto
a message, a transactor may create new transactors, sesabe®s
to other transactors, or modify its internal state. In addito these
inherited actor operations, a transactor may stabilizeclghoint,
or rollback.

A transactor’s stabilization is a commitment not to modtfyin-
ternal state—i.e., to hecome immutable—until a subseclertk-
point is performed or until another peer actor causes it tbaok
due to semantic inconsistencies. Stabilization can begtttoof as
the first phase of a two-phase commitment protocol.

A checkpoint serves two purposes: first, it is a commitment to
make the current transactor state persistent, i.e. ablevie local
temporary node failures; and second and most importans, at i
consistency guarantee, i.e. there are no pending depdadent
the volatile state of peer transactor®ependence informatiois
carried along with messages, so that only globally consistates
can be checkpointed. Checkpoint can be thought of as thedeco
phase of a two-phase commitment protocol.

A rollback operation brings a transactor back to its presipu
checkpointed state, if any, or makes it disappear othervikmle
failures have a similar effect.

4. THE TAU CALCULUS

The 7-calculus is based on an extended, untyped, call-by-value
lambda calculus; its terms are depicted in Fig. 3. The basibtia
calculus constructs are standard and we will not commentiem t
further. The extensions can be divided into two categotiasse
terms €4) that encode the traditional actor [1] semantics with ex-
plicit state management, and additional constructs to atifs-
tributed state maintenance. In this section, we will giveriafp
intuitive tour of 7-calculus constructs, and defer a more detailed
discussion of its semantics to Section 6.

4.1 Traditional Actor Constructs

Thetransactor creatiorconstructtrans e; init es snart cre-
ates a new transactor withehavioreq, and initial statees. The

Hence programmers using our model need only reason

A = {true, false, nil, ...} Atoms
N = {0,1,2,...} Natural numbers
T = {t1,ta,t3,...} Transactor names
X = {z1,z2,23,...} Variable names
F = {=+,...} Primitive operators
\% = Values
AN |T|X
| AX.E Lambda abstraction
| V,V) Pair constructor
Ep == Pure expressions
1%
(£€) Lambda application
fst(&) First element of pair
snd(€) Second element of pair
if £ then € else € fi Conditional
letrec X = £ in € ni Recursive definition
FE,...,€) Primitive operator
Ea = Traditional actor constructs
Ep
trans £ init £ snart New transactor
send € to £ Message send
ready Ready to receive message
self Reference to own name
| setstate(&) Set transactor state
| getstate Retrieve transactor state
& = Transactor expressions
Ea
| checkpoint Make failure-resilient
| rollback Revert to prev. checkpt.
| stabilize Prevent state changes
| dependent? Test dependence

Figure 3: Terms.

behavior must evaluate to an abstraction term; intuitivblig term
evaluates each incoming message to the created transactor.

The expression returnsteansactor namea fresh value that can
be subsequently used as the target ofrttessage senconstruct,
send v to t. This construct sends a message witintentsv
to the transactor named Theready construct indicates that a
transactor is waiting to process the next incoming messagH.
yields the transactor’s own name.

The setstate(v) construct imperatively updates a transactor’s
state to the value. A message send can potentially introduce
a causal dependency from the sender to the target transéctor
the target transactor modifies its state in response to tissage.
When a transactor has committed not to change its statejxec
of setstate(v) has no effect; thus the expressisatstate(v)
returns a boolean value indicating whether or not the statiate
actually took placegetstate retrieves the value of the state.

4.2 State Maintenance Constructs

Thestabilize construct causes the current transactor to ignore
subsequentetstate(v) or rollback expressions and become
stable this fact is communicated by the underlying operational se
mantics to other transactors with which the current tratos@aorre-
sponds, and is in effect a “promise” to the transactor’'s ptat the
transactor will not attempt to change its own state. Noté¢kian
after entering astablestate via thestabilize construct, a trans-
actor can still process messages, it simply cannot chaaganit
state.

The checkpoint construct creates eheckpoint which is (ef-
fectively) a copy of the transactor’s current state which be re-
covered in the event of certain failures. checkpoint can only
be made if the current transactor is m#pendenbn the volatile
state of one or more other transactors. That is, a state fdtgn
unrecoverable in the presence of node failures. dépendent?
construct tests whether this is the case. TaHback construct



causes a transactor to revert to its previous checkpoionefex-
ists, and causes the transactor to disappear otherwiseithshe
setstate(v) construct, theollback construct has no effect when
the transactor is stable.

4.3 Defined Forms

Fig. 4 depicts a number of defined forms that provide convenie
syntactic sugar for writing-calculus programs. Most of these con-
structs are self explanatory, a few deserve further exfitama

Themsgcase construct yields a lambda abstraction whose body
processes incoming messages. Messages are assumed toetake t
form of a vector of parameters, the first of which is an atont tha
constitutes anessage nam&hemsgcase body tests the value of
the incoming message and processes the other message argume
appropriately; messages that are not understood are @nore

Thedeclstate construct declares names for a transactor’s state,
which is presumed to consist of a vector of elements. This con
struct does not “expand” into a corecalculus expression, instead,
it simply defines a static name scope for subsequent refesenfc
the form!u andu := e, which expand into appropriate operations
on the transactor’s state vector.

5. TRANSACTOR EXAMPLES

In this section, we illustrate a few representative tratsgmo-
grams.

5.1 Reference Cells

We begin with a simple reference cell and tvediable versions
thereof providing progressively more refined notions ofsistent
state under different failure and interaction assumptions

The cell program, shown in Figure 5, is a volatile reference cell
that never gets checkpointed: it cannot tolerate procéssda and
therefore, any other programs which depend on that celliseva
will not be able to reach consistent states or checkpoint.

The pcell, program is a first attempt to provide a cell whose
invariant is to always checkpoint its current value to beeatol
recover from process failures. Upon creation it must rexein
initialize message, that creates an initial checkpoint. Notice that
it first needs to become stable to succeed checkpointingy #ds
tice that the creator of that cell needs to be stable as wethfat
checkpoint to succeed. On reception ofed message, the cell
will modify its value, and checkpoint again. This checkpaas-
sumes that the transactor sending $he message is stable, and
therefore, does not create spurious dependencies on thepoel
state assignment. On reception ofet message, the cell needs to
stabilize first, to ensure that no new dependencies arerggtim
the cell's customer. And finally, to preserve the invariahbeing
just checkpointed (and therefore, volatile) on messageptem, it
does a finatheckpoint.

The pcell, program builds on the previous example, but also
considers the possibility that the clients setting the ealfithe cell
may do it from a volatile (i.e., unstable) state. In this caise cell’s
set message handler checks for any outstanding dependeneies af
ter updating its state, and if the transactor is dependerutioer
transactors, it rolls back to its previously (known to bepsistent
state.pcell, is strictly more reliable thapcell, in the sense that it
considers interaction with potentially volatile clients.

5.2 Electronic Money Transfer

The traditional electronic money transfer example dedidte
Fig. 6 is implemented with transactors using a a protocoli-sim
lar to classical two-phase commit protocol&gller represents an
ATM machine or a similar coordinator for a transfer betwesn t

[vecl] (e1,...,en) % (e1, (.., (en,nil))y...), n>0
[vec2] () = il
[vee3] & L2 (z1,...,z,) forsomen >0
[seq] e1;ea % ((Mz. e2) er), z & fv(ea)
ifl if e; then e; fi = if e; then e; else nil fi
{let]l] let ; =e iri eani 2 (()@1 e2) 61)2
[let2] let (z1,...,z,) = €1 in
e
ni
= let z; = fst(ey) in
let z,, = fst(snd(...snd(e1)...)) in
e2
ni
ni
[vabs]  AZ.e
2 Az’ let =2a'ineni, 1z’ ¢fv(e)
[msgl] msg & =  (msg, T)
[msg2] msgcase
msg, £1 = ey
| msg, Tn = en
esac
2 xm, ). (
if m = msg; then
let £, = 2’ in e; ni
else
if m = msg,, then
let Z, = 2z’ in e,, ni
else
ready
fi
fi;
ready )
[stal]  declstate (ui,...,u,) in e etats
= declaration of names for elements of state
[sta2]  luy
= let (z1,...,z;, Z) = getstate in z; ni
wu; is theith name declared in the closest
statically-enclosingleclstate scope, of lengtm, n > ¢ > 0
[sta3] wu; = e

setstate((lui, ..., lui—1, e, uiqr1, ..., luy))
whereu; is theith name declared in the closest
statically-enclosingleclstate scope, of lengtm, n > ¢ > 0

Figure 4: Defined forms.

bankaccounts. All of the transactors are assumed to be persistent
initially, and we assume that thteller has exclusive access to both
accounts. Isolation and locking, if needed to ensure ek Lexc-
cess, can be managed by appropriate auxiliary transactors.

