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ABSTRACT
We introducetransactors, a fault-tolerant programming model for
composing loosely-coupled distributed components running in an
unreliable environment such as the internet into systems that re-
liably maintain globally consistent distributed state. The transac-
tor model incorporates certain elements of traditional transaction
processing, but allows these elements to be composed in different
ways without the need for central coordination, thus facilitating the
study of distributed fault-tolerance from a semantic pointof view.
We formalize our approach via theτ -calculus, an extended lambda-
calculus based on theactormodel, and illustrate its usage through a
number of examples. Theτ -calculus incorporates constructs which
distributed processes can use to create globally-consistent check-
points. We provide an operational semantics for theτ -calculus,
and formalize the following safety and liveness properties: first,
we show that globally-consistent checkpoints have equivalent exe-
cution traces without any node failures or application-level failures,
and second, we show that it is possible to reach globally-consistent
checkpoints provided that there is some bounded failure-free inter-
val during which checkpointing can occur.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features—concurrent programming structures; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—operational semantics, process models; D.4.5
[Operating Systems]: Reliability—checkpoint/restart, fault-
tolerance; D.1.3 [Programming Techniques]: Concurrent
Programming—distributed programming
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1. MOTIVATION
Many distributed systems must maintaindistributed state. By

this, we mean that the states of several distributed components in a
network-connected system are interdependent on one another. The
classical example of such a scenario is a bank transaction involving
the transfer of money from one account to another, where we must
ensure that it is not possible (even in the presence of a system fail-
ure) for one account to be debited without a corresponding credit
being made to the other account, and vice-versa.

Ensuring that these interrelated states are maintained in acon-
sistentway in a wide-area network—where transmission latencies
may be high, and where node and link failures are relatively com-
mon occurrences—is difficult. By exposing key semantic con-
cepts related to maintenance of distributed state in a common, well-
foundedlanguage, rather than relegating these issues to system or
middleware, composite distributed applications can reason about
the failure semantics of their components, and, if appropriate, sup-
ply extra protocol layers (e.g., logging, rollbacks, retries, replica-
tion, etc.) to add additional reliability.

To better illustrate the complexity of maintaining distributed
state in a loosely-coupled distributed system, consider a collection
of web services that are combined dynamically to manage the pur-
chase of a house. Such a purchase is a complex multi-step transac-
tion involving many interacting participants. In the U.S.,it would
not be unusual for the list of participants to include, in addition
to the buyer and seller, real estate agents, lawyers, banks,inspec-
tors, mortgage brokers, mortgage issuers, municipal authorities,
and more.

Today, many of the steps required to purchase a house entail te-
dious requests and responses for information via telephonecalls,
faxes and paper documents. A few of those steps, such as search-
ing for candidate houses to purchase and choosing among various
mortgage lenders, can now be facilitated by interactive online ser-
vices. However, in the future, it should be possible for virtually all
the information generated during the process to be exchanged and
managed electronically.

There are a number of challenges to designing a distributed
web services infrastructure to support complex transactions such
as house purchases: We would like to allow various services to be
assembled dynamically, to manage the flow of information over an
extended period of time, to cope with the possibility of process or
network failures while the transaction is pending, to allowfor recti-
fication of various failures of semantic consistency (e.g.,an attempt
to overdraw a bank account), and to ensure that all of the parties
complete the transaction in a consistent, durable state.

Figures 1 and 2 depict a subset of the operations that might be
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Figure 1: A collection of interacting web services managing
(part of) the purchase of a house. buySrv, sellSrv, lend-
Srv, apprSrv, and srchSrv represent services for the buyer,
seller, lender, appraisal service, and title search service, re-
spectively. lendTrns, apprTrns, and srchTrns represent sub-
processes spawned specifically to manage the interaction with
buySrv. Portions of the vertical process bars that are black
represent “stable states”.

performed by a collection of web services involved in the negotia-
tion of a house purchase, and serve to illustrate many of the issues
that arise in building an infrastructure to support such services. We
will consider such services to be concurrent processes thatcan send
and receive messages to other processes as well as spawn new pro-
cesses. Fig. 1 depicts a portion of a successful negotiation, while
Fig. 2 depicts the more interesting case (from our perspective) of
failure and subsequent recovery of several sub-processes.In the fig-
ures, the vertical bars labeled bybuySrv andsellSrv represent web
services acting on behalf of the buyer and seller, respectively. lend-
Srv, apprSrv, andsrchSrv represent web services for a lender,
appraisal service, and title search service, respectively. lendTrns,
apprTrns, andsrchTrns represent sub-processes spawned by the
lender, appraisal service, and search service specificallyto manage
the interaction with the particular buyer in this example. Horizontal
arrows depict messages sent between processes or the creation of
new processes. Portions of the vertical process bars that are black
represent “stable states”, where the state maintained by the process
should not subsequently change. Process rollback (arisingfrom
various forms of failure) is depicted by dashed diagonal arrows.

We will now consider the scenario of Fig. 2 in more detail. Some
of the key steps in this process are as follows:

1. The buyer chooses a candidate house, and initiates the
buySrv web service (perhaps via a real estate agent) to man-
age the house purchase process.

2. In order to determine an appropriate price to offer the seller,
buySrv contacts an appraisal service,apprSrv, whose job is
to estimate the “market value” of the house.

3. apprSrv spawns a process specifically to manage the interac-
tion with buySrv. apprSrv requests basic information about
the house (location, size, condition, amenities, etc.) from the

seller’s web service,sellSrv.

4. apprSrv combines the house specifications with historical
information in a database of recent house purchases to com-
pute a “tentative” market price, which is stored and trans-
mitted to the seller. The tentative price is normally accurate
(within the limits of subjectivity that such a valuation en-
tails). However, before producing a “definitive” appraised
value, the appraisal process requires an on-site visit (by a
person) to the house to verify the accuracy of the specifica-
tions originally sent by the seller’s service.

5. The buyer decides to offer the seller the price computed by
the appraisal service. As is typically the case, the offer is
made contingent on the buyer’s ability to find a mortgage
lender and on the absence of misrepresentations about the
house’s specifications and condition. This offer is transmit-
ted tosellSrv.

6. buySrv connects to a title search service,srchSrv, which
ensures that the owner of the house has the legal right to sell
it. srchSrv spawns a subprocess,srchTrns, to manage the
interaction withbuySrv.

7. buySrv contacts a mortgage lender service,lendSrv, for a
quote on a mortage, giving the lender the (electronic) ad-
dress ofapprTrns (the lender service needs professional ap-
praisal information to ensure that the buyer is not borrowing
more money than the house is worth as collateral).lendSrv
spawns a subprocess,lendTrns, to manage the interaction
with buySrv.

8. The appraiser visits the house in person, and discovers that
the house specifications transmitted by the seller’s agent
were inaccurate. The new information results in a house
value lower than the tentative value computed earlier. Since
the appraisal service already transmitted the tentative value,
which is now incorrect, it (voluntarily)rolls backto its initial
state, then (re-) processes the human-gathered house specifi-
cation information.

9. lendTrns contactsapprTrns to determine the appraised price
of the house. At this point, the price information used to ap-
prove the mortgage differs from the price information origi-
nally transmitted byapprTrns to the buyer.

10. The lender approves the mortgage, and sends the approval
notice to the buyer.

After step 10 above,buySrv has received two pieces of semanti-
cally inconsistentinformation: the tentative price transmitted ini-
tially to apprTrns, and the mortgage approval message, which was
computed based on the new price information computed byap-
prTrns after rolling back. As a result of this inconsistency,buySrv
must now roll back in order to attempt to re-establish a consistent
state. AfterbuySrv rolls back, the buyer may, e.g., wish to invoke
the contingency clause in the contract to renegotiate the sale price.

The transactor model serves to maintaindependenceinformation
needed to detect semantic inconsistencies such as that depicted in
Fig. 2, and to cause the rollback of thebuySrv process to occur
automatically. In addition to such “semantic” failures, process or
network failures during the course of the transaction mightcause
information loss that requires an orderly re-establishment of the
transaction’s distributed state. Note, however, that certain steps of
the transaction, such as the title search, need not be renegotiated
after a semantic or system failure, since the results of the search
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Figure 2: A house purchase scenario involving the “seman-
tic failure” and rollback of the apprTrns sub-process due to
inconsistent information about house specifications. Thisulti-
mately results in the rollback of thebuySrv process itself, due
to the inconsistency between the appraised price used to initi-
ate the buying process, and the differing price incorporated in
the mortgage approval sub-process.

are unaffected by the inconsistent appraisal values. Such steps can
be committedearly in the process, while other steps (such as the
final transfer of the purchase price) might require mutual agreement
between multiple parties to be reached before becoming durable
and binding.

In this paper, we describe thetransactormodel, a fault-tolerant
programming model for composing loosely-coupled distributed
components running in an unreliable environment such as thein-
ternet into systems that reliably maintain consistent distributed
state. Our model isnot concerned with certain aspects of tradi-
tional “ACID” transactions [13] such as isolation or certain forms
of atomicity. While such features are beyond the scope of this pa-
per, they can be explicitly coded in our model if desired, e.g., in a
manner similar to [11]; instead, we focus on ensuring consistency
of distributed state in the presence of certain types of nodeand net-
work failures. In particular, we assume that a node fails either by
stopping, or by reverting to a programmatically-definedcheckpoint
saved to stable storage, then restarting.

The remainder of the paper is structured as follows: Section2
introduces related work. Section 3 informally describes the trans-
actor model. Section 4 introduces the syntax of theτ -calculus,
an extended lambda-calculus based on theactor model. Section 5
illustrates some representative transactor examples. Section 6 pro-
vides an operational semantics for theτ -calculus. Section 7 formal-
izes safety and liveness properties of the model. Finally, Section 8
concludes with a discussion and potential future directions.

2. RELATED WORK
The transactor model is based on theactor model introduced by

Hewitt [15], and further refined and developed by Agha et al. [1,
3, 22]. Actors are inherently independent, concurrent, andau-
tonomous which enables efficiency in parallel execution [16] and
facilitates mobility [2]. The actor model and languages provide a

very useful framework for understanding and implementing open
distributed systems. Transactors can be regarded as acoordina-
tion model[12, 11, 24], in the sense that they are intended pri-
marily to express the semantics of theinteractionsamong various
distributed components, rather than to describe the computations
local to a node in the system.

Traditionally, distributed state maintenance has been viewed
primarily as a systems or “middleware” [5] problem, in which,
e.g., system infrastructure for message-passing providesguaran-
teed message delivery on an unreliable network substrate [6, 23],
or where distributed databases or transaction systems support the il-
lusion of shared, atomically-updatable state across multiple nodes
[17, 20]. A number of projects are underway to realize distributed
programming models for the internet, e.g., theweb servicesmodel
based on exchange of XML data [26].