The basic protocol used in the example is quite simple. The
teller sends appropriate account adjustment requests to each ac-
count. Each account separately determines whether it & tabl
fulfill the request. If so, it stabilizes and sendisne (with a result
message) to theller. If not, it also senddone (with an error mes-
sage) to the teller, then rolls back. When the teller hasvedewo
done messages, it stabilizes, then requests that each accouha se
ping message both to its peer account and to the teller. Notetthat a
this point in the protocol, théeller has no idea whether the update
has been successful or not (assuming that it is not inténgréte
messages returned ldpne). However, if either of the transactors
has rolled back in the meantime due to insufficient funds ontp
neous failure, th@ing messages will incorporate inconsistent de-
pendence information, thus effectively resulting in rattk when
received. In the absence of failure, each transactor wihmally
receive sufficienping messages for theheckpoint operation to



let cell = trans
declstate (contents) in

let pcell, = trans
declstate (contents) in

let pcell, = trans
declstate (contents) in

msgcase msgcase msgcase
set(val) = initialize() = initialize() =
contents := wval stabilize; stabilize;
| get{customer) = checkpoint checkpoint
send data(!contents) | set{val) = | set{val) =
to customer contents := wal; contents := wal;
esac stabilize; if dependent? then
etats checkpoint rollback
init | get(customer) = else
(0) stabilize; stabilize;
snart send data(lcontents) checkpoint
to customer; fi
checkpoint | get{customer) =
esac stabilize;
etats send data(!contents)
init to customer;
(0) checkpoint
snart esac
etats

init
(0)

snart

Figure 5: A progressively more refined reference cell. The femost example is an unreliable reference cell. The middleme is a
persistent reference cell which assumes stable clients. &hightmost cell represents a persistent reliable refererecell.

succeed; until that point, théheckpoint is a no-op.
The protocol in Fig. 6 ensures that the transfer will alwaysi¢

let appserver = trans
declstate (db) in

plete in a consistent state, either with both accounts epdappro- msgcase
priately, or both left unchanged. The protocol does not dieattly '"'éf‘!é‘?ﬁzj
with certain combinations of message losses; howeverylticeas- | newsession(cust) =
ily be augmented by adding @mer transactor that periodically send
re-sendging requests if the participants have not checkpointed. “3“51 tat b
Note that we could easily interpose:arrencyconverter trans- e;:g:azécusmme“ ) in
actor between participantshich does not need to know that the setdata(val) =
parties involved are part of a transactierthe model enables to send set(val) to !db
compose services with full transaction semantics withisesthat | ge;ii:iloge?!cus tomer) to 1db
do not have any transactional behavior in a seamless andctorr esac
manner. etats
init
cust, !db
5.3 Web Application Server s
The appserver example in Fig. 7 models a web application ceal et
server. The application server providesesvsession operation that etats
creates a new session transactor for a given customer. $bssien i“é’;w
transactors will be completely independent from each other, snart

no dependencies will be introduced by the application serd&
is a reference cell representing a database resource, wdiiche
volatile or persistent in nature—see reference cell exasnabove.
While the database is shared across multiple web applicatis- ble “daemon” to create instances of per-session transactsr
tomers, the customer sessions are independent of each other Since the server is stable, the session transactors can aai-a
The application server does not depend on the customer- trans tonomously with no dependence on the server.
actors it interacts with, since its state is read-only —girtyi, to a
currency conversion service in the bank account examplehelf
application server is properly initialized, it will also hiaduce any
dependencies on the created sessions or the interactitogrears.

Figure 7: Web application server illustrating use of a sta-

Grammars as setsie will often define sets using context-free
grammars, and will use a non-terminal of the grammar to ssme
the set of all terms derivable from that non-terminal.

6. OPERATIONAL SEMANTICS

In this section, we provide an operational semantics forithe

) . ) ; Lists. Given a setS, we will use [S] to denote the set dists
calculus. We first need to establish some notational coiomnt

defined overS, where[] denotes the empty list, and: [, denotes
. .. . alist cell. We will frequently usées; ez; . . . ; e,] as a shorthand to
6.1 Notational Preliminaries denotees ::(es (... . (en =:[]) ...)). len(l) denotes the length df

Most of the notation we use in the sequel is standard or self- andlastn(n, ) denotes the list consisting of the laselements of
explanatory. Here, we cover a few concepts that are notatdnd [ (for 0 < n < len(l))).



let bankaccount = trans
declstate (bal) in
msgcase
adj(delta, atm) =

bal :=lbal 4 delta;

if !bal < 0 then
send done(" Not enough funds!") to atm
rollback

let teller = trans
declstate (inacct, outacct, acks) in
msgcase
transfer(delta) =

send adj(delta, self) to linacct;
send adj(—delta, self) to loutacct

| done(msg) =
send printin(msg) to stdout;

else acks :=lacks + 1;
stabilize; if lacks = 2 then
send done(" Bal ance update successful ") to atm stabilize;
fi send pingreq(!inacct) to loutacct;

| pingreq(requester) =
send ping() to requester
| ping() = // may cause rollback
checkpoint
esac
etats
init
(0)

snart

send pingreq
send pingreq
send pingreq

loutacct) to linacct;
self) to loutacct;
self) to linacct

P

| ping() = // may cause rollback
checkpoint
esac
etats
init
(savings, checking, 0)
snart

Figure 6: Electronic money transfer example. lllustrates rontrivial use of stabilize for a protocol similar to two-phase commit.
Note that ping messages are used to communicate status (stable or rolleddk) implicitly: checkpoints resulting from receipt of
ping messages will succeed only if all peer transactors have silibed; otherwise it will be a no-op (if pings have not yet ber received

from peers), or cause rollback (if peer is inconsistent).

Finite maps.Given setsS; and Sz, S1 - S, denotes the set
of finite partial maps fronf to S2, wheredom(m) andran(m)
denote the domain and rangeref respectively. We will us@ to
denote the empty mapn(z) to denote the element to which
mapsz, m[z — e] to denote the map that is the samerasexcept
thatz is mapped te;, andm \ z to denote the map' that is the
same asn, except thatr ¢ dom(m’). We will use[z — ¢] as a
shorthand fof)[x — e]. Letm be a map, ang be a function from
ran(m) to ran(m). Then we will usem[z — f] as a shorthand
for the mapm[z — f(m(x))]. m'(z) = f(m(x)). If we want

to apply f to selected elements of a map, we will sometimes use

“map comprehension” expressions such{gs — f(e)] | = €
dom(m),e = m(z), p(z, e)} to generate new maps from in the
obvious way.

Multisets. If S is a set, the{{S}} denotes the set of multisets,
(i.e., bags) consisting of collections of elementsSofwWe will use
‘W’ to denote multiset union. We will also sometimes use “nseiti
comprehension” expressions such{f(z) | z € M,p(z)}} to
generate new multisets frorit in the obvious way (multiple in-
stances ofc generate the same number of instanceg (af)). We
will use s\ z to denote the multiset which is the same as except
that one instance af has been removed.

Pattern Matching.when writing rules comprising the opera-
tional semantics for transactors, we will use varipatern match-
ing constructs, both to determine the applicability of a pattic
rule, and to match components of terms to variables. In afctib
the usual convention of building patterns by applying teiwon-c
structors to variables, we will also use the following autdial
pattern-related conventions: The underscore charactaratches
any term. The patterm[z — p] matches any map:’ for which
x € dom(m') andp matchesn’(z); the variablem is then bound
to the mapn’\ z. Finally, the patters & {z} matches any multiset
s’, in which caser is bound to ararbitrary element ofs’, ands is
bound to the multiset’ \ z.

6.2 Reduction Contexts

Each transition rule of our operational semantics will reéea
particularredexterm within the lambda term encoding a transac-
tor's behavior. As is standard for lambda calculi, we wileuke
notion of reduction context®f the formR(0O) to distinguish the
redex on which the transition rule will operate. Each reituncton-
text is a special term with a single “hole” eleméntdefined such
that a transactor behavior can be uniquely decomposedxattile
one redex and one reduction context. The redexes and reducti
contexts are depicted in Fig. 8.

6.3 Transactor Configurations

Fig. 9 depicts a collection of semantic domains that the
calculus operational semantics will manipulate.

A volatility valuew € W encodes the fact that a transactor is
volatile (w = V(n) for somen > 0) or stable(w = S(n),n > 0).
The value ofn will be referred to as amcarnation

A historyh € H encodes the checkpoint history of a transactor.
A history h = (w,l5) encodes the fact that the transactor which
refers toh has volatility valuew, and has checkpointetén (i)
times since its creation, where the values in theljisteflect the
incarnation at which each checkpoint occurred.

The r-calculus semantics defines four operations on histories:

1. When a transactor is created, its history is initialized t

(V(0), [1)-

2. When a transactor with historfV (n), 1) rolls back, its
incarnation is incremented by, i.e., its history becomes
(V(n+1),1n).

3. Ifatransactor with historyS(n), l5) checkpoints, its history
becomegV(0),n::13).

4. If a transactor with historyV(n), 1) stabilizes, its history
becomegS(n),x).

Dependence mapA& are critical auxiliary structures that can in-
formally be thought of as encoding the states of all trarmsaain



Pure redexes

(V)

| fst(V)

| snd(V)

| if V then € else € fi
| letrec X =V in £ ni
| FV.Y)

Redexes

e

| self

| dependent?
| setstate(V)
| getstate

| checkpoint
| stabilize

| rollback

| ready

| trans V init V snart
| send V to V

Reduction contexts

a

(R &)

(VR)

(R, &)

(V,R)

fst(R)

snd(R)

if R then € else € fi
letrec X =R in £ ni
FWV,...,V,R,E, ..., E)
setstate(R)

trans R init £ snart
trans V init R snart
send R to £

send V to R

Figure 8: Redexes and reduction contexts.

which some value depends. More precisely, a dependence ma
maps each transactor namen which it is defined to a history value
associated with. Dependence maps are associated with three dis-
tinct semantic components of a transactor: the transactonghich

t is dependent for itexistencethe creationdependence map), the
transactors on which’s current state depends (tlstate depen-
dence map), and the transactors on which the value of therdurr
redex depends (thkbehavioraldependence map). By separating
a transactor’'s dependences into three components, we stm- di
guish those dependences related to creation from thoseddla
state (which have radically different semantic consegegnand
avoid the creation of spurious dependences when, e.gnsairtor
never reads its state.

A transactorr € § = (b, g/; e, ; ds,0c, ) IS @ 7-tuple con-
taining the following components: Thelatile statecomponents
containst’s current state; we say thatis volatile since its value
is lost in the event of’s failure. By contrast, th@ersistent state
component, encodes the last value e&tored by a&heckpoint
operation; this state is resilient to failure and model$lstator-
age. Thebehaviorof 7, i.e., its fixed response to every incoming
message, is represented lyyin order to be well-formedb must
be a lambda expression. Thealuation stateomponentg, is an
expression (generally partially evaluated) represerttiegcurrent
state of the evaluation of a transactor’s behavior. 3tfa¢e depen-
dence magomponentgs, is a dependence map that encodes the
fact that the state of is dependent (transitively) on the states of
all of the transactors i@om (ds), whose histories are encoded in
the map. Thereation dependence mapmponentg,, is similar
to é5, except that it records information about the transitiveeate

W = V(WN)|SW) Volatility value

Hoou= (W, N]) Transactor history
A = T4 H Dependence map
S = (V,V; E,V; AN A) Transactor

M = T < (V,A) Message
e = Ths Name service
K = {M}P|e Transactor configuration

Figure 9: Semantic domains.

dence ofr on theparenttransactor that initially created Finally,

the behavioral dependence mapmponentg,, represents thbe-
havioral dependencesf the transactor, i.e., the dependences of the
current redex under evaluation.

Note that we use both commas and semicolons to separate com-
ponents of a transactor. There is no semantic distinctitwesn
the two; this is a purely syntactic convention designed foase
rate transactor components into three (semicolon-segEradbg-
ical clusters” for easier reading. These clusters reptesespec-
tively, persistent (i.e., durable) components that ser¥ailures §
andsg,), volatile components that generally do not survive faifur
(e ands), and dependence informatiofy (d., anddy).

A messagen € M contains a target transactor name encod-
ing the message’s destination, a value representing theage’'s
payload and a dependence map encoding the transitive closure of
transactors on which the message’s payload is dependent.

A transactorconfigurationk € K is a pair consisting of aet-
work, a multiset of messages, anchameservemap from trans-
actor names to transactors. The network serves to buffesages
sent among the transactors in the configuration. The mulige
resentation for the network encodes the fact that the ordehich
messages sent to the same transactor are received is edteltte
order in which they were seng¢yen from the same sendler

6.4 History and Dependence Map Operations

In this section, we define a number of auxiliary operations on
histories, dependence maps, and related structures thdiewie-
quired by the operational semantics.

Basic history operationswe begin by defining some basic
operations on histories. Lét = (w,l;) be a history. Therh
is stable notated{(h), if w = S(n) for somen; otherwiseh
is volatile. If I, is nonempty, i.e., it has checkpointed, thiers
persistent notated,/(h); otherwise,h is ephemeral The empty
history (V(0), []) will be denoted byHj.

Relations on historiesNext, we define some relations on his-
tories that will be used in the transition rules in the ogersl
semantics for the-calculus. &', ' —¢’, and '—,/ are the least
relations satisfying the following conditions:

(V(n),ln) 9 (V(n+1),1y) (‘rolls back to”)

(S(n),lny % (V(n+1),ly) (‘rolls backto”)
(V(n),ln)) —o (S(n),ln) (“stabilizes to”)

(S(n),ln)y —y (V(0),n::ln)  (‘checkpoints to”)

‘', " =o', and ‘—,/ represent all of the valid “single-step” tran-
sitions that a history associated with a single transactormake:
‘-’ encodes the fact that a transactor has rolled back. A Velati
transactor can roll itself back (the first case fes") or be rolled
back “spontaneously” due to node failure or inconsisteatesta
stable transactor (the second case) only rolls back if atess
found to be inconsistent. The- ' transition encodes the fact that
a transactor has stabilized, and;)’ encodes the fact that a trans-



actor has checkpointed. Since these relations are fusctieawill
sometimes speak of “applying” them to a history to yield a new
history.

We can now define the following composite relation:

A
~> =

(U —o U—y) (Missucceeded by”)

Intuitively, h1 ~ . hs if h1 andh, are valid histories for the same
transactor (sayr), andhs occurs afterh; in some execution trace
for 7. ‘~.’ defines a partial order on histories. We will say that
historiesh, andh, arecomparablef either hq ~». ha OF ha ~

hi.
Finally, we have the following relation:

S

M G -~  (“is superseded by”)

Intuitively, h1 x ho if ho is a history of a transactor that rolled
back from the state represented by histbiy then proceeded to
do zero or more additional operations. Thus the state reptes
by h2 supersedes the obsolete state representéd.bye will say
that two histories areonsistenif neither supersedes the other.

Given consistent historiels; and he we define thesharpening
operation, notate#l; t h2, as follows:

h/
hifhe =
h1

Intuitively, if k1 is not stable, and is reachable (via».") from

hi via an intermediate historg’ which is the stable form o,
then the sharpening operation yields otherwise it is a no-op.
The sharpening operation is used to “update” dependence- inf
mation about peer transactors that have stabilized sireie [dst
communication.

if there existsh’ such that
hl -0 h/ ™ hz
otherwise

Operations on dependence mapst ¢; andd, be de-
pendence maps. Then is invalidated byd-, notatedd; x d if
and only if there exist$ such thatt € dom(d1) N dom(d2) and
(51 (t) X (52(1‘,).

Let ; andd, be dependence maps. Then thaifon denoted
01 @ d2, is defined as follows:

max ., (61 (1), 62(t))

whent € dom(d1) N dom(d2) and
61(t) andd2 (t) are comparable

whent € dom(61), t ¢ dom(d2)

whent ¢ dom(61), t € dom(d2)

otherwise

(51 ) 52)(t) = 51 (t)

92(t)
undef.

We extend the sharpening operation on histories to consiste
dependence maps andd, as follows:

1 (t) § 62(¢)

o1 (t)

when
t € dom(d1) N dom(d2)
otherwise

(61 402)(¢) = {
Let o be a dependence map. Theis independentnotated) (d)
if forall ¢t € dom(6), 0(4(t)); otherwise is dependent

Characterizing transactorsLet
7= (b,g/; € 8; ds[t — h],dc,dp)

be a transactor bound to narhé some transactor configuration
Then we will say that- is stableif {(k) andvolatile otherwise.
Transactorr is independentf ¢(ds @ o \ t) (i.e., 7 depends on
no unstable transactors other than itself) degendenbtherwise.
Transactorr is readyif e = ready, andbusyotherwise; it isper-
sistentif \/(h) andephemerabtherwise; it isinitial if s = 5, and
non-initial otherwise. Ifr is persistent, independent, ready, and
initial, we will say that it isresilient

When not otherwise qualified, we will refer to the volatilatst
of 7, i.e., s, as simply thestate of . If 7 is both stable and in-
dependent, we will say that it iségaemon Daemons can be used
to model humans or other “external agents” in a system that se
and receive messages, are resilient to (system!) failuteddp not
“participate” in global state.

Operations on configurationg.et & = y | 6 be a config-
uration. Then we will usenet(k) to denote the network;, and
ns(k) to denote the nameservér The domainof k, denoted
by dom(k) is the set of all transactors iki's name service map,
i.e., dom(ns(k)). Given a configuratiort and a transactor name
t € dom(k), we will usek(t) as a shorthand for the transactor
(ns(k))(t). We will say that a configuratioh is readyor resilient

iff for all t € dom(k), k(t) is ready or resilient, respectively.

6.5 Transactor Transition
Rules

We will divide the transition rules of the-calculus into two prin-
cipal classes: those representimgmaltransitions, where the only
form of failure allowed is message loss, amatie failuretransitions
representing either spontaneous node failures or rulégragsto
manage inconsistencies resulting from such failures.

The set of normal transitions will be represented by the com-
posite transition relation-—’, which is the relational union of the

primitive transition rules in Fig. 11 and 12. The transitiomes in
Figs. 11 encode the “classical” semantics of the Actor m¢tiel
The transition rules in Fig. 12 augment the classical seicant
with additional operations for managing consistency (emating
checkpoints).