Distributed transaction management systems, e.g., those that im-
plement the XA system-neutral transaction API [27], typically re-
quire that all of the participants in the transaction coordinate their
work with a pre-designatedtransaction manager, and that every
transaction has well-defined beginning and end points. These prop-
erties make it difficult to build open distributed systems where the
topology of the system is determined dynamically, where thescope
of—and even the need for—a transaction is situation-dependent,
and where transactional and non-transactional componentscan eas-
ily interact. While there is much existing foundational work on
languages for concurrent, and to a lesser extent, distributed sys-
tems (e.g., actors [1, 3], theπ-calculus [18], the join calculus [10],
and mobile ambients [7]), formalisms that provide primitives for
reasoning about the consistency of distributed state in thepres-
ence of failures are not well developed. At the other end of the
spectrum, distribution in “industrial” languages or language mod-
els, e.g., Java RMI [21], Jini [25], CORBA [19], and COM+, is
generally based on remote procedure call models that have limited
mechanisms for dealing with failure, and are best suited fortightly-
coupled, centrally-managed applications.

Liskov’s Argus language [17] incorporates constructs for main-
tenance of distributed state (vianested transactions). Liskov in-
troduced two principal abstractions: guardians and actions. A
guardian is an abstract object whose purpose is to encapsulate a
resource or resources. Special procedures, called handlers, can
be used to access a guardian. An action is essentially a nested
atomic transaction. Argus essentially provides a programming in-
terface onto centrally-managed nested transactions. By contrast,
with transactors, we intend to uniformly model a variety of failure-
management techniques, including transactions and applications
with weaker consistency semantics. Haines et al. designed an ex-
tension to ML to modularly support first-class transactions[14].
That is, atomicity, isolation and durability properties can be com-
posed as desired. We are concerned with distributed state consis-
tency and durability, and do not explicitly model isolation. Atomic-
ity within a transactor is inherited from the actor model, where each
transactor represents a unit of concurrency and processes only one
message at a time. Other actor-based abstractions (such as synchro-
nizers [11]) can be used to provide atomicity for actions performed
by groups of co-related actors.

Chotia and Duggan’s abstractions for fault-tolerant global com-
puting [8] include conclavesas groups of correlated processes
which fail atomically, andlogswhich abstract over persistent stor-
age. Berger and Honda provide an extension to theπ-calculus to
model the two-phase commitment protocol [4]. While the moti-
vation of their work is similar to ours, the approaches are quite
different. The transactor model does not assume atomicity in pro-
cess group failures: transactors can fail independently and causal



dependencies are carried along with messages to ensure thatonly
globally consistent checkpoints can be reached by application-level
protocols. Our calculus also enables reasoning about and compos-
ing modules with different transactional semantics and reliability
properties.

A preliminary account of the ideas underlying the transactor
model was published as [9]; it contained no correctness proofs.
While the work presented here shares some of the ideas of the ear-
lier paper, almost all of the semantic components ofτ -calculus have
been updated and simplified.

3. TRANSACTOR MODEL
The goal of the transactor model is to enable developing reliable

systems composed from potentially unreliable components,which
may suffer both system failures and application-specific semantic
inconsistencies. We show that given any two checkpointed global
statesk andk′ of a distributed system such thatk andk′ are re-
lated by an execution trace containing inconsistent statesresulting
from node failures, application-level failures, and lost messages,
there exists an equivalent execution trace containing onlymessage
losses. Hence programmers using our model need only reason
about the possibility of lost messages, not about the other forms
of failure.

Transactors extend the actor model [1] by explicitly modeling
node failures, network failures, persistent storage, and state im-
mutability. A transactor encapsulates state and communicates with
other transactors via asynchronous message passing. In response to
a message, a transactor may create new transactors, send messages
to other transactors, or modify its internal state. In addition to these
inherited actor operations, a transactor may stabilize, checkpoint,
or rollback.

A transactor’s stabilization is a commitment not to modify its in-
ternal state—i.e., to become immutable—until a subsequentcheck-
point is performed or until another peer actor causes it to rollback
due to semantic inconsistencies. Stabilization can be thought of as
the first phase of a two-phase commitment protocol.

A checkpoint serves two purposes: first, it is a commitment to
make the current transactor state persistent, i.e. able to survive local
temporary node failures; and second and most important, it is a
consistency guarantee, i.e. there are no pending dependencies on
the volatile state of peer transactors.Dependence informationis
carried along with messages, so that only globally consistent states
can be checkpointed. Checkpoint can be thought of as the second
phase of a two-phase commitment protocol.

A rollback operation brings a transactor back to its previously
checkpointed state, if any, or makes it disappear otherwise. Node
failures have a similar effect.

4. THE TAU CALCULUS
The τ -calculus is based on an extended, untyped, call-by-value

lambda calculus; its terms are depicted in Fig. 3. The basic lambda
calculus constructs are standard and we will not comment on them
further. The extensions can be divided into two categories,those
terms (EA) that encode the traditional actor [1] semantics with ex-
plicit state management, and additional constructs to support dis-
tributed state maintenance. In this section, we will give a brief,
intuitive tour of τ -calculus constructs, and defer a more detailed
discussion of its semantics to Section 6.

4.1 Traditional Actor Constructs
The transactor creationconstructtrans e1 init e2 snart cre-

ates a new transactor withbehaviore1, and initial statee2. The

A = {true, false, nil, . . .} Atoms
N = {0, 1, 2, . . .} Natural numbers
T = {t1, t2, t3, . . .} Transactor names
X = {x1, x2, x3, . . .} Variable names
F = {=, +, . . .} Primitive operators
V ::= Values

A | N | T | X
| λX . E Lambda abstraction
| 〈V,V〉 Pair constructor

EP ::= Pure expressions
V

| (E E) Lambda application
| fst(E) First element of pair
| snd(E) Second element of pair
| if E then E else E fi Conditional
| letrec X = E in E ni Recursive definition
| F(E, . . . , E) Primitive operator

EA ::= Traditional actor constructs
EP

| trans E init E snart New transactor
| send E to E Message send
| ready Ready to receive message
| self Reference to own name
| setstate(E) Set transactor state
| getstate Retrieve transactor state

E ::= Transactor expressions
EA

| checkpoint Make failure-resilient
| rollback Revert to prev. checkpt.
| stabilize Prevent state changes
| dependent? Test dependence

Figure 3: Terms.

behavior must evaluate to an abstraction term; intuitively, this term
evaluates each incoming message to the created transactor.

The expression returns atransactor name, a fresh value that can
be subsequently used as the target of themessage sendconstruct,
send v to t. This construct sends a message withcontentsv
to the transactor namedt. The ready construct indicates that a
transactor is waiting to process the next incoming message.self

yields the transactor’s own name.
The setstate(v) construct imperatively updates a transactor’s

state to the valuev. A message send can potentially introduce
a causal dependency from the sender to the target transactor, if
the target transactor modifies its state in response to the message.
When a transactor has committed not to change its state, execution
of setstate(v) has no effect; thus the expressionsetstate(v)
returns a boolean value indicating whether or not the state update
actually took place.getstate retrieves the value of the state.

4.2 State Maintenance Constructs
Thestabilize construct causes the current transactor to ignore

subsequentsetstate(v) or rollback expressions and become
stable; this fact is communicated by the underlying operational se-
mantics to other transactors with which the current transactor corre-
sponds, and is in effect a “promise” to the transactor’s peers that the
transactor will not attempt to change its own state. Note that even
after entering astablestate via thestabilize construct, a trans-
actor can still process messages, it simply cannot change its own
state.

Thecheckpoint construct creates acheckpoint, which is (ef-
fectively) a copy of the transactor’s current state which can be re-
covered in the event of certain failures. Acheckpoint can only
be made if the current transactor is notdependenton the volatile
state of one or more other transactors. That is, a state potentially
unrecoverable in the presence of node failures. Thedependent?
construct tests whether this is the case. Therollback construct



causes a transactor to revert to its previous checkpoint, ifone ex-
ists, and causes the transactor to disappear otherwise. As with the
setstate(v) construct, therollback construct has no effect when
the transactor is stable.

4.3 Defined Forms
Fig. 4 depicts a number of defined forms that provide convenient

syntactic sugar for writingτ -calculus programs. Most of these con-
structs are self explanatory, a few deserve further explanation:

Themsgcase construct yields a lambda abstraction whose body
processes incoming messages. Messages are assumed to take the
form of a vector of parameters, the first of which is an atom that
constitutes amessage name. Themsgcase body tests the value of
the incoming message and processes the other message arguments
appropriately; messages that are not understood are ignored.

Thedeclstate construct declares names for a transactor’s state,
which is presumed to consist of a vector of elements. This con-
struct does not “expand” into a coreτ -calculus expression, instead,
it simply defines a static name scope for subsequent references of
the form!u andu := e, which expand into appropriate operations
on the transactor’s state vector.

5. TRANSACTOR EXAMPLES
In this section, we illustrate a few representative transactor pro-

grams.

5.1 Reference Cells
We begin with a simple reference cell and tworeliable versions

thereof providing progressively more refined notions of consistent
state under different failure and interaction assumptions.

Thecell program, shown in Figure 5, is a volatile reference cell
that never gets checkpointed: it cannot tolerate process failures and
therefore, any other programs which depend on that cell’s value
will not be able to reach consistent states or checkpoint.

The pcell1 program is a first attempt to provide a cell whose
invariant is to always checkpoint its current value to be able to
recover from process failures. Upon creation it must receive an
initialize message, that creates an initial checkpoint. Notice that
it first needs to become stable to succeed checkpointing. Also no-
tice that the creator of that cell needs to be stable as well for that
checkpoint to succeed. On reception of aset message, the cell
will modify its value, and checkpoint again. This checkpoint as-
sumes that the transactor sending theset message is stable, and
therefore, does not create spurious dependencies on the cell upon
state assignment. On reception of aget message, the cell needs to
stabilize first, to ensure that no new dependencies are incurred in
the cell’s customer. And finally, to preserve the invariant of being
just checkpointed (and therefore, volatile) on message reception, it
does a finalcheckpoint.

The pcell2 program builds on the previous example, but also
considers the possibility that the clients setting the value of the cell
may do it from a volatile (i.e., unstable) state. In this case, the cell’s
set message handler checks for any outstanding dependencies af-
ter updating its state, and if the transactor is dependent onother
transactors, it rolls back to its previously (known to be) consistent
state.pcell2 is strictly more reliable thanpcell1 in the sense that it
considers interaction with potentially volatile clients.