The set of node failure transitions will be represented gy th
composite transition relation——', which is the relational union

of the primitive transition rules in all of Figs. 13 and 14.éeTtian-
sition rules in Figure 13 model “spontaneous” node failpies,
failures beyond the control of the transactors themselke.tran-
sition rules in Figure 14 define the semantics of “prograduied”
failures via therollback operation, and other operations to handle
inconsistencies resulting from failures.

We will use ‘7’ to denote an arbitrary--calculus transition,

Configuration

i,e_, —_—s=—J —

In the following sections, we will consider each collectioh
rules in turn. While the number of transition rules may appea
somewhat daunting initially, we believe that each of themoeies
a “semantically orthogonal” component ofcalculus semantics in
a reasonably natural way.

Pure Reduction Rulessig. 10 depicts a set of standgpdre
reduction rules for lambda terms encoding transactor betgav
These rules are “imported” into the classical actor cakulthose
transition rules are depicted in Fig. 11.

Transition Rules for Basic Actor Semanticsg. 11 de-
picts the collection of transition rules that encode theasstins of
the Actor model [1]. The semantics is loosely modeled after t
semantics of Agha et al.[3], but with a significantly diffatereat-
ment of state. In the rules of Fig. 11 as well as other rulesién t
sequel, the relationf—> is asingle-stegransition relation on trans-
actor configurations. Single-step transitions will be datexrl with
both the name of the applicable rule and a distinguishedaetor
namet to which the relation will be said tapply. Given a trans-
actor configuratiork that maps transactor nameo transactorr,



[purl] ((Az. e)v) —x e[v/z]
[pur2] fst((vi,-)) —ax w1
[pur3] snd({-,v2)) —x w2
[purd4] if true thene; else . i — ) e1
[purb] if false then _elseex fi — e2
[pur6] letrecz =vineni —
e[(v[(letrec x = v in e ni)/xz])/x]
[pur7] fvi,...,0n) —a v

(feF,v=[f1vi,...,vn))

Figure 10: Pure reduction rules.

it will be convenient to refer ta- by its name¢. We now consider
each rule in turn.

[pure] This rule applies one of the pure reduction rules depicted
in Fig. 10 to the behavior of a transactor.

[new] This rule creates a new transactowith behaviord’ and
initial states’. The persistent state is initiallyil sincet’ has not
yet checkpointed. The state dependence may’fe initialized
to refer to itself: a transactor is always dependent onfi{sélile
this information may appear to be redundant, it avoids teethn
problems when a transactor sends messages to itself, wiichga
other things is a convenient way to encode “continuationsbe
performed following checkpoints). The creation dependemep

that if a transactot does not update its state in the course of pro-
cessing a message from another transacton which¢ was not
previously dependent,will not become dependent ah

[self] This rule encodes retrieval of the transactor’'s own name.

Core Transactor Transition RuleJhe rules depicted in
Fig. 12 augment the basic actor transitions of Fig. 11 witti-ad
tional rules for managing distributed state, as follows:

[set2] This rule causes the expressitstate(v) to be ignored
when target transactaris stable; this encodes a “promise” to peer
transactors that will not voluntarily update its state or roll back
(however, it may nonetheless be rolled back due to incarsists).

[stal], [sta2] These rules encode the stabilization operation. Sta-
bilization inhibits further state updates andllback operations
(via rules[set2] and[rol1]), renders the transactor resilient to spon-
taneous failure (due to the absence of rules for such failime
Fig. 13), and is a prerequisite to checkpointing (falek1]). Rule
[stal] applies if the transactor is currently volatile; it simplp-u
dates the transactor’s history to reflect the fact that itable. Rule
[sta2] encodes the fact that stabilization is a no-op if the tratesac
is already stable.

[chk1], [chk2] These rules encode tlgheckpoint operation.
The preconditions of ruleghk1] and[chk2] determine whether
has received messages from all of the transactors on whichét

for ¢' is the dependence map union of the creation dependencespendem indicating that those transactors have stabitzetheck-

and behavioral dependences for the creating transactca evap-
ping for the creating transactof) (itself. This map encodes those
transactors on whose staté’s creation is transitively dependent.
Note that the behavioral dependence may ferupdated to encode
a dependence on the newly-created transactor. This “c@mntra
ant” dependence is critical for ensuring that the persittate of
a transactor cannot refer to an ephemeral (i.e., nonchatkpd
transactor.

[send] This rule encodes the act of sending messageith pay-
loadw,, to transactot>. The message is “tagged” with the creation
and behavioral dependences of the sender (transagtcas well
as a dependence onitself. Thusm carries information about the
transactors on which it isansitivelydependent. Note that it is not
necessary to incorporate the state dependences of the sirde
are included in the behavioral dependence map if the stateeis
read.

[revl]
selected from the network component of a configuration niamele
ministically. Thus while our model assumes guaranteed agess
delivery, it does not guarantee order of delivery. The pnditmns
of the rule ensure that no received message either invetidae
state or creation of the receivernor is invalidated by. The pre-
conditions always hold in the absence of failures; rulesesking
the failure of these preconditions are addressed below. rasudt
of message receipt, the behavioral dependencesref updated to
contain the dependences of the received message,;sdnehavior
(alambda expression) is applied to the message. Finallyirrent
state and creation dependence maps are updated by thershgrpe
operation (f) to reflect new information about those dependences
contained in the arriving message. In particular, we neatkter-
mine if any previously volatile transactors on whicls dependent
have now become stable.

[get], [set1] These rules model retrieving and setting state, which
we model as a single (possibly composite) cell. Note thahe t
case of rulgget], the updated behavioral dependence @apn-
codes a dependence on the state, symmetrically,[sedé¢] adds
information in the behavioral dependence map to updatetéte s
dependence map,. Among other things, this semantics ensures

pointed the relevant dependent states. If the checkpoiertatipn
succeeds (rulihkl]), the volatile state of is stored int’s persis-
tent state¢’s history is updated to reflect the checkpoint, and the
state dependences ofare reset, and the creation and behavioral
dependence maps are resei td hus in addition to storing volatile
state persistently, the dependence map resetting perdoomnéhe
checkpoint operation has the effect of bounding the amoludéo
pendence information that must be tracked across chedkpdihe
resetting of the creation dependence map itmplies that this map

is only non-empty for ephemeral transactors. If the preitmrs

for checkpointing do not hold, rulghk2] causes it to behave like
ready.

[roll] Rule[roll] encodes the fact that programmatic rollback is
disallowed whert is stable; in this case, rollback behaves as if it
wereready.

[dep1], [dep2] These rules determine whetheis dependent on

This rule encodes message receipt. Note that messages ar&nY non-stable transactors other than itself.

[lose] Finally, this rule models the fact that under “normal cir-
cumstances” messages may be lost after being sent. We assume
that such losses are relatively rare; however it may ihjtiséem
odd to make message loss an element of normal transactor-beha
ior at all. In part, this is a consequence of our global cdasisy/
semantics, which trades the possibility of global incalesisy for
the possibility of message loss, hence transforming thgrpm-
mer's burden from reasoning abogiobal failures (about which
they can have no knowledge in general), to reasoning ablogbh
failure in the form of lost messages. However, as a praaticter,
even programs running in systems with guarantees aboutigess
delivery musteffectivelyreason about the possibility of message
loss, since they typically must incorporate time-outs taldeith
protracted message latencies (which then become indissimable
from losses).

Failure Transitions.The rules depicted in Fig. 13 modsgion-
taneousnode failure caused by faults. In realistic systems, these
rules will be applied far less frequently than the non-fialcules.

[f11] This rule models the transient node failure of a persistent,
volatile transactor. In such cases, the state of the tréorsaverts



[pure] Evaluate pure redex.
e—xe ec 5;‘”

w0t — (b5 Rlel,s; 8s,06e,65)] [L] w0t — (b,s/; Rl ],s; 8s,8c,65)]
pure

[new] Create new transactor.
w8t — (b,s,; R[trans b’ init s" snart],s; 6a[t — h], dc, 6p)]

t
—

[new]

[send] Send message, piggybacking dependence information.

wl Ot — (b,s/5 Rt ],s; 8s[t — h],6c, 8, @ )]t +— (b, nil; ready, s’ ; §',8c D & @ [t — h],0)]

t' ¢ dom(0) U {t}
5/ = [t/ — H()]

wlOft— (b,s,; R[send v, tot'],s; 5[t h], b, 8p)] [ﬁ] (W {t' <= (v, 8c ® 6y ® [t — h])}) | O]t — (b, g, 5 R[nil],s; 8s[t — h], 8¢, 8b)]

[rcv1] Message dependences not invalidated by transactor; ttosdependences not invalidated by message: process geessamally.

“(8sc X 0m)

(8 X dsc)

0sc =65 @ bec

t
—

(W {t <= (vm,0m)}) | 0]t — (b, 5/; Rlready],s; ds,dc, )] -t

[get] Retrieve state.

I ‘ 9[t = <b7§/; (b vm)a'S? ds ﬁ5m756ﬁ5m;67n>]

w0t — (b, 5, ; Rgetstate],s; ds,dc,8)] ﬁ w0t = (b3 R[], 55 8s,0c,0p @ 8s)]
get

[set1] Transactor is volatile: setting state succeeds.
—0(h)

w10l = (b, 35 Rlsetstate(s)],-; o[t = k], 0c,00)] = ] 01t = (b 35 Rtrue], s 8olt = h] & 8y, dc, 03]
set

[self] Yields reference to own name.

w8t (b5, ; Rlself],s; 6s,6c,6b)] [%;] w8t — (b5, ; R[t],s; s, 0c,05)]

Figure 11: Transition rules encoding basic actor semantics

to the stored persistent state, and the state dependencaation
is reinitialized. This rule assumes that a persistent &retos is
capable of checkpointing intermediate states to stabtagtothen
restoring such checkpoints after a failure (e.g., follayvénreboot
or software recovery).

[A2] This rule models the permanent node failure of an
ephemeral transactor: it is annihilated. This rule modgsdesns
that cannot checkpoint intermediate states to stablegapthese
systems are assumed to fail by stopping permanently.

Note that if a transactor is stable, no failure rule appli€his
means in practice that the “program counter” for intermesksal-
uation states of a stable transactor’'s behavior must bestbgg
persistent storage. While this may seem like a rather oserau
quirement, we expect that the number of intermediate Statasn-
putations performed by a stable transactor will be minimddso,
many optimizations are possible to minimize the overheatthisf
requirement in practice, e.g., deferring all “side effé¢tsessage
sends or transactor creations) to cause them to be exeautied d
a (local) ACID transaction of short duration.

Transactor Rules for Managing Inconsistentyie fi-
nal collection of rules, depicted in Fig. 14, encode progreatic
rollback and manage the inconsistencies that result frophicix
rollback or inconsistencies due to incoming messages. Atwnt
sistency management rules are as follows:

[rol2], [rol3] These rules (along witfroll]) above encode the
rollback operation. Rulgroll] encodes the fact that program-
matic rollback is disallowed when is stable; in this case, roll-
back behaves as if it weready. Rule[rol2] encodes the fact that
if an ephemeral (non-checkpointed) transactor rolls badisap-
pears, i.e., innihilated(among other things, this behavior allows
certain transactors to “dispose of themselves” when theikvis
done). Otherwise, rul@rol3] encodes the fact that rollback resets
the (volatile) state to the last stored persistent statagdition, the

state, creation, and behavioral dependences are raigtial

[rev2] This rule applies when the dependences associated with
an incoming message aievalidatedby the state or creation de-
pendences associated withThis occurs if the message depends
on an earlier incarnation of some dependent transactorittiaes.

In this case, the message is ignored to ensure global censyst

[rev3] This rule applies when the dependences associated with
an incoming message supersedehe state dependences (but not
the creation dependences) associated Wwitindt¢ is persistent. In
such caseg,is effectively rolled back to ensure global consistency,
and the result is the same as in r{tel3].

[rev4] This rule applies when an ephemeral transactor’s state or
creation dependences are invalidated by an incoming messag
this caset cannot roll back since there is no checkpoint to roll back
to; instead, it is annihilated to ensure global consistency

7. FORMAL PROPERTIES

In this section, we define what it means for a system such as
the r-calculus to be well-behaved. In particular, we prove derta
soundness and liveness properties appropriate fortbalculus.

For soundness, we show that a trace (i.e., a transition segye
containing node failures and inconsistencies is equivdtea nor-
mal trace, i.e., one containing no node failures, but pbssites-
sage losses. We also show that checkpointimmpgsible assuming
certain reasonable preconditions. First, we need somearpnelry
definitions.

7.1 Preliminary Definitions

Relations.We will define a number of relations to facilitate rea-
soning about successive states of transactor configusafiotivid-
ual transactors, or components thereof. To define thestoraa
we will use the following relational operators: Given binaela-
tions R, R1 and Ry, R+ denotes the reflexive, transitive closure



of R; R~ denotes the relational inverse B8f and R, U R, and

[set2] Transactor is stable: attempt to set state fails.
O(h)
w0t — (b,s/; Rlsetstate(.)],s; ds[t — h], dc, dp)] [L] w0t — (b,g,; Rlfalse],s; ds[t — h],dc, dp)]
set2

[stal] Transactor is volatile: stabilization causes it to becortebte.
h —¢ b/
w0t — (b,s,; R[stabilize],s; J;s[t — h],dc, dp)] [L»] w6t — (b,s/; Rlnil],s; 65[t — h'],6c,6)]
stal

[sta2] Transactor currently stablestabilize is a no-op.
O(h)
w0t — (b,s,; R[stabilize],s; d;s[t — h],dc, dp)] [L»] w0t — (b,g,; Rlnil],s; ds[t — h],dc, dp)]
sta2

[chk1] Transactor is stable and independent: checkpoint succeeds
O(6s[t— h]®6S) h—yh

u10lt = (b3 Rl checkpoint ], 53 [t = hl,8c, )] o | 0lt = (b3 ready, s [t h'],0,0)]

[chk2] Transactor is dependent or volatileheckpoint simply behaves likeeady.
—0(0s @ dc)
w0t — (b,5,; R[checkpoint],s; ds,dc, -)]

t
enia) M | 0]t — (b,s,; ready,s; 6s,dc, 0)]

[rol1] Transactor is stablerollback simply behaves likeeady.
©(h)
w0t — (b,s,; R[rollback],s; ds[t — h],dc,-)]

[;j;] 1|0t — (b, 5/ ; ready, s; 8a[t — hl, 6., 0)]

[dep1] Transactor is independent: yields false.
O((0s ®0c) \ )

w0t — (b,s,; R[dependent? |, s; Js, dc, dp)] [f] w0t — (b,s,; Rlfalse],s; ds,dc, )]
epl

[dep2] Transactor is dependent: yields true.
—0((6s B oc) \ 1)

w0t — (b,s,; R[dependent? |, s; Js, dc, dp)] [(ﬁ;] w0t — (b,s/; Rltrue],s; ds,dc, )]

[lose] Message loss.
(nw{m}) |0 " ul6
[lose]

Figure 12: Transition rules encoding basic transactor sematics.

[f11] Spontaneous failure of volatile, persistent transactarszs rollback.

V(h) =0 (h) h 9 h'
w0t — (b,g/5 o -3 ds[t — h],0c,p)] [Trl]) w0l — (b, s, ; ready, s, ; [t — h'],0,0)]

[f12] Spontaneous failure of volatile, ephemeral transactorsesiit to be annihilated.
—~v((h)  —0M)
H I e[t e (—a nils -3 5s[t = h]a—a —>]

t

0
2 wl

Figure 13: Transition rules modeling spontaneous failures

is anorthogonalbasis set. LeS = {R1, R2,...,R.} be a set

R1 - R> denote respectively the relational union and relationai-co
position of R; andR». If R is a binary relation on elements of a set
S, then we will say that € S is an R normal formif there exists
nos’ € Ssuchthats R s'. If s R+ s’ ands’ is anR normal form,
then we will say thas’ is an R normal formof s (or the R normall
form if s’ is unique).

Traces.Iif S = {Ri1,Ra,..., R} is a set of binary relations
andR = Ry URxU...U R, we will refer to R’ as acomposite
relation based on théasis setS of primitive relations In general,
primitive relations will represent “single step” transiti relations
for an operational semantics.dfis a basis set of primitive relations
such that for allR:, R2 € S, R1 N R2 = 0, we will say thatS

of primitive relations, and?’ be the composite relation based on
S. Then we will refer to a (possibly empty) sequence of privaiti
relations from the se§ as anR'-trace. Given an initial valuer,
and anR'-tracep = R;, Ri, ... R;,, over an orthogonal basis
set, there exists a unique sequenger; ... =, such that

xo (Riy - Riy -+ Ri,) Tm
In this case, we will use the trage to refer either to the se-
quence of relationsk;, R;, ... R;,, or the sequence of values
xo x1 ... Tm—1, and will also feel free to treat as the set of val-
ues{zo,z1,...,Tm—1} When convenient. Note that we adopt the
convention that the value sequence represented includdsitial
element of the transition sequence, but not the final eleméfet



[rol2] Transactor is volatile and ephemeral: rollback causes s@etor to be annihilated.
~0(h)  ~v(h)
t

p| 0t — (., nil; R[rollback],_; st — h],_, )] [‘15] nlo
ro

[rol3] Transactor is volatile and persistent: rollback revertatstto contents of persistent state saved by last checkpoint
-O(h) V/(h) has b’

|0t — (b,s/; R[rollback],-; [t — h], -, )] 2N wl|0[t — (b, 5/ ; ready, s/ ; [t — h'],0,0)]

[rol3]

[rcv2] Message dependences invalidated by those of transactmobutce-versa: discard message.
5711 X 55C _‘(65c X ém)

(LW {t < (. 8m)}) | 0]t — (b,5/; Rlready],s; &, dc, )] [L)z]

0se =05 @ be

w0t — (b, s, ; ready,s; &s,8c,0)]

[rcv3] State dependences (but not creation dependences) intelidg message and transactor is persistent: transactds bzlck.