5.2 Electronic Money Transfer
The traditional electronic money transfer example depicted in

Fig. 6 is implemented with transactors using a a protocol simi-
lar to classical two-phase commit protocols.teller represents an
ATM machine or a similar coordinator for a transfer between two

[vec1] 〈e1, . . . , en〉 , 〈e1, 〈. . . , 〈en, nil〉〉 . . .〉, n > 0

[vec2] 〈〉 , nil

[vec3] ~x , 〈x1, . . . , xn〉 for somen ≥ 0

[seq] e1; e2 , ((λx. e2) e1), x /∈ fv(e2)

[if1] if e1 then e2 fi , if e1 then e2 else nil fi

[let1] let x = e1 in e2 ni , ((λx. e2) e1)
[let2] let 〈x1, . . . , xn〉 = e1 in

e2

ni

, let x1 = fst(e1) in

. . .
let xn = fst(snd(. . . snd(e1) . . .)) in

e2

ni

. . .
ni

[vabs] λ~x. e

, λx′. let ~x = x′ in e ni, x′ /∈ fv(e)
[msg1] msg ~x , 〈msg, ~x〉
[msg2] msgcase

msg1 ~x1 ⇒ e1

| . . .
| msgn ~xn ⇒ en

esac

, λ〈m, z′〉. (
if m = msg1 then

let ~x1 = z′ in e1 ni

else

. . .
if m = msgn then

let ~xn = z′ in en ni

else

ready

fi

. . .
fi;
ready )

[sta1] declstate 〈u1, . . . , un〉 in e etats

, declaration of names forn elements of state
[sta2] !ui

, let 〈x1, . . . , xi, ~z〉 = getstate in xi ni

ui is theith name declared in the closest
statically-enclosingdeclstate scope, of lengthn, n ≥ i > 0

[sta3] ui := e

, setstate(〈!u1, . . . , !ui−1, e, !ui+1, . . . , !un〉)
whereui is theith name declared in the closest
statically-enclosingdeclstate scope, of lengthn, n ≥ i > 0

Figure 4: Defined forms.

bankaccounts. All of the transactors are assumed to be persistent
initially, and we assume that theteller has exclusive access to both
accounts. Isolation and locking, if needed to ensure exclusive ac-
cess, can be managed by appropriate auxiliary transactors.

The basic protocol used in the example is quite simple. The
teller sends appropriate account adjustment requests to each ac-
count. Each account separately determines whether it is able to
fulfill the request. If so, it stabilizes and sendsdone (with a result
message) to theteller . If not, it also sendsdone (with an error mes-
sage) to the teller, then rolls back. When the teller has received two
done messages, it stabilizes, then requests that each account send a
ping message both to its peer account and to the teller. Note that at
this point in the protocol, theteller has no idea whether the update
has been successful or not (assuming that it is not interpreting the
messages returned bydone). However, if either of the transactors
has rolled back in the meantime due to insufficient funds or sponta-
neous failure, theping messages will incorporate inconsistent de-
pendence information, thus effectively resulting in rollback when
received. In the absence of failure, each transactor will eventually
receive sufficientping messages for thecheckpoint operation to



let cell = trans

declstate 〈contents〉 in

msgcase

set〈val〉 ⇒
contents := val

| get〈customer〉 ⇒
send data〈!contents〉

to customer

esac

etats

init

〈0〉
snart

let pcell1 = trans

declstate 〈contents〉 in

msgcase

initialize〈〉 ⇒
stabilize;
checkpoint

| set〈val〉 ⇒
contents := val ;
stabilize;
checkpoint

| get〈customer〉 ⇒
stabilize;
send data〈!contents〉

to customer ;
checkpoint

esac

etats

init

〈0〉
snart

let pcell2 = trans

declstate 〈contents〉 in

msgcase

initialize〈〉 ⇒
stabilize;
checkpoint

| set〈val〉 ⇒
contents := val ;
if dependent? then

rollback

else

stabilize;
checkpoint

fi

| get〈customer〉 ⇒
stabilize;
send data〈!contents〉

to customer;
checkpoint

esac

etats

init

〈0〉
snart

Figure 5: A progressively more refined reference cell. The leftmost example is an unreliable reference cell. The middle one is a
persistent reference cell which assumes stable clients. The rightmost cell represents a persistent reliable reference cell.

succeed; until that point, thecheckpoint is a no-op.
The protocol in Fig. 6 ensures that the transfer will always com-

plete in a consistent state, either with both accounts updated appro-
priately, or both left unchanged. The protocol does not dealdirectly
with certain combinations of message losses; however, it could eas-
ily be augmented by adding atimer transactor that periodically
re-sendsping requests if the participants have not checkpointed.

Note that we could easily interpose acurrencyconverter trans-
actor between participantswhich does not need to know that the
parties involved are part of a transaction—the model enables to
compose services with full transaction semantics with services that
do not have any transactional behavior in a seamless and correct
manner.

5.3 Web Application Server
The appserver example in Fig. 7 models a web application

server. The application server provides anewsession operation that
creates a new session transactor for a given customer. Thesesession
transactors will be completely independent from each other, i.e.,
no dependencies will be introduced by the application server. db

is a reference cell representing a database resource, whichcan be
volatile or persistent in nature–see reference cell examples above.
While the database is shared across multiple web application cus-
tomers, the customer sessions are independent of each other.

The application server does not depend on the customer trans-
actors it interacts with, since its state is read-only –similarly, to a
currency conversion service in the bank account example. Ifthe
application server is properly initialized, it will also not induce any
dependencies on the created sessions or the interacting customers.

6. OPERATIONAL SEMANTICS
In this section, we provide an operational semantics for theτ -

calculus. We first need to establish some notational conventions.

6.1 Notational Preliminaries
Most of the notation we use in the sequel is standard or self-

explanatory. Here, we cover a few concepts that are not standard.

let appserver = trans

declstate 〈db〉 in

msgcase

initialize〈〉 ⇒
stabilize

| newsession〈cust〉 ⇒
send

trans

declstate 〈customer, db〉 in

msgcase

setdata〈val〉 ⇒
send set〈val〉 to !db

| getdata〈〉 ⇒
send get〈!customer〉 to !db

esac

etats

init

〈cust, !db〉
snart

to cust

esac

etats

init

〈db〉
snart

Figure 7: Web application server illustrating use of a sta-
ble “daemon” to create instances of per-session transactors.
Since the server is stable, the session transactors can act au-
tonomously with no dependence on the server.

Grammars as sets.We will often define sets using context-free
grammars, and will use a non-terminal of the grammar to represent
the set of all terms derivable from that non-terminal.

Lists. Given a setS, we will use [S] to denote the set oflists
defined overS, where[] denotes the empty list, ands :: ls denotes
a list cell. We will frequently use[e1; e2; . . . ; en] as a shorthand to
denotee1 ::(e2 ::(. . . (en ::[]) . . .)). len(l) denotes the length ofl,
andlastn(n, l) denotes the list consisting of the lastn elements of
l (for 0 ≤ n ≤ len(l))).



let bankaccount = trans

declstate 〈bal〉 in

msgcase

adj〈delta, atm〉 ⇒
bal := !bal + delta;
if !bal < 0 then

send done〈"Not enough funds!"〉 to atm

rollback

else

stabilize;
send done〈"Balance update successful"〉 to atm

fi

| pingreq〈requester〉 ⇒
send ping〈〉 to requester

| ping〈〉 ⇒ // may cause rollback
checkpoint

esac

etats

init

〈0〉
snart

let teller = trans

declstate 〈inacct, outacct, acks〉 in

msgcase

transfer〈delta〉 ⇒
send adj〈delta, self〉 to !inacct;
send adj〈−delta, self〉 to !outacct

| done〈msg〉 ⇒
send println〈msg〉 to stdout;
acks := !acks + 1;
if !acks = 2 then

stabilize;
send pingreq〈!inacct〉 to !outacct;
send pingreq〈!outacct〉 to !inacct;
send pingreq〈self〉 to !outacct;
send pingreq〈self〉 to !inacct

fi

| ping〈〉 ⇒ // may cause rollback
checkpoint

esac

etats

init

〈savings, checking, 0〉
snart

Figure 6: Electronic money transfer example. Illustrates nontrivial use of stabilize for a protocol similar to two-phase commit.
Note that ping messages are used to communicate status (stable or rolled-back) implicitly: checkpoints resulting from receipt of
ping messages will succeed only if all peer transactors have stabilized; otherwise it will be a no-op (if pings have not yet been received
from peers), or cause rollback (if peer is inconsistent).

Finite maps.Given setsS1 andS2, S1
f→ S2 denotes the set

of finite partial maps fromS1 to S2, wheredom(m) andran(m)
denote the domain and range ofm, respectively. We will use∅ to
denote the empty map,m(x) to denote the element to whichm
mapsx, m[x 7→ e] to denote the map that is the same asm, except
thatx is mapped toe, andm \ x to denote the mapm′ that is the
same asm, except thatx /∈ dom(m′). We will use[x 7→ e] as a
shorthand for∅[x 7→ e]. Let m be a map, andf be a function from
ran(m) to ran(m). Then we will usem[x 7→ f ] as a shorthand
for the mapm[x 7→ f(m(x))]. m′(x) = f(m(x)). If we want
to applyf to selected elements of a map, we will sometimes use
“map comprehension” expressions such as{[x 7→ f(e)] | x ∈
dom(m), e = m(x), p(x, e)} to generate new maps fromm in the
obvious way.

Multisets. If S is a set, then{{S}} denotes the set of multisets,
(i.e., bags) consisting of collections of elements ofS . We will use
‘]’ to denote multiset union. We will also sometimes use “multiset
comprehension” expressions such as{{f(x) | x ∈ M, p(x)}} to
generate new multisets fromM in the obvious way (multiple in-
stances ofx generate the same number of instances off(x)). We
will uses\x to denote the multisets′ which is the same ass, except
that one instance ofx has been removed.

Pattern Matching.When writing rules comprising the opera-
tional semantics for transactors, we will use variouspattern match-
ing constructs, both to determine the applicability of a particular
rule, and to match components of terms to variables. In addition to
the usual convention of building patterns by applying term con-
structors to variables, we will also use the following additional
pattern-related conventions: The underscore character ‘’ matches
any term. The patternm[x 7→ p] matches any mapm′ for which
x ∈ dom(m′) andp matchesm′(x); the variablem is then bound
to the mapm′ \x. Finally, the patterns]{x} matches any multiset
s′, in which casex is bound to anarbitrary element ofs′, ands is
bound to the multisets′ \ x.

6.2 Reduction Contexts
Each transition rule of our operational semantics will refer to a

particularredexterm within the lambda term encoding a transac-
tor’s behavior. As is standard for lambda calculi, we will use the
notion of reduction contextsof the formR(2) to distinguish the
redex on which the transition rule will operate. Each reduction con-
text is a special term with a single “hole” element2, defined such
that a transactor behavior can be uniquely decomposed into exactly
one redex and one reduction context. The redexes and reduction
contexts are depicted in Fig. 8.

6.3 Transactor Configurations
Fig. 9 depicts a collection of semantic domains that theτ -

calculus operational semantics will manipulate.
A volatility valuew ∈ W encodes the fact that a transactor is

volatile(w = V(n) for somen ≥ 0) or stable(w = S(n), n ≥ 0).
The value ofn will be referred to as anincarnation.

A historyh ∈ H encodes the checkpoint history of a transactor.
A history h = 〈w, lh〉 encodes the fact that the transactor which
refers toh has volatility valuew, and has checkpointedlen(lh)
times since its creation, where the values in the listlh reflect the
incarnation at which each checkpoint occurred.

Theτ -calculus semantics defines four operations on histories:

1. When a transactor is created, its history is initialized to
〈V(0), []〉.

2. When a transactor with history〈V(n), lh〉 rolls back, its
incarnation is incremented by1, i.e., its history becomes
〈V(n + 1), lh〉.

3. If a transactor with history〈S(n), lh〉 checkpoints, its history
becomes〈V(0), n :: lh〉.

4. If a transactor with history〈V(n), lh〉 stabilizes, its history
becomes〈S(n), lh〉.

Dependence maps∆ are critical auxiliary structures that can in-
formally be thought of as encoding the states of all transactors on



Erdx
P ::= Pure redexes

(V V)
| fst(V)
| snd(V)
| if V then E else E fi

| letrec X = V in E ni

| F(V, . . . ,V)

Erdx ::= Redexes
Erdx

P

| self

| dependent?
| setstate(V)
| getstate

| checkpoint

| stabilize

| rollback

| ready

| trans V init V snart

| send V to V

R ::= Reduction contexts
2

| (R E)
| (V R)
| 〈R, E〉
| 〈V,R〉
| fst(R)
| snd(R)
| if R then E else E fi

| letrec X = R in E ni

| F(V, . . . ,V,R, E, . . . , E)
| setstate(R)
| trans R init E snart

| trans V init R snart

| send R to E
| send V to R

Figure 8: Redexes and reduction contexts.

which some value depends. More precisely, a dependence map
maps each transactor namet on which it is defined to a history value
associated witht. Dependence maps are associated with three dis-
tinct semantic components of a transactor: the transactorson which
t is dependent for itsexistence(thecreationdependence map), the
transactors on whicht’s current state depends (thestate depen-
dence map), and the transactors on which the value of the current
redex depends (thebehavioraldependence map). By separating
a transactor’s dependences into three components, we can distin-
guish those dependences related to creation from those related to
state (which have radically different semantic consequences), and
avoid the creation of spurious dependences when, e.g., a transactor
never reads its state.

A transactorτ ∈ S = 〈b, s√ ; e, s ; δs, δc, δb〉 is a 7-tuple con-
taining the following components: Thevolatile statecomponents
containsτ ’s current state; we say thats is volatile since its value
is lost in the event ofτ ’s failure. By contrast, thepersistent state
components√ encodes the last value ofs stored by acheckpoint

operation; this state is resilient to failure and models stable stor-
age. Thebehaviorof τ , i.e., its fixed response to every incoming
message, is represented byb; in order to be well-formed,b must
be a lambda expression. Theevaluation statecomponent,e, is an
expression (generally partially evaluated) representingthe current
state of the evaluation of a transactor’s behavior. Thestate depen-
dence mapcomponent,δs, is a dependence map that encodes the
fact that the state ofτ is dependent (transitively) on the states of
all of the transactors indom(δs), whose histories are encoded in
the map. Thecreation dependence mapcomponent,δc, is similar
to δs, except that it records information about the transitive depen-

W ::= V(N ) | S(N ) Volatility value
H ::= 〈W, [N ]〉 Transactor history

∆ = T f→ H Dependence map
S ::= 〈V,V ; E,V ; ∆, ∆, ∆〉 Transactor
M ::= T ⇐ 〈V,∆〉 Message

Θ = T f→ S Name service
K ::= {{M}} | Θ Transactor configuration

Figure 9: Semantic domains.

dence ofτ on theparenttransactor that initially createdτ . Finally,
thebehavioral dependence mapcomponent,δb, represents thebe-
havioral dependencesof the transactor, i.e., the dependences of the
current redex under evaluation.

Note that we use both commas and semicolons to separate com-
ponents of a transactor. There is no semantic distinction between
the two; this is a purely syntactic convention designed to sepa-
rate transactor components into three (semicolon-separated) “log-
ical clusters” for easier reading. These clusters represent, respec-
tively, persistent (i.e., durable) components that survive failures (b
ands√), volatile components that generally do not survive failures
(e ands), and dependence information (δs, δc, andδb).

A messagem ∈ M contains a target transactor name encod-
ing the message’s destination, a value representing the message’s
payload, and a dependence map encoding the transitive closure of
transactors on which the message’s payload is dependent.

A transactorconfigurationk ∈ K is a pair consisting of anet-
work, a multiset of messages, and anameservermap from trans-
actor names to transactors. The network serves to buffer messages
sent among the transactors in the configuration. The multiset rep-
resentation for the network encodes the fact that the order in which
messages sent to the same transactor are received is unrelated to the
order in which they were sent (even from the same sender).

6.4 History and Dependence Map Operations
In this section, we define a number of auxiliary operations on

histories, dependence maps, and related structures that will be re-
quired by the operational semantics.

Basic history operations.We begin by defining some basic
operations on histories. Leth = 〈w, lh〉 be a history. Thenh
is stable, notated♦(h), if w = S(n) for somen; otherwiseh
is volatile. If lh is nonempty, i.e., it has checkpointed, thenh is
persistent, notated

√
(h); otherwise,h is ephemeral. The empty

history〈V(0), []〉 will be denoted byH0.

Relations on histories.Next, we define some relations on his-
tories that will be used in the transition rules in the operational
semantics for theτ -calculus. ’#’, ’ →♦ ’, and ’→√’ are the least
relations satisfying the following conditions:

〈V(n), lh〉 # 〈V(n + 1), lh〉 (“rolls back to”)
〈S(n), lh〉 # 〈V(n + 1), lh〉 (“rolls back to”)

〈V(n), lh)〉 →♦ 〈S(n), lh〉 (“stabilizes to”)
〈S(n), lh〉 →√ 〈V(0), n :: lh〉 (“checkpoints to”)

‘#’, ‘ →♦ ’, and ‘→√’ represent all of the valid “single-step” tran-
sitions that a history associated with a single transactor can make:
‘#’ encodes the fact that a transactor has rolled back. A volatile
transactor can roll itself back (the first case for ‘#’) or be rolled
back “spontaneously” due to node failure or inconsistent state; a
stable transactor (the second case) only rolls back if its state is
found to be inconsistent. The ’→♦ ’ transition encodes the fact that
a transactor has stabilized, and ’→√’ encodes the fact that a trans-



actor has checkpointed. Since these relations are functions, we will
sometimes speak of “applying” them to a history to yield a new
history.

We can now define the following composite relation:

; , (# ∪ →♦ ∪ →√) (“is succeeded by”)

Intuitively, h1 ;∗ h2 if h1 andh2 are valid histories for the same
transactor (say,τ ), andh2 occurs afterh1 in some execution trace
for τ . ‘;∗’ defines a partial order on histories. We will say that
historiesh1 andh2 arecomparableif either h1 ;∗ h2 or h2 ;∗

h1.
Finally, we have the following relation:

o , # · ;∗ (“is superseded by”)

Intuitively, h1 o h2 if h2 is a history of a transactor that rolled
back from the state represented by historyh1, then proceeded to
do zero or more additional operations. Thus the state represented
by h2 supersedes the obsolete state represented byh1. We will say
that two histories areconsistentif neither supersedes the other.

Given consistent historiesh1 andh2 we define thesharpening
operation, notatedh1 ] h2, as follows:

h1 ] h2 =

8

<

:

h′ if there existsh′ such that
h1 →♦ h′

;∗ h2

h1 otherwise

Intuitively, if h1 is not stable, andh2 is reachable (via ‘;∗’) from
h1 via an intermediate historyh′ which is the stable form ofh1,
then the sharpening operation yieldsh′, otherwise it is a no-op.
The sharpening operation is used to “update” dependence infor-
mation about peer transactors that have stabilized since their last
communication.

Operations on dependence maps.Let δ1 and δ2 be de-
pendence maps. Thenδ1 is invalidated byδ2, notatedδ1 o δ2 if
and only if there existst such thatt ∈ dom(δ1) ∩ dom(δ2) and
δ1(t) o δ2(t).

Let δ1 andδ2 be dependence maps. Then theirunion, denoted
δ1 ⊕ δ2, is defined as follows:

(δ1 ⊕ δ2)(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

max ;∗(δ1(t), δ2(t))
whent ∈ dom(δ1) ∩ dom(δ2) and

δ1(t) andδ2(t) are comparable
δ1(t) whent ∈ dom(δ1), t /∈ dom(δ2)
δ2(t) whent /∈ dom(δ1), t ∈ dom(δ2)
undef. otherwise

We extend the sharpening operation on histories to consistent
dependence mapsδ1 andδ2 as follows:

(δ1 ] δ2)(t) =

8

<

:

δ1(t) ] δ2(t) when
t ∈ dom(δ1) ∩ dom(δ2)

δ1(t) otherwise

Let δ be a dependence map. Thenδ is independent, notated♦(δ)
if for all t ∈ dom(δ), ♦(δ(t)); otherwise,δ is dependent.

Characterizing transactors.Let

τ = 〈b, s√ ; e, s ; δs[t 7→ h], δc, δb〉

be a transactor bound to namet in some transactor configuration
Then we will say thatτ is stableif ♦(h) andvolatile otherwise.
Transactorτ is independentif ♦(δs ⊕ δc \ t) (i.e., τ depends on
no unstable transactors other than itself) anddependentotherwise.
Transactorτ is readyif e = ready, andbusyotherwise; it isper-
sistentif

√
(h) andephemeralotherwise; it isinitial if s = s√ and

non-initial otherwise. Ifτ is persistent, independent, ready, and
initial, we will say that it isresilient.

When not otherwise qualified, we will refer to the volatile state
of τ , i.e., s, as simply thestate of τ . If τ is both stable and in-
dependent, we will say that it is adaemon. Daemons can be used
to model humans or other “external agents” in a system that send
and receive messages, are resilient to (system!) failure, but do not
“participate” in global state.

Operations on configurations.Let k = µ | θ be a config-
uration. Then we will usenet(k) to denote the networkµ, and
ns(k) to denote the nameserverθ. The domain of k, denoted
by dom(k) is the set of all transactors ink’s name service map,
i.e., dom(ns(k)). Given a configurationk and a transactor name
t ∈ dom(k), we will usek(t) as a shorthand for the transactor
(ns(k))(t). We will say that a configurationk is readyor resilient
iff for all t ∈ dom(k), k(t) is ready or resilient, respectively.

6.5 Transactor Configuration Transition
Rules

We will divide the transition rules of theτ -calculus into two prin-
cipal classes: those representingnormaltransitions, where the only
form of failure allowed is message loss, andnode failuretransitions
representing either spontaneous node failures or rules designed to
manage inconsistencies resulting from such failures.

The set of normal transitions will be represented by the com-
posite transition relation ‘−→̂’, which is the relational union of the

primitive transition rules in Fig. 11 and 12. The transitionrules in
Figs. 11 encode the “classical” semantics of the Actor model[1].
The transition rules in Fig. 12 augment the classical semantics
with additional operations for managing consistency (e.g., creating
checkpoints).

The set of node failure transitions will be represented by the
composite transition relation ‘−→

_
’, which is the relational union

of the primitive transition rules in all of Figs. 13 and 14. The tran-
sition rules in Figure 13 model “spontaneous” node failures; i.e.,
failures beyond the control of the transactors themselves.The tran-
sition rules in Figure 14 define the semantics of “program-induced”
failures via therollback operation, and other operations to handle
inconsistencies resulting from failures.