5[t = Rl X dm  —~(8c X 8m)  /(h)  hah
pWA{t < (Vm, 6m)} | O]t — (b, 5,5 R[ready],-; 6s[t — h],6c,-)] revsy M | 6]t — (b, s, ; ready, s, ; [t — h'],0,0)]

[rcv4] State or creation dependences invalidated by message anskirtor is ephemeral: transactor is annihilated.

Ose X O -v/(h)

Sse = 0s[t — h] @ 8.

(LW {t < (4 0,)}) | 8t — (nils R[ready ], 6.[t — hl, ., )]

Figure 14: Transition rules for programmatic rollback and c onsistency management.

will frequently use the notatiomy —*~= x,, whenp is anS-trace,
and — is the composite relation based 6h We will usee to
denote an empty trace, aieh(p) to denote the length of a trage

Configuration well-formedness this section, we define
what it means for a transactor configuration to be “sensiigfi
respect to its history annotations. ket= (b, 5/; e, s; s, dc, dp) be

atransactor, and let be an arbitrary transactor name. Then the set

of histories oft’ associated with is denoted byhistories(t', 7),
defined by

histories(t', T) £
{R" | 6s(t") =h" or §.(t') =h' or §,(t') =h'}

Note that this set isot necessarily a singleton; e.g.'s creation
can be dependent on one checkpointed versiah ahd its current
state on a different version.

Let . be a network, and be an arbitrary transactor name.

Then the set ohistories oft associated withy is denoted by
histories(t, 1), defined by

histories(t, ) 2 {h | (< (<, dm[t — h])) € u}
Let k& be a well-formed transactor configuration, arlok a trans-
actor such that € dom(k). Then theprincipal historyof ¢ in k is
denoted byhistory(t, k), and is defined by

history(t, k) £
0s(t) suchthat k(t) = ((b,5/; €,5; 0s,0c,0p))

Let k& be a configuration. Then the setwfiependent node his-
tories ink is denoted bylepHists(t, k), and is defined by

depHists(t, k) = U histories(t’, k(t))

t’ €(dom (k)\t)
Thus depHists(t, k) yields the set of all histories of present
in nodes ofk with the exception of its principal history. Given
configurationk, a transactort in dom(k) is garbageif ¢t ¢
depHists(t', k) for any other transactdf.
We will say that a configuratioh is well-formediff the following
conditions hold:

1. For all ¢ € dom(k) such
(<b7’5\/ ;) 6,8 3 65756761)>)y t S
V/(history(t, k)), thend. = 0.

that k(¢) =
dom(ds), and if

2. Forallh € depHists(t, k), h ~ history(t, k)

In other words, for a configuration to be well-formed, evegns-

actort must have its own history in its state dependence map and its

creation dependence map must be emptyhids checkpointed. In
addition, a transactor’s principal history must be the “tresent”
of all the histories of associated with other transactorskin

LEMMA 1 (WELL-FORMEDNESSPRESERVATION). Letk be
a well-formed configuration, and It be a configuration such that
k 25+ k'. Thenk' is also well-formed.

PROOF. Straightforward induction ofen(p). [

Configuration consistencyn this section, we define notions
of consistencyor transactor configurations. Inconsistent configu-
rations will correspond to transactors whose states aongistent
due to node failures. Let = (b, s/; e,s; Js,dc, ) be atransac-
tor. Then thecomposite dependence mfap 7, notatedmaps(7)
is defined bymaps(7) £ 65 ® 5. @ 0. Let k be a configura-
tion, andt € dom(k) be a transactor name. Then tbempos-
ite dependence maipr ¢ in k, notatedmaps(t, k), is defined by
maps(t, k) = maps(k(t)).

Given a configurationk, we will say that a transactar €
dom(k) is consistent(with respect tok) if there exists not’
in dom (k) such thatmaps(t, k)(t') x history(t', k). In other
words, k is dependent on no other transactbrfor which the
state oft’ is currently inconsistent with. Similarly, a message
(t < {,0m)) € ns(k) is consistentwith respect tok) if there
exists not’ in dom (k) such thaw,, (t') x history(t', k).

We will say that nameservéris consistentf for all ¢ € dom(6),

t is consistent. A well-formed network is consistentf for all
m € p, m is consistent. A configuratioh is network consisterit
net(k) is consistent with respect foandnode consisterif ns(k)
is consistent with respect fa Finally, a configuratiork is consis-
tentif it is both network consistent and node consistent.

Configuration equivalence modulo histony.this sec-
tion, we define a simple notion of transactor equivalence itha



oblivious to certain inconsequential differences in dejgece in-
formation. Given two historied and i, such thath is a prede-
cessor history td, the reversionoperationrevert; (h) defines a
new historyh’ that is “the same” ag, except that the operations
represented bit do not occur:

K’ ifthere existsho such that
ho & h ~5, hand
hi~S. b

h  otherwise

revert; (h) =

The definition above will be critical to defining a node-faduree
trace from a corresponding trace with node failures# ifepre-
sents a set of failing operations in a transactor, we wiltraot”
those operations from a trace and update other histariesing
revert; (h).

Let ¢ be a transactor nama,be a history, and be a transactor
configuration. Themeverty(t, k) is defined as follows:

revert, (t,u|0) = u' |6’

where
o= { (= (vm, [t — reverts]))
‘ (t/ = (Um75m>) S }}
and
6 = {[t'—={ bsg;es;

ds[t — reverty],
Oc[t — reverty],
Op[t — reverty] )]
|t € dom(p) and
({b,s/5 e85 85, 8¢, 85)) = O(t)
}

(Recall thatds[t — reverty] is shorthand for the map;[t —
reverty(ds(t))]; similarly for the other maps).
If pis atrace, we will useeverty(t, p) to denote the trace’ re-
sulting from replacing every configuratiane p by revert,(t, k).
Let ¢ be a transactor; be ¢-consistent configuration, arfd =
history(t, k). Thenk =, ; k" if k" = revert; (t, k). The relation
‘a7, read “equivalence modulo history” is then defined as tlaeste
equivalence relation satisfying

k m 5 k' forsomet,h = k=xk

The relation &’ is a very weak form of configuration equiva-
lence akin toa-equivalence in the lambda calculus or structural
congruences in process calculi. The idea is that two corstgurs
that are identical up to certain inconsequential diffeesnin de-
pendence information behave identically. This fact is edidx in
the following lemma:

LEMMA 2 (BEHAVIOR OF ~-EQUIVALENT CONFIGURATIONS).
Let k1 and k2 be configurations such thdt, ~ k2, and p be
a trace such thate; —2»« k;. Then there existd, such that

—%
-
ko —25s Ky and ko ~ k.
T

PrRoOF Straightforward induction ofen(p) and the definition
of '~. O

Cycle PropertiesLet p be a—« trace. Then a nonempty

tracep is at-sequencd all primitive transitions inp have the form
t . e .

- i.e., all transitions are applicable to a transactor named

cycle-terminating transitiofs any primitive transition rule in—=x

that either takes the form

K | 9[t = <b7§/; €83 68756761)>]
w0t — (b,s/; ready, s; ds,dc, )]

or
plblt—71 = W0

In other words, a cycle-terminating transition either esua trans-
actor’s evaluation state to becomeady, or results in the annihi-
lation of some transactor. Atracec is at-cycleif ¢ = ¢’ r where
cis a— trace, and- is a cycle-terminating transition.

LEMMA 3 (CYCLE PROPERTIES.
1. Everyt-cycle contains exactly one transition from the set

{ —_—, ——, ——, — —
[revl] [rev2] [rev3] [revd4]

[fi1]
which must be the initial transition of the cycle.

2. If a t-cycle contains a primitive transition ir—, then it
can contain only one such transition, which must be the final
transition in the cycle. In this case, we will refer to the leyc
as afailure cycle.

3. Ifthe last transition in &-cycle is not an element ef—, then
it must either be thgpure] transition or the[chk1] transition.

4. Letc)' be at-cycle. Then either

(a) Forall k; € cff k; is consistent, or

(b) Forall k; € cii, k; is inconsistent.
Given this fact, we will refer to &cycle as either @onsistent
cycle, or aninconsistentycle.

PrROOF Properties 1-3 follow trivially from the definitions of
the primitive transitions. Property 4 follows from the pimys
properties and a simple induction on the length of a cycléel

LEMMA 4 (CycLE DECOMPOSITION. Let k1 and ke be
well-formed and ready configurations such ttat—"-« k». Then
there exists a tracg’ of the form
An

whereforalll < i <n, cf isat;-cycle, andforald < j <mn, \;
is a (possibly emptyhessage loss tracéthe form—«, such that

lose

~ t t
p:)\ocll Al

k1 -« k2. We will refer to the trace as acycle decomposition
of p.

PrROOF By induction onlen(p). Define a total ordering on all
transactor names presentinPermute pairs of primitive non-loss
transitions inp not consistent with the total ordering, and permute
loss/non-loss pairs. The resulting trace has the desiradl fo ]

7.2 Simulation Without Node Failures

Given the preceding definitions, we are now in a position to
prove that arbitrary--calculus traces can be simulated by traces
containing only the node failure free subset of thealculus. We
first require the following key lemma:

LEMMA 5 (SIMULATION). Letk$, kS, k¥, andkj be well-
formed configurationsy and 3 be traces such that
ke kg and K2 Lo kS

T, andT be sets of transactor names, andl be a network (i.e.,
a multiset of messages). Assubfe k$, k7, k5, a, 38, Tw., Tr, and
M, all satisfy the following conditions:



1. k¢, k7, andk? are resilient and network consistent.
2. Forall k € 3, k is node consistent.