We will use ‘−→
τ

’ to denote an arbitraryτ -calculus transition,

i.e.,−→
τ

=−→̂ ∪ −→
_

In the following sections, we will consider each collectionof
rules in turn. While the number of transition rules may appear
somewhat daunting initially, we believe that each of them encodes
a “semantically orthogonal” component ofτ -calculus semantics in
a reasonably natural way.

Pure Reduction Rules.Fig. 10 depicts a set of standardpure
reduction rules for lambda terms encoding transactor behaviors.
These rules are “imported” into the classical actor calculus whose
transition rules are depicted in Fig. 11.

Transition Rules for Basic Actor Semantics.Fig. 11 de-
picts the collection of transition rules that encode the semantics of
the Actor model [1]. The semantics is loosely modeled after the
semantics of Agha et al.[3], but with a significantly different treat-
ment of state. In the rules of Fig. 11 as well as other rules in the

sequel, the relation
t−→
l

is asingle-steptransition relation on trans-

actor configurations. Single-step transitions will be annotated with
both the name of the applicable rule and a distinguished transactor
namet to which the relation will be said toapply. Given a trans-
actor configurationk that maps transactor namet to transactorτ ,



[pur1] ((λx. e) v) −→λ e[v/x]
[pur2] fst(〈v1, 〉) −→λ v1

[pur3] snd(〈 , v2〉) −→λ v2

[pur4] if true then e1 else fi −→λ e1

[pur5] if false then else e2 fi −→λ e2

[pur6] letrec x = v in e ni −→λ

e[(v[(letrec x = v in e ni)/x])/x]
[pur7] f(v1, . . . , vn) −→λ v

(f ∈ F , v = [[f ]](v1, . . . , vn))

Figure 10: Pure reduction rules.

it will be convenient to refer toτ by its name,t. We now consider
each rule in turn.

[pure] This rule applies one of the pure reduction rules depicted
in Fig. 10 to the behavior of a transactor.

[new] This rule creates a new transactort′ with behaviorb′ and
initial states′. The persistent state is initiallynil sincet′ has not
yet checkpointed. The state dependence map fort′ is initialized
to refer to itself: a transactor is always dependent on itself (while
this information may appear to be redundant, it avoids technical
problems when a transactor sends messages to itself, which among
other things is a convenient way to encode “continuations” to be
performed following checkpoints). The creation dependence map
for t′ is the dependence map union of the creation dependences
and behavioral dependences for the creating transactor anda map-
ping for the creating transactor (t) itself. This map encodes those
transactors on whose statest′’s creation is transitively dependent.
Note that the behavioral dependence map fort is updated to encode
a dependence on the newly-created transactor. This “contravari-
ant” dependence is critical for ensuring that the persistent state of
a transactor cannot refer to an ephemeral (i.e., noncheckpointed)
transactor.

[send] This rule encodes the act of sending messagem with pay-
loadvm to transactort2. The message is “tagged” with the creation
and behavioral dependences of the sender (transactort1), as well
as a dependence ont1 itself. Thusm carries information about the
transactors on which it istransitivelydependent. Note that it is not
necessary to incorporate the state dependences of the sender; those
are included in the behavioral dependence map if the state isever
read.

[rcv1] This rule encodes message receipt. Note that messages are
selected from the network component of a configuration nondeter-
ministically. Thus while our model assumes guaranteed message
delivery, it does not guarantee order of delivery. The preconditions
of the rule ensure that no received message either invalidates the
state or creation of the receivert, nor is invalidated byt. The pre-
conditions always hold in the absence of failures; rules addressing
the failure of these preconditions are addressed below. As aresult
of message receipt, the behavioral dependences oft are updated to
contain the dependences of the received message, andt’s behavior
(a lambda expression) is applied to the message. Finally,t’s current
state and creation dependence maps are updated by the sharpening
operation (‘]’) to reflect new information about those dependences
contained in the arriving message. In particular, we need todeter-
mine if any previously volatile transactors on whicht is dependent
have now become stable.

[get], [set1] These rules model retrieving and setting state, which
we model as a single (possibly composite) cell. Note that in the
case of rule[get], the updated behavioral dependence mapδ′b en-
codes a dependence on the state, symmetrically, rule[set1] adds
information in the behavioral dependence map to update the state
dependence map,δ′s. Among other things, this semantics ensures

that if a transactort does not update its state in the course of pro-
cessing a message from another transactort′ on which t was not
previously dependent,t will not become dependent ont′.

[self] This rule encodes retrieval of the transactor’s own name.

Core Transactor Transition Rules.The rules depicted in
Fig. 12 augment the basic actor transitions of Fig. 11 with addi-
tional rules for managing distributed state, as follows:

[set2] This rule causes the expressionsetstate(v) to be ignored
when target transactort is stable; this encodes a “promise” to peer
transactors thatt will not voluntarily update its state or roll back
(however, it may nonetheless be rolled back due to inconsistencies).

[sta1], [sta2] These rules encode the stabilization operation. Sta-
bilization inhibits further state updates androllback operations
(via rules[set2] and[rol1]), renders the transactor resilient to spon-
taneous failure (due to the absence of rules for such failures in
Fig. 13), and is a prerequisite to checkpointing (rule[chk1]). Rule
[sta1] applies if the transactor is currently volatile; it simply up-
dates the transactor’s history to reflect the fact that it is stable. Rule
[sta2] encodes the fact that stabilization is a no-op if the transactor
is already stable.

[chk1], [chk2] These rules encode thecheckpoint operation.
The preconditions of rules[chk1] and[chk2] determine whethert
has received messages from all of the transactors on which itis de-
pendent indicating that those transactors have stabilizedor check-
pointed the relevant dependent states. If the checkpoint operation
succeeds (rule[chk1]), the volatile state oft is stored int’s persis-
tent state,t’s history is updated to reflect the checkpoint, and the
state dependences oft are reset, and the creation and behavioral
dependence maps are reset to∅. Thus in addition to storing volatile
state persistently, the dependence map resetting performed by the
checkpoint operation has the effect of bounding the amount of de-
pendence information that must be tracked across checkpoints. The
resetting of the creation dependence map to∅ implies that this map
is only non-empty for ephemeral transactors. If the preconditions
for checkpointing do not hold, rule[chk2] causes it to behave like
ready.

[rol1] Rule[rol1] encodes the fact that programmatic rollback is
disallowed whent is stable; in this case, rollback behaves as if it
wereready.

[dep1], [dep2] These rules determine whethert is dependent on
any non-stable transactors other than itself.

[lose] Finally, this rule models the fact that under “normal cir-
cumstances” messages may be lost after being sent. We assume
that such losses are relatively rare; however it may initially seem
odd to make message loss an element of normal transactor behav-
ior at all. In part, this is a consequence of our global consistency
semantics, which trades the possibility of global inconsistency for
the possibility of message loss, hence transforming the program-
mer’s burden from reasoning aboutglobal failures (about which
they can have no knowledge in general), to reasoning about alocal
failure in the form of lost messages. However, as a practicalmatter,
even programs running in systems with guarantees about message
delivery musteffectivelyreason about the possibility of message
loss, since they typically must incorporate time-outs to deal with
protracted message latencies (which then become indistinguishable
from losses).

Failure Transitions.The rules depicted in Fig. 13 modelspon-
taneousnode failure caused by faults. In realistic systems, these
rules will be applied far less frequently than the non-failure rules.

[fl1] This rule models the transient node failure of a persistent,
volatile transactor. In such cases, the state of the transactor reverts



[pure] Evaluate pure redex.
e −→λ e′ e ∈ Erdx

P

µ | θ[t 7→ 〈b, s√ ; R[ e ], s ; δs, δc, δb〉] t−→
[pure]

µ | θ[t 7→ 〈b, s√ ; R[ e′ ], s ; δs, δc, δb〉]

[new] Create new transactor.
µ | θ[t 7→ 〈b, s√ ; R[ trans b′ init s′ snart ], s ; δs[t 7→ h], δc, δb〉]

t−→
[new]

µ | θ[t 7→ 〈b, s√ ; R[ t′ ], s ; δs[t 7→ h], δc, δb ⊕ δ′〉][t′ 7→ 〈b′, nil ; ready, s′ ; δ′, δc ⊕ δb ⊕ [t 7→ h], ∅〉]
t′ /∈ dom(θ) ∪ {t}
δ′ = [t′ 7→ H0]

[send] Send message, piggybacking dependence information.

µ | θ[t 7→ 〈b, s√ ; R[ send vm to t′ ], s ; δs[t 7→ h], δc, δb〉] t−→
[send]

(µ ] {t′ ⇐ 〈vm, δc ⊕ δb ⊕ [t 7→ h]〉}) | θ[t 7→ 〈b, s√ ; R[ nil ], s ; δs[t 7→ h], δc, δb〉]

[rcv1] Message dependences not invalidated by transactor; transactor dependences not invalidated by message: process message normally.
¬(δsc o δm) ¬(δm o δsc)

(µ ] {t ⇐ 〈vm, δm〉}) | θ[t 7→ 〈b, s√ ; R[ ready ], s ; δs, δc, 〉] t−→
[rcv1]

µ | θ[t 7→ 〈b, s√ ; (b vm), s ; δs ] δm, δc ] δm, δm〉]
δsc = δs ⊕ δc

[get] Retrieve state.

µ | θ[t 7→ 〈b, s√ ; R[ getstate ], s ; δs, δc, δb〉] t−→
[get]

µ | θ[t 7→ 〈b, s√ ; R[ s ], s ; δs, δc, δb ⊕ δs〉]

[set1] Transactor is volatile: setting state succeeds.
¬♦(h)

µ | θ[t 7→ 〈b, s√ ; R[ setstate(s) ], ; δs[t 7→ h], δc, δb〉] t−→
[set1]

µ | θ[t 7→ 〈b, s√ ; R[ true ], s ; δs[t 7→ h] ⊕ δb, δc, δb〉]

[self] Yields reference to own name.

µ | θ[t 7→ 〈b, s√ ; R[ self ], s ; δs, δc, δb〉] t−→
[self]

µ | θ[t 7→ 〈b, s√ ; R[ t ], s ; δs, δc, δb〉]

Figure 11: Transition rules encoding basic actor semantics.

to the stored persistent state, and the state dependence information
is reinitialized. This rule assumes that a persistent transactor is
capable of checkpointing intermediate states to stable storage, then
restoring such checkpoints after a failure (e.g., following a reboot
or software recovery).

[fl2] This rule models the permanent node failure of an
ephemeral transactor: it is annihilated. This rule models systems
that cannot checkpoint intermediate states to stable storage; these
systems are assumed to fail by stopping permanently.

Note that if a transactor is stable, no failure rule applies.This
means in practice that the “program counter” for intermediate eval-
uation states of a stable transactor’s behavior must be logged to
persistent storage. While this may seem like a rather onerous re-
quirement, we expect that the number of intermediate statesin com-
putations performed by a stable transactor will be minimal.Also,
many optimizations are possible to minimize the overhead ofthis
requirement in practice, e.g., deferring all “side effects” (message
sends or transactor creations) to cause them to be executed during
a (local) ACID transaction of short duration.

Transactor Rules for Managing Inconsistency.The fi-
nal collection of rules, depicted in Fig. 14, encode programmatic
rollback and manage the inconsistencies that result from explicit
rollback or inconsistencies due to incoming messages. The incon-
sistency management rules are as follows:

[rol2], [rol3] These rules (along with[rol1]) above encode the
rollback operation. Rule[rol1] encodes the fact that program-
matic rollback is disallowed whent is stable; in this case, roll-
back behaves as if it wereready. Rule[rol2] encodes the fact that
if an ephemeral (non-checkpointed) transactor rolls back,it disap-
pears, i.e., isannihilated(among other things, this behavior allows
certain transactors to “dispose of themselves” when their work is
done). Otherwise, rule[rol3] encodes the fact that rollback resets
the (volatile) state to the last stored persistent state; inaddition, the

state, creation, and behavioral dependences are reinitialized.
[rcv2] This rule applies when the dependences associated with

an incoming message areinvalidatedby the state or creation de-
pendences associated witht. This occurs if the message depends
on an earlier incarnation of some dependent transactor thant does.
In this case, the message is ignored to ensure global consistency.

[rcv3] This rule applies when the dependences associated with
an incoming messagem supersedethe state dependences (but not
the creation dependences) associated witht, andt is persistent. In
such cases,t is effectively rolled back to ensure global consistency,
and the result is the same as in rule[rol3].

[rcv4] This rule applies when an ephemeral transactor’s state or
creation dependences are invalidated by an incoming message. In
this case,t cannot roll back since there is no checkpoint to roll back
to; instead, it is annihilated to ensure global consistency.

7. FORMAL PROPERTIES
In this section, we define what it means for a system such as

the τ -calculus to be well-behaved. In particular, we prove certain
soundness and liveness properties appropriate for theτ -calculus.
For soundness, we show that a trace (i.e., a transition sequence)
containing node failures and inconsistencies is equivalent to a nor-
mal trace, i.e., one containing no node failures, but possibly mes-
sage losses. We also show that checkpointing ispossible, assuming
certain reasonable preconditions. First, we need some preliminary
definitions.

7.1 Preliminary Definitions

Relations.We will define a number of relations to facilitate rea-
soning about successive states of transactor configurations, individ-
ual transactors, or components thereof. To define these relations,
we will use the following relational operators: Given binary rela-
tions R, R1 andR2, R∗ denotes the reflexive, transitive closure



[set2] Transactor is stable: attempt to set state fails.
♦(h)

µ | θ[t 7→ 〈b, s√ ; R[ setstate( ) ], s ; δs[t 7→ h], δc, δb〉] t−→
[set2]

µ | θ[t 7→ 〈b, s√ ; R[ false ], s ; δs[t 7→ h], δc, δb〉]

[sta1] Transactor is volatile: stabilization causes it to become stable.
h →♦ h′

µ | θ[t 7→ 〈b, s√ ; R[ stabilize ], s ; δs[t 7→ h], δc, δb〉] t−→
[sta1]

µ | θ[t 7→ 〈b, s√ ; R[ nil ], s ; δs[t 7→ h′], δc, δb〉]

[sta2] Transactor currently stable:stabilize is a no-op.
♦(h)

µ | θ[t 7→ 〈b, s√ ; R[ stabilize ], s ; δs[t 7→ h], δc, δb〉] t−→
[sta2]

µ | θ[t 7→ 〈b, s√ ; R[ nil ], s ; δs[t 7→ h], δc, δb〉]

[chk1] Transactor is stable and independent: checkpoint succeeds.
♦(δs[t 7→ h] ⊕ δc) h →√ h′

µ | θ[t 7→ 〈b, ; R[ checkpoint ], s ; δs[t 7→ h], δc, 〉] t−→
[chk1]

µ | θ[t 7→ 〈b, s ; ready, s ; [t 7→ h′], ∅, ∅〉]

[chk2] Transactor is dependent or volatile:checkpoint simply behaves likeready.
¬♦(δs ⊕ δc)

µ | θ[t 7→ 〈b, s√ ; R[ checkpoint ], s ; δs, δc, 〉] t−→
[chk2]

µ | θ[t 7→ 〈b, s√ ; ready, s ; δs, δc, ∅〉]

[rol1] Transactor is stable:rollback simply behaves likeready.
♦(h)

µ | θ[t 7→ 〈b, s√ ; R[ rollback ], s ; δs[t 7→ h], δc, 〉] t−→
[rol1]

µ | θ[t 7→ 〈b, s√ ; ready, s ; δs[t 7→ h], δc, ∅〉]

[dep1] Transactor is independent: yields false.
♦((δs ⊕ δc) \ t)

µ | θ[t 7→ 〈b, s√ ; R[ dependent? ], s ; δs, δc, δb〉] t−→
[dep1]

µ | θ[t 7→ 〈b, s√ ; R[ false ], s ; δs, δc, δb〉]

[dep2] Transactor is dependent: yields true.
¬♦((δs ⊕ δc) \ t)

µ | θ[t 7→ 〈b, s√ ; R[ dependent? ], s ; δs, δc, δb〉] t−→
[dep2]

µ | θ[t 7→ 〈b, s√ ; R[ true ], s ; δs, δc, δb〉]

[lose] Message loss.

(µ ] {m}) | θ
m−→

[lose]
µ | θ

Figure 12: Transition rules encoding basic transactor semantics.

[fl1] Spontaneous failure of volatile, persistent transactor causes rollback.√
(h) ¬♦(h) h # h′

µ | θ[t 7→ 〈b, s√ ; , ; δs[t 7→ h], δc, δb〉] t−→
[fl1]

µ | θ[t 7→ 〈b, s√ ; ready, s√ ; [t 7→ h′], ∅, ∅〉]

[fl2] Spontaneous failure of volatile, ephemeral transactor causes it to be annihilated.
¬√

(h) ¬♦(h)

µ | θ[t 7→ 〈 , nil ; , ; δs[t 7→ h], , 〉] t−→
[fl2]

µ | θ

Figure 13: Transition rules modeling spontaneous failures.

of R; R−1 denotes the relational inverse ofR; andR1 ∪ R2 and
R1 ·R2 denote respectively the relational union and relational com-
position ofR1 andR2. If R is a binary relation on elements of a set
S , then we will say thats ∈ S is anR normal formif there exists
no s′ ∈ S such thats R s′. If s R∗ s′ ands′ is anR normal form,
then we will say thats′ is anR normal formof s (or theR normal
form if s′ is unique).

Traces.If S = {R1, R2, . . . , Rm} is a set of binary relations
andR = R1 ∪ R2 ∪ . . . ∪ Rm, we will refer toR′ as acomposite
relation based on thebasis setS of primitive relations. In general,
primitive relations will represent “single step” transition relations
for an operational semantics. IfS is a basis set of primitive relations
such that for allR1, R2 ∈ S, R1 ∩ R2 = ∅, we will say thatS

is anorthogonalbasis set. LetS = {R1, R2, . . . , Rn} be a set
of primitive relations, andR′ be the composite relation based on
S. Then we will refer to a (possibly empty) sequence of primitive
relations from the setS as anR′-trace. Given an initial valuex0

and anR′-traceρ = Ri1 Ri2 . . . Rim over an orthogonal basis
set, there exists a unique sequencex0 x1 . . . xm such that

x0 (Ri1 · Ri2 · · ·Rim) xm

In this case, we will use the traceρ to refer either to the se-
quence of relationsRi1Ri2 . . . Rim or the sequence of values
x0 x1 . . . xm−1, and will also feel free to treatρ as the set of val-
ues{x0, x1, . . . , xm−1} when convenient. Note that we adopt the
convention that the value sequence represented includes the initial
element of the transition sequence, but not the final element. We



[rol2] Transactor is volatile and ephemeral: rollback causes transactor to be annihilated.
¬♦(h) ¬√

(h)

µ | θ[t 7→ 〈 , nil ; R[ rollback ], ; δs[t 7→ h], , 〉] t−→
[rol2]

µ | θ

[rol3] Transactor is volatile and persistent: rollback reverts state to contents of persistent state saved by last checkpoint.
¬♦(h)

√
(h) h # h′

µ | θ[t 7→ 〈b, s√ ; R[ rollback ], ; δs[t 7→ h], , 〉] t−→
[rol3]

µ | θ[t 7→ 〈b, s√ ; ready, s√ ; [t 7→ h′], ∅, ∅〉]

[rcv2] Message dependences invalidated by those of transactor butnot vice-versa: discard message.
δm o δsc ¬(δsc o δm)

(µ ] {t ⇐ 〈 , δm〉}) | θ[t 7→ 〈b, s√ ; R[ ready ], s ; δs, δc, 〉] t−→
[rcv2]

µ | θ[t 7→ 〈b, s√ ; ready, s ; δs, δc, ∅〉]
δsc = δs ⊕ δc

[rcv3] State dependences (but not creation dependences) invalidated by message and transactor is persistent: transactor rolls back.
δs[t 7→ h] o δm ¬(δc o δm)

√
(h) h # h′

µ ] {t ⇐ 〈vm, δm〉} | θ[t 7→ 〈b, s√ ; R[ ready ], ; δs[t 7→ h], δc, 〉] t−→
[rcv3]

µ | θ[t 7→ 〈b, s√ ; ready, s√ ; [t 7→ h′], ∅, ∅〉]

[rcv4] State or creation dependences invalidated by message and transactor is ephemeral: transactor is annihilated.
δsc o δm ¬√

(h)

(µ ] {t ⇐ 〈 , δm〉}) | θ[t 7→ 〈 , nil ; R[ ready ], ; δs[t 7→ h], δc, 〉] t−→
[rcv4]

µ | θ

δsc = δs[t 7→ h] ⊕ δc

Figure 14: Transition rules for programmatic rollback and c onsistency management.

will frequently use the notationx0
ρ−→∗ xm whenρ is anS-trace,

and−→ is the composite relation based onS. We will useε to
denote an empty trace, andlen(ρ) to denote the length of a traceρ.

Configuration well-formedness.In this section, we define
what it means for a transactor configuration to be “sensible”with
respect to its history annotations. Letτ = 〈b, s√ ; e, s; δs, δc, δb〉 be
a transactor, and lett′ be an arbitrary transactor name. Then the set
of histories oft′ associated withτ is denoted byhistories(t′, τ ),
defined by

histories(t′, τ) ,
{h′ | δs(t′) = h′ or δc(t′) = h′ or δb(t

′) = h′}

Note that this set isnot necessarily a singleton; e.g.,τ ’s creation
can be dependent on one checkpointed version oft′, and its current
state on a different version.

Let µ be a network, andt be an arbitrary transactor name.
Then the set ofhistories of t associated withµ is denoted by
histories(t, µ), defined by

histories(t, µ) , {h | ( ⇐ 〈 , δm[t 7→ h]〉) ∈ µ}
Let k be a well-formed transactor configuration, andt be a trans-

actor such thatt ∈ dom(k). Then theprincipal historyof t in k is
denoted byhistory(t, k), and is defined by

history(t, k) ,
δs(t) such that k(t) = (〈b, s√ ; e, s ; δs, δc, δb〉)

Let k be a configuration. Then the set oft-dependent node his-
tories ink is denoted bydepHists(t, k), and is defined by

depHists(t, k) =
[

t′∈(dom(k)\t)

histories(t′, k(t))

Thus depHists(t, k) yields the set of all histories oft present
in nodes ofk with the exception of its principal history. Given
configurationk, a transactort in dom(k) is garbage if t /∈
depHists(t′, k) for any other transactort′.