3. To. C dom(KY), and for allt € Ti., history(t,kS) %
history(t, k) and k? (¢) is initial.

4. Forallt € dom(kP)\ Tw., kS (t) = k2 (1).

5. T U dom(k?) = dom(k$), and for allt € Ti such that
h = history(t, kS'), =0 (h) and—+/(h).

6. M, & net(k?) = net(kS), and for allm € M;, m is incon-
sistent with respect tb5'.

Then there exists configuratidrf/ and tracea’ such thatk:g/ ~
k£ and

ke o k'
PROOF Let

G=Xocl' M ... A A

be a cycle decomposition @f. The the proof proceeds by induc-
tion on len(&), where at each inductive step, we eithemovea
cycle from the tail ofo and re-establish the premises of the lemma
(typically by updating the set$.., Ti, or M, appropriately and
sometimes by adding [dose] transition), or we show that we can
extendthe traces by prepending the cycle to the trageand re-
establishing the premises of the lemma. The %&is Ti, and M,

are used to allow certain differences to exist between cor#tgns

Subcaséfll]. By Clause 1 of Lemma 3, eithéfi1] is the only
transition in the cycle, or the first transition is an instarf the
rule [rcvl]. We consider the latter case here; the former is a simpler
subcase.

We proceed by removing cyclé; i.e., we show that there exist

setsTy,, 1Y, and M/, configurationkf/ and trace\,, such that
’ ’ 7 A A ’ ’
ke ks’ and KPS L RP Sk

and such thakg’, k7', k£, and set&., T/, and M satisfy the
preconditions of the proof:

If any messagen’ is sentin cycle’r, then due to the application
of rule [fl1], it is inconsistent with respect t%S. However, by
the preconditions for the lemma, no inconsistent messadstsie
configurationk? , thus it must be the case thaf € M,. To restore
preconditions of the lemma after removidlg , we setM/ = M, \
m'.

Let m be the message received during this cycle.mlfwere
inconsistent with respect to configuratilag‘\/, then arule other than
[f11] would apply, hencen must be consistent. We therefore set
., =— to restore precondition 6 of the lemma.

[lose]

If any transactot’ is created irei, due to the application of rule
[f11], it is inconsistent with respect 5. Since by the precondi-
tions of the lemma, no inconsistent transactors exist irfigora-
tion k’f, it must be the case théte Ti. To restore the precondition
of the lemma after removing", we therefore set; = T \ t'.

If t,, € To. andkg/(tn) is initial, then by the definition of .,
kf/(tn) is also initial, thus they have the same state and are iden-

kS andk! atintermediate stages of the proof. These differences are tical modulo history information. We address this discregyaas

“discharged” by the base case, at which pdifitand kf become
identical.

Base Caself a = ¢, then sincek? is resilient, it is also node
consistent. Since it is also network consistent by assumpthe
other premises of the theorem can be satisfied if and oAly,if=
Ty = M, = Q andk§ = kS = k¥. In that case, we let = 3 and
the theorem follows immediately.

Inductive Case Otherwise, we have

’ ’ eotn An
kY o kS L kS
T T
" . ’ .
for some tracex’ and configuratiorks . The proof has four main
cases:

1. ct» is a failure cycle.

2. t, € Ty, and case 1 does not apply.

3. c¢i» is aninconsistent cycle, and cases 1 and 2 do not apply.
4. None of cases 1-3 apply.

We will prove the result for an examplary subcase of Case dlin f
detail. The remaining cases use identical formal machjnfeny
those, we will provide more informal arguments, appealmghe
same concepts covered in detail for Case 1.

Case 1.By Clause 2 of Lemma 3, the final transitiondfy must
be one of the rules in Figs. 13 and 14 and the initial transitio
must use the rul&cvl]. We prove the result for rulgl1], which is
typical. The other rules use analogous reasoning.

follows: By the definition of75, and the fact that rul¢fll] rolls
backt,’s history, we know that

history (tn, ké"/) G history(tn, kS) & history(tn, k)

Leth = history(ta, k$) andf’ = revert; (t,, 3), in which case
we havek? = revert; (tn, k2), and hence:!” ~ k£. Also, we
see that,, still satisfies the condition for inclusion if. , thus we
setTy, = Te..
If tn, & Ty, we setly, = Ts., U{t,} to re-establish the premises
of the lemma.
No transactors other thap are affected by the removal of".
Summarizing the construction above, we have
o / 4 A;lkn !
ke 2L kg’ and g2

kY
whereT.,, T}, M{, k5", andkf/ all satisfy the preconditions of
the lemma. Since’ has length less tham, the result follows by
induction.

Subcaségi2]. Thisis very similar to the subcase ffi1], except
that¢,, is annihilated, rather than being (effectively) rolled kac
Therefore, rather than updating the get to reflect the rolled-
back history oft,,, we setli = T, U {t,, } to reflect its annihilation.
The rest of the construction is identical to that of the pvasicase.

Other Subcasesthe remaining of the subcases of Case 1 use
reasoning similar to the cases above, and exactly the sarmalfo
machinery.

Inductive Case 2Sincet,, € Ts., the historyhistory(tn, k%)
invalidateshistory (t,, k5 ). Hence any message sent or transac-



tor created in cycle’» will be inconsistent with configuratiohg.
We restore the preconditions for the lemma by removing tleecy
and define the setB;,, 7/, and M, and trace3’ based on updates
of Tw., Ti, M,, and3 analogous to those used in the Case 1 (i.e.,
T: “swallows” any created transactors eliminated by the cyele
moval, M, swallows any messages sent during the cycle, &nd
and 8 are updated if the first configuration in the cycle is initial)
The first transition of the cyclel? must be arcv1] rule. If the
message received is inconsistent, we remove it from the gienfi
ration and add it to the sdfi. Otherwise, we add an instance of
[lose] to re-establish the premises of the lemma. The result fallow
by induction.

Inductive Case 3lIn this case, all of the configurations dfy*

are inconsistent by assumption, therefore any messagesisérny
the cycle or any transactors created during the cycle amnsis-
tent with configurationkﬁ3 . We restore the preconditions for the
lemma by removing the cycle and define the $&ts 77, and M/
and traces’ as in the previous case. The initial transition of the
cycle ¢t must be drevl] rule. If the message received is incon-
sistent, we remove it from the configuration and add it to #tds
Otherwise, we add an instance[bfse] to re-establish the premises
of the lemma. The result follows by induction.

Inductive Case 4If none of the other cases apply, we uée
to extends and simply sety = ¢ 3. The result follows by induc-
tion. O

We are now in a position to prove our main simulation theorem:

THEOREM1 (SIMULATION WITHOUT NODE FAILURES).
Let k1 and k2 be well-formed, resilient, and consistent configura-
tions such thak; —« k2. Then there existg, such thatks ~ k)

andk; —= kb.

PrRooF Follows directly from Lemma 5. Define the variables
in the premise of the lemma as follows: Ut = k1, kS = kf =

kS = ko. Leta be the unique trace such that ——« k2, 3 = e,

andT.. = Ti = (). Given these definitions, all of the premises of
Lemma 5 are satisfed trivially, and thus the theorem followse-
diately from the lemma. [J

The proof of this theorem effectively shows how global reéisg
about state inconsistencies can be reduced to local remsabout
the possibility of message loss.

7.3 Universal Checkpointing

The other criticalr-calculus property idivenessi.e., that it is
possibleto reach global checkpoints using the transactor model op-
erational semantics. Of course, not all transactor prograamn
reach global checkpoints. Indeed, a trivial program withaag-
actor that sends messages introducing dependencies eutsta-
bilizes or tries to checkpoint, will eliminate the abilityf its de-
pendents to reach checkpoints. We therefore introdudeigersal
Checkpointing Protocol (UCPhat assumes a set of preconditions
that will entail global checkpointing for a set of transast®. We
also prove that under those preconditions, the protocolitertes
and therefore, a global checkpoint is reached.

DEFINITION1 (UCP FRRECONDITIONS). Let D be the set of
transactorsT’ and the transitive closure of its dependencies, i.e., all
the transactors that elements Bfdepend on, the transactors that
they depend on, and so forth.

. All transactors inD need to keep a set of acquaintances,
ACQ, in their state since the last checkpoint or time of cre-
ation, including the names of:

(1) transactors which have been a target for messages sent.
(2) transactors which have been created.
(3) the parent transactor.

o8}

. All transactors inD need to eventually stabilize and start
the Universal Checkpointing Protocol. Also, all transasto
in D need to be able to receiyéng messages.

. Once the first transactor i) stabilizes, no other transac-
tors in D will programmatically rollback or be caused to
rollback by other transactors iD. This assumes previ-
ous application-dependent communication that provides th
guarantee.