We will say that a configurationk iswell-formediff the following
conditions hold:

1. For all t ∈ dom(k) such that k(t) =
(〈b, s√ ; e, s ; δs, δc, δb〉), t ∈ dom(δs), and if√

(history(t, k)), thenδc = ∅.

2. For allh ∈ depHists(t, k), h ;∗ history(t, k)

In other words, for a configuration to be well-formed, every trans-
actort must have its own history in its state dependence map and its
creation dependence map must be empty ift has checkpointed. In
addition, a transactor’s principal history must be the “most recent”
of all the histories oft associated with other transactors ink.

LEMMA 1 (WELL -FORMEDNESSPRESERVATION). Letk be
a well-formed configuration, and letk′ be a configuration such that
k

ρ−→
τ

∗ k′. Thenk′ is also well-formed.

PROOF. Straightforward induction onlen(ρ).

Configuration consistency.In this section, we define notions
of consistencyfor transactor configurations. Inconsistent configu-
rations will correspond to transactors whose states are inconsistent
due to node failures. Letτ = 〈b, s√ ; e, s ; δs, δc, δb〉 be a transac-
tor. Then thecomposite dependence mapfor τ , notatedmaps(τ )

is defined bymaps(τ ) , δs ⊕ δc ⊕ δb. Let k be a configura-
tion, andt ∈ dom(k) be a transactor name. Then thecompos-
ite dependence mapfor t in k, notatedmaps(t, k), is defined by
maps(t, k) = maps(k(t)).

Given a configurationk, we will say that a transactort ∈
dom(k) is consistent(with respect tok) if there exists not′

in dom(k) such thatmaps(t, k)(t′) o history(t′, k). In other
words, k is dependent on no other transactort′ for which the
state oft′ is currently inconsistent witht. Similarly, a message
(t ⇐ 〈 , δm〉) ∈ ns(k) is consistent(with respect tok) if there
exists not′ in dom(k) such thatδm(t′) o history(t′, k).

We will say that nameserverθ is consistentif for all t ∈ dom(θ),
t is consistent. A well-formed networkµ is consistentif for all
m ∈ µ, m is consistent. A configurationk is network consistentif
net(k) is consistent with respect tok andnode consistentif ns(k)
is consistent with respect tok. Finally, a configurationk is consis-
tent if it is both network consistent and node consistent.

Configuration equivalence modulo history.In this sec-
tion, we define a simple notion of transactor equivalence that is



oblivious to certain inconsequential differences in dependence in-
formation. Given two historiesh and ĥ, such that̂h is a prede-
cessor history toh, the reversionoperationrevertĥ(h) defines a
new historyh′ that is “the same” ash, except that the operations
represented bŷh do not occur:

revert
ĥ
(h) =

8

>

>

<

>

>

:

h′ if there existŝh0 such that

ĥ0 # ĥ
ρ

;∗ h and

ĥ′
0

ρ
;∗ h′

h otherwise

The definition above will be critical to defining a node-failure free
trace from a corresponding trace with node failures: ifĥ repre-
sents a set of failing operations in a transactor, we will “extract”
those operations from a trace and update other historiesh using
revertĥ(h).

Let t be a transactor name,h be a history, andk be a transactor
configuration. Thenreverth(t, k) is defined as follows:

reverth(t, µ | θ) , µ′ | θ′

where
µ′ = {{ (t′ ⇐ 〈vm, δm[t 7→ reverth]〉)

| (t′ ⇐ 〈vm, δm〉) ∈ µ }}
and
θ′ = {[ t′ 7→ 〈 b, s√ ; e, s ;

δs[t 7→ reverth],
δc[t 7→ reverth],
δb[t 7→ reverth] 〉 ]

| t′ ∈ dom(θ) and
(〈b, s√ ; e, s ; δs, δc, δb〉) = θ(t′)

}

(Recall thatδs[t 7→ reverth] is shorthand for the mapδs[t 7→
reverth(δs(t))]; similarly for the other maps).

If ρ is a trace, we will usereverth(t, ρ) to denote the traceρ′ re-
sulting from replacing every configurationk ∈ ρ by reverth(t, k).

Let t be a transactor,k be t-consistent configuration, and̂h =
history(t, k). Thenk ≈t,ĥ k′ if k′ = revertĥ(t, k). The relation
‘≈’, read “equivalence modulo history” is then defined as the least
equivalence relation satisfying

k ≈t,h k′ for somet, h =⇒ k ≈ k′

The relation ‘≈’ is a very weak form of configuration equiva-
lence akin toα-equivalence in the lambda calculus or structural
congruences in process calculi. The idea is that two configurations
that are identical up to certain inconsequential differences in de-
pendence information behave identically. This fact is embodied in
the following lemma:

LEMMA 2 (BEHAVIOR OF≈-EQUIVALENT CONFIGURATIONS).
Let k1 and k2 be configurations such thatk1 ≈ k2, and ρ be
a trace such thatk1

ρ−→
τ

∗ k′
1. Then there existsk′

2 such that

k2
ρ−→
τ

∗ k′
2 andk2 ≈ k′

2.

PROOF. Straightforward induction onlen(ρ) and the definition
of ‘≈’.

Cycle Properties.Let ρ be a−→
τ

∗ trace. Then a nonempty

traceρ is at-sequenceif all primitive transitions inρ have the form
t−→
l

, i.e., all transitions are applicable to a transactor namedt. A

cycle-terminating transitionis any primitive transition rule in−→
τ

∗

that either takes the form

µ | θ[t 7→ 〈b, s√ ; e, s ; δs, δc, δb〉] t−→
l

µ′ | θ[t 7→ 〈b, s√ ; ready, s ; δs, δc, δb〉]

or

µ | θ[t 7→ τ ]
t−→
l

µ′ | θ

In other words, a cycle-terminating transition either causes a trans-
actor’s evaluation state to becomeready, or results in the annihi-
lation of some transactor. At-tracec is at-cycleif c = c′ r where
c′ is a−→

τ
trace, andr is a cycle-terminating transition.

LEMMA 3 (CYCLE PROPERTIES).

1. Everyt-cycle contains exactly one transition from the set

{−→
[rcv1]

, −→
[rcv2]

, −→
[rcv3]

, −→
[rcv4]

,−→
[fl1]

}

which must be the initial transition of the cycle.

2. If a t-cycle contains a primitive transition in−→
_

, then it

can contain only one such transition, which must be the final
transition in the cycle. In this case, we will refer to the cycle
as afailurecycle.

3. If the last transition in at-cycle is not an element of−→
_

, then

it must either be the[pure] transition or the[chk1] transition.

4. Letcti
i be at-cycle. Then either

(a) For all ki ∈ cti
i , ki is consistent, or

(b) For all ki ∈ cti
i , ki is inconsistent.

Given this fact, we will refer to at-cycle as either aconsistent
cycle, or aninconsistentcycle.

PROOF. Properties 1-3 follow trivially from the definitions of
the primitive transitions. Property 4 follows from the previous
properties and a simple induction on the length of a cycle.

LEMMA 4 (CYCLE DECOMPOSITION). Let k1 and k2 be
well-formed and ready configurations such thatk1

ρ−→
τ

∗ k2. Then

there exists a traceρ′ of the form

ρ̂ = λ0 ct1
1 λ1 . . . ctn

n λn

where for all1 ≤ i ≤ n, cti
i is ati-cycle, and for all0 ≤ j ≤ n, λj

is a (possibly empty)message loss traceof the form−→
[lose]

∗, such that

k1
ρ′
−→

τ
∗ k2. We will refer to the tracêρ as acycle decomposition

of ρ.

PROOF. By induction onlen(ρ). Define a total ordering on all
transactor names present inρ. Permute pairs of primitive non-loss
transitions inρ not consistent with the total ordering, and permute
loss/non-loss pairs. The resulting trace has the desired form.

7.2 Simulation Without Node Failures
Given the preceding definitions, we are now in a position to

prove that arbitraryτ -calculus traces can be simulated by traces
containing only the node failure free subset of theτ -calculus. We
first require the following key lemma:

LEMMA 5 (SIMULATION ). Let kα
1 , kα

2 , kβ
1 , andkβ

2 be well-
formed configurations,α andβ be traces such that

kα
1

α−→
τ

∗ kα
2 and kβ

1

β−→̂∗ kβ
2

T# andT! be sets of transactor names, andM! be a network (i.e.,
a multiset of messages). Assumekα

1 , kα
2 , kβ

1 , kβ
2 , α, β, T# , T!, and

M! all satisfy the following conditions:



1. kα
1 , kβ

1 , andkβ
2 are resilient and network consistent.

2. For all k ∈ β, k is node consistent.

3. T# ⊆ dom(kβ
1 ), and for all t ∈ T# , history(t, kα

2 ) #

history(t, kβ
1 ) andkβ

1 (t) is initial.

4. For all t ∈ dom(kβ
1 ) \ T# , kα

2 (t) = kβ
1 (t).

5. T! ∪ dom(kβ
1 ) = dom(kα

2 ), and for all t ∈ T! such that
h = history(t, kα

2 ), ¬♦(h) and¬√(h).

6. M! ] net(kβ
1 ) = net(kα

2 ), and for allm ∈ M!, m is incon-
sistent with respect tokα

2 .

Then there exists configurationkβ′
2 and traceα′ such thatkβ′

2 ≈
kβ
2 and

kα
1

γ−→
τ

∗ kβ′
2

PROOF. Let

α̂ = λ0 ct1
1 λ1 . . . ctn

n ; λn

be a cycle decomposition ofα. The the proof proceeds by induc-
tion on len(α̂), where at each inductive step, we eitherremovea
cycle from the tail ofα and re-establish the premises of the lemma
(typically by updating the setsT# , T!, or M! appropriately and
sometimes by adding a[lose] transition), or we show that we can
extendthe traceβ by prepending the cycle to the traceβ and re-
establishing the premises of the lemma. The setsT# , T!, andM!

are used to allow certain differences to exist between configurations
kα
2 andkβ

1 at intermediate stages of the proof. These differences are
“discharged” by the base case, at which pointkα

2 andkβ
1 become

identical.

Base Case.If α̂ = ε, then sincekα
1 is resilient, it is also node

consistent. Since it is also network consistent by assumption, the
other premises of the theorem can be satisfied if and only ifT# =
T! = M! = ∅ andkα

1 = kα
2 = kβ

1 . In that case, we letγ = β and
the theorem follows immediately.

Inductive Case.Otherwise, we have

kα
1

α′
−→

τ
∗ kα′

2

ctn
n λn−→

τ
∗ kα

2

for some traceα′ and configurationkα′
2 . The proof has four main

cases:

1. ctn
n is a failure cycle.

2. tn ∈ T# and case 1 does not apply.

3. ctn
n is an inconsistent cycle, and cases 1 and 2 do not apply.