. There can be no failures while the Universal Checkpomtin
Protocol is taking place.

DEFINITION 2 (UNIVERSAL CHECKPOINTING PROTOCOL).
When a transactot in D stabilizes, it:

I. Pings every transactor illC'Q)

Il. Checks ifitis dependent,

(a) If not, it pings every transactor ildC'Q, checkpoints
and ends protocol.

(b) If so, it pings every transactor iAC'Q and waits for
incomingpings.

I1l. On reception of gping message, goes back to Il.

Since the UCP protocol only terminates upon Step lla, sgeces
ful checkpointing of all transactors iy, protocol termination is
sufficient to prove that a global checkpoint has been reached

We first define a Transactor Dependence Grapiv¢), and
prove that incoming edges in this graph (dependencies) obn o
be created by five specific causality conditions. Then, hexad
preconditions B..D, eventually the history of all transastin D
will be stable or checkpointed after UCP steps | and Il. Ferth
more, the stable condition of a transactor will eventuatydom-
municated to all dependent transactors by the UCP protéaath
transactor’s knowledge of the stability of all transactiodepends
on, allows it to eventually checkpoint.

DEFINITION3 (TRANSACTORDEPENDENCEGRAPH).
Given a transactor configurationk, we define its transactor
dependence graphl’DG(k), as (V, E), whereV/ D, and
Vt1,t2 eV:

t1 'i to € F <— 5S(t1) = h\/(sc(h) =h
wherek = |0tz (,_: . _: 6,,60,)]

In other words, given a transactor configuratién,ts transac-
tor dependence grapi’OG(k)) is a labeled directed graph with
transactors as nodes and dependencies as labeled edgéshélse
represent the last known history information for a givemsector.

So, an edgée; oty represents the fact that depends o, and
t2 knowsh to be the last history value fas .



LEMMA 6 (DEPENDENCECAUSALITY CONDITIONS).
Given a configuratiork, if there is an edge i DG (k) as follows:

tr ¥ ¢
it is only because of one of the following conditions:
i. transactort; sent a message to;
ii. atransactor dependent an sent a message te;
iii. transactort; createdts;
iv. atransactor dependent an createdto; or

v. transactort, createdt;.

PROOF An edge fromt; to ¢z in the T DG(k) is created only
whents’s 6. or ds are modified to include; in a transition witht;
or t, in focus.

The only transition that adds transactors:{ d. is [new], in
which t2’s . becomes the creatois creation and behavioral de-
pendence maps, plus its own histod; & &, ¢ [t — h]. New
edges ta; in TDG(k) are created from transactors in this depen-
dence map union. If; ist, t1 createdtz, which is the condition iii
above. Ift; isint's é. or &, thent is dependent on,, which is
condition iv.

The only transition that adds transactors 4t d, is [set1]. It
adds transactors in’s . The only transitions that add transactors
to t2's §, are[new], [revl], and[get]. We consider them, one at a
time:

[new] this transition add&’ — Hy], which happens if; created
t1, which is condition v.

Part |. Path Existence.For every edge in TDG(k):
et Hs b

there exists a finite path = so — s1 — -+ — s, = t2 such
thats;y1 € si's ACQ,Vi € [0..n).

By Lemma 6, if there is an edgein T'DG (k), itis only because
of conditions i, ii, iii, iv, or v.

Under conditions i, iii, and v, there is a path of lendtht; =
so — s1 = t2, because of UCP precondition A.

Under conditions ii and iv, the proof is by induction on thedéh
of the path. We will assume the condition to be true for paths o

length< n, then:

Condition ii: a transactotr dependent om; sent a message te.

Sincet sent a message t@, t; must be int’'s ACQ set,
by precondition Al. Therefore, there is a length-one path

t — to. Sincet is dependent oiy, there is an edgé A

in T DG (k) and therefore by inductive hypothesis, there is a
patht; —* t of lengthn — 1. Thus, we can create a path
t1 —* t — to of lengthn.

Condition iv: a transactardependent ot created:.

Sincet created, t2 must be int's ACQ set, by precondi-
tion A2. Therefore, there is a length-one path- t5. Since

tis dependent oy, there is an edgl +% ¢ in TDG(k) and
therefore by inductive hypothesis, there is a path-* ¢ of
lengthn — 1. Thus, we can create a path —* t — t» of
lengthn.

[revl] this transition adds transactors in the incoming message de Part ||. UCP Protocol forwards stability information..

pendence map,,. This mapd.., is only created ifsend].

It contains the sender,’s creation and behavioral depen-
dence maps, plus its own history; @ &, @ [ts — h]. New
edges taz in TDG(k) are created from transactors in this
dependence map union. #f is ts, t1 sent a message te,
which is the condition i above. If; isint,'s d. or d,, then

ts is dependent omy, which is condition ii.

[get] : this transition adds no new transactorg4s 4.

O

THEOREM2 (UNIVERSAL CHECKPOINTING PROPERTY).
The Universal Checkpointing Protocol (UCP) terminates emd
UCP preconditions A..D.

PrROOF When a transactdrbecomes stable, all the transactors
that depend on it will eventually know through the UCP; aithe-
cause

1. they are directly dependent er(conditions i, iii, and v in
Lemma 6), and therefore it's ACQ set by precondition A
(Step I will let them know), or

2. they are indirectly dependent on it (conditions ii andriv i

Consider any transactar in D. By precondition B,¢; will
eventually stabilize. According to thetal] and[sta2] transition
rules, its own dependence informatién after stabilization will be
(S(n),ln) for somen andl.

In Step | of the protocol, transactor sendsping messages to
all its acquaintances in thaC'Q set. The[send] rule will put a
messagen in the network with dependence information carrying
the dependence informatidghy — (S(n), 11)].

Consider any acquaintanee in ¢t;'s ACQ set. By precondi-
tion B, ¢, is required to be able to receive’'s ping message;
can be in any of the three following states upging message re-
ception:

1. ¢, has not started UCP protocol. (before Step 1)
2. t2 has stabilized but not checkpointed. (end of Step Iib)

3. t2 has both stabilized and checkpointed. (end of Step lla)

In case 1, the rulgrcvl] will sharpent,’s creation and state
dependence maps with the incoming message, thereby making
[t1 — (S(n), )] be the latest known information abautin ¢..

Because of precondition C, rulefoll]..[rol3] and rules

Lemma 6), and in this case there is a path of transactors [rcv2]..[rcv4] will not apply. Because of precondition D, rulfs ]

that will eventually ping forward that information (throg
Step lor II)

and[f12] will not apply.
Furthermore, because of preconditiontB will eventually sta-
bilize and forwardt;’s stability information through the acquain-

The proof consists of two parts: first, we prove the existence tances path (UCP Step I).

of this path of transactors; and second, we prove that thelsta
ity information of transactors always gets propagated keyUicP
protocol through this path.

In case 2, transactdr will again update its dependence infor-
mation afteffrcvl]. Because of precondition C, rulgsl1]..[rol3]
and[rcv2]..[rcv4] will not apply.



Then, according to UCP Step Iz will try to checkpoint, and
independently of success or failure, it will forwatd's updated
stability information to all its acquaintances #C'Q.

In case 3,t1's dependence information ite must have been
stable to succeed checkpointing becausgstefl]’s precondition;
therefore, the last round qfing messages in Step Illa must have
forwardedt, s stability to all oft,’s acquaintances.

Since in all three cases, the stable conditiontofs properly
propagated by, to its ACQ set, andt; andt» were chosen ar-
bitrarily, we conclude that UCP guarantees that the stadtelie
tion of all transactors gets propagated to all their depetsda the
TDG. Therefore, all transactors i eventually successfully reach
Step lla in the UCP protocol, and therefore a global (una#rs
checkpoint is eventually reached[]

8. DISCUSSION AND FUTURE WORK

In this paper, we have introduced a formal framework for unde
standing and managing distributed state in the presencariafus
classes of failures. Internet-scale distributed compuiirbecom-

ing ever more important as use of Grid mechanisms and web ser-

vices increases. We believe that in order to develop rolpysica-

tions in these settings, it is necessary to incorporate stanage-
ment constructs that are more flexible than traditionalsaation

mechanisms.

In addition to the failure-free simulation and universabck-
pointing properties, there are a number of additional aspefahe
7-calculus that are worthy of further study. For example, woald
like to show how certain application properties and topiEsgl-
low specialized checkpointing techniques. As a trivialrepée,
consider a transactarapplication that reads, but does not update
the state of another transactérlf ¢ is initially checkpointed, one
can easily show that can checkpoint without requiring message
exchanges with. More interestingly, one could define various fail-
ure rates and scenarios, and show situations under whidlgaen
rations are always able to make progress (under reasorztrieds
assumptions) despite failures.

Finally, there are a number of interesting directions fotHer
research that build on the ideas developed here, includiragtel-
ing transactionatompensatiomechanisms, in which consistency
is maintained througheversalof actions, rather than rolling back
to previous states; modelirigolation and atomicityin a modular
way; studying type systems for statically constrainingedeiences
and exposing various failure modes; developing technifpresp-
timizing dependence information, and modeling additiatasses
of failures.
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