4. None of cases 1–3 apply.

We will prove the result for an examplary subcase of Case 1 in full
detail. The remaining cases use identical formal machinery; for
those, we will provide more informal arguments, appealing to the
same concepts covered in detail for Case 1.

Case 1.By Clause 2 of Lemma 3, the final transition inctn
n must

be one of the rules in Figs. 13 and 14 and the initial transition
must use the rule[rcv1]. We prove the result for rule[fl1], which is
typical. The other rules use analogous reasoning.

Subcase[fl1]. By Clause 1 of Lemma 3, either[fl1] is the only
transition in the cycle, or the first transition is an instance of the
rule [rcv1]. We consider the latter case here; the former is a simpler
subcase.

We proceed by removing cyclectn
n ; i.e., we show that there exist

setsT ′
# , T ′

! , andM ′
! , configurationkβ′

1 and traceλ′
n such that

kα
1

α′
−→

τ
∗ kα′

2 and kβ′
1

λ′
nλn−→̂ ∗ kβ

1

β′
−→̂∗ kβ′

2

and such thatkα′
2 , kβ′

1 , kβ′
2 , and setsT ′

# , T ′
! , andM ′

! satisfy the
preconditions of the proof:

If any messagem′ is sent in cyclectn
n , then due to the application

of rule [fl1], it is inconsistent with respect tokα
2 . However, by

the preconditions for the lemma, no inconsistent messages exist in
configurationkβ

1 , thus it must be the case thatm′ ∈ M!. To restore
preconditions of the lemma after removingctn

n , we setM ′
! = M! \

m′.
Let m be the message received during this cycle. Ifm were

inconsistent with respect to configurationkα′
2 , then a rule other than

[fl1] would apply, hencem must be consistent. We therefore set
λ′

n =
m−→

[lose]
to restore precondition 6 of the lemma.

If any transactort′ is created inctn
n , due to the application of rule

[fl1], it is inconsistent with respect tokα
2 . Since by the precondi-

tions of the lemma, no inconsistent transactors exist in configura-
tion kβ

1 , it must be the case thatt′ ∈ T!. To restore the precondition
of the lemma after removingctn

n , we therefore setT ′
! = T! \ t′.

If tn ∈ T# andkα′
2 (tn) is initial, then by the definition ofT# ,

kβ′
1 (tn) is also initial, thus they have the same state and are iden-

tical modulo history information. We address this discrepancy as
follows: By the definition ofT# and the fact that rule[fl1] rolls
backtn’s history, we know that

history(tn, kα′
2 ) # history(tn, kα

2 ) # history(tn, kβ
1 )

Let ĥ = history(tn, kα
2 ) andβ′ = revertĥ(tn, β), in which case

we havekβ′
2 = revertĥ(tn, kβ

2 ), and hencekβ′
2 ≈ kβ

2 . Also, we
see thattn still satisfies the condition for inclusion inT# , thus we
setT ′

# = T# .
If tn /∈ T# , we setT ′

# = T#∪{tn} to re-establish the premises
of the lemma.

No transactors other thantn are affected by the removal ofctn
n .

Summarizing the construction above, we have

kα
1

α′
−→

τ
∗ kα′

2 and kβ′
1

λ′
nλnβ′
−→̂ ∗ kβ′

2

whereT ′
# , T ′

! , M ′
! , kα′

2 , andkβ′
1 all satisfy the preconditions of

the lemma. Sinceα′ has length less thanα, the result follows by
induction.

Subcase[fl2]. This is very similar to the subcase for[fl1], except
that tn is annihilated, rather than being (effectively) rolled back.
Therefore, rather than updating the setT# to reflect the rolled-
back history oftn, we setT ′

! = T!∪{tn} to reflect its annihilation.
The rest of the construction is identical to that of the previous case.

Other Subcases.The remaining of the subcases of Case 1 use
reasoning similar to the cases above, and exactly the same formal
machinery.

Inductive Case 2.Sincetn ∈ T# , the historyhistory(tn, kβ
1 )

invalidateshistory(tn, kα
2 ). Hence any message sent or transac-



tor created in cyclectn
n will be inconsistent with configurationkβ

2 .
We restore the preconditions for the lemma by removing the cycle
and define the setsT ′

# , T ′
! , andM ′

! and traceβ′ based on updates
of T# , T!, M!, andβ analogous to those used in the Case 1 (i.e.,
T! “swallows” any created transactors eliminated by the cyclere-
moval,M! swallows any messages sent during the cycle, andT#

andβ are updated if the first configuration in the cycle is initial).
The first transition of the cyclectn

n must be a[rcv1] rule. If the
message received is inconsistent, we remove it from the configu-
ration and add it to the setT!. Otherwise, we add an instance of
[lose] to re-establish the premises of the lemma. The result follows
by induction.

Inductive Case 3.In this case, all of the configurations inctn
n

are inconsistent by assumption, therefore any messages sent during
the cycle or any transactors created during the cycle are inconsis-
tent with configurationkβ

1 . We restore the preconditions for the
lemma by removing the cycle and define the setsT ′

# , T ′
! , andM ′

!

and traceβ′ as in the previous case. The initial transition of the
cycle ctn

n must be a[rcv1] rule. If the message received is incon-
sistent, we remove it from the configuration and add it to the setT!.
Otherwise, we add an instance of[lose] to re-establish the premises
of the lemma. The result follows by induction.

Inductive Case 4.If none of the other cases apply, we usectn
n

to extendβ and simply setγ = ctn
n β. The result follows by induc-

tion.

We are now in a position to prove our main simulation theorem:

THEOREM 1 (SIMULATION WITHOUT NODE FAILURES).
Let k1 andk2 be well-formed, resilient, and consistent configura-
tions such thatk1 −→

τ
∗ k2. Then there existsk′

2 such thatk2 ≈ k′
2

andk1 −→̂∗ k′
2.

PROOF. Follows directly from Lemma 5. Define the variables
in the premise of the lemma as follows: Letkα

1 = k1, kα
2 = kβ

1 =

kβ
2 = k2. Let α be the unique trace such thatk1

α−→
τ

∗ k2, β = ε,

andT# = T! = ∅. Given these definitions, all of the premises of
Lemma 5 are satisfed trivially, and thus the theorem followsimme-
diately from the lemma.

The proof of this theorem effectively shows how global reasoning
about state inconsistencies can be reduced to local reasoning about
the possibility of message loss.

7.3 Universal Checkpointing
The other criticalτ -calculus property isliveness, i.e., that it is

possibleto reach global checkpoints using the transactor model op-
erational semantics. Of course, not all transactor programs can
reach global checkpoints. Indeed, a trivial program with a trans-
actor that sends messages introducing dependencies, but never sta-
bilizes or tries to checkpoint, will eliminate the ability of its de-
pendents to reach checkpoints. We therefore introduce aUniversal
Checkpointing Protocol (UCP)that assumes a set of preconditions
that will entail global checkpointing for a set of transactors T . We
also prove that under those preconditions, the protocol terminates
and therefore, a global checkpoint is reached.

DEFINITION 1 (UCP PRECONDITIONS). Let D be the set of
transactorsT and the transitive closure of its dependencies, i.e., all
the transactors that elements ofT depend on, the transactors that
they depend on, and so forth.

A. All transactors inD need to keep a set of acquaintances,
ACQ, in their state since the last checkpoint or time of cre-
ation, including the names of:

(1) transactors which have been a target for messages sent.

(2) transactors which have been created.

(3) the parent transactor.

B. All transactors inD need to eventually stabilize and start
the Universal Checkpointing Protocol. Also, all transactors
in D need to be able to receiveping messages.

C. Once the first transactor inD stabilizes, no other transac-
tors in D will programmatically rollback or be caused to
rollback by other transactors inD. This assumes previ-
ous application-dependent communication that provides this
guarantee.

D. There can be no failures while the Universal Checkpointing
Protocol is taking place.

DEFINITION 2 (UNIVERSAL CHECKPOINTINGPROTOCOL).
When a transactort in D stabilizes, it:

I. Pings every transactor inACQ

II. Checks if it is dependent,

(a) If not, it pings every transactor inACQ, checkpoints
and ends protocol.

(b) If so, it pings every transactor inACQ and waits for
incomingpings.

III. On reception of aping message, goes back to II.

Since the UCP protocol only terminates upon Step IIa, success-
ful checkpointing of all transactors inD, protocol termination is
sufficient to prove that a global checkpoint has been reached.

We first define a Transactor Dependence Graph (TDG), and
prove that incoming edges in this graph (dependencies) can only
be created by five specific causality conditions. Then, because of
preconditions B..D, eventually the history of all transactors in D
will be stable or checkpointed after UCP steps I and II. Further-
more, the stable condition of a transactor will eventually be com-
municated to all dependent transactors by the UCP protocol.Each
transactor’s knowledge of the stability of all transactorsit depends
on, allows it to eventually checkpoint.

DEFINITION 3 (TRANSACTORDEPENDENCEGRAPH).
Given a transactor configuration,k, we define its transactor
dependence graph,TDG(k), as (V, E), where V = D, and
∀ t1, t2 ∈ V :

t1
h7→ t2 ∈ E ⇐⇒ δs(t1) = h ∨ δc(t1) = h

wherek = | θ[t2 7→ 〈 , ; , ; δs, δc, 〉]

In other words, given a transactor configuration,k, its transac-
tor dependence graph (TDG(k)) is a labeled directed graph with
transactors as nodes and dependencies as labeled edges. Thelabels
represent the last known history information for a given transactor.

So, an edget1
h7→ t2 represents the fact thatt2 depends ont1 and

t2 knowsh to be the last history value fort1.



LEMMA 6 (DEPENDENCECAUSALITY CONDITIONS).
Given a configurationk, if there is an edge inTDG(k) as follows:

t1
h7→ t2

it is only because of one of the following conditions:

i. transactort1 sent a message tot2;

ii. a transactor dependent ont1 sent a message tot2;

iii. transactor t1 createdt2;

iv. a transactor dependent ont1 createdt2; or

v. transactort2 createdt1.

PROOF. An edge fromt1 to t2 in theTDG(k) is created only
whent2’s δc or δs are modified to includet1 in a transition witht1
or t2 in focus.

The only transition that adds transactors tot2’s δc is [new], in
which t2’s δc becomes the creatort’s creation and behavioral de-
pendence maps, plus its own history:δc ⊕ δb ⊕ [t 7→ h]. New
edges tot2 in TDG(k) are created from transactors in this depen-
dence map union. Ift1 is t, t1 createdt2, which is the condition iii
above. Ift1 is in t’s δc or δb, thent is dependent ont1, which is
condition iv.

The only transition that adds transactors tot2’s δs is [set1]. It
adds transactors int2’s δb. The only transitions that add transactors
to t2’s δb are[new], [rcv1], and[get]. We consider them, one at a
time:

[new] this transition adds[t′ 7→ H0], which happens ift2 created
t1, which is condition v.

[rcv1] this transition adds transactors in the incoming message de-
pendence map,δm. This map,δm, is only created in[send].
It contains the senderts’s creation and behavioral depen-
dence maps, plus its own history:δc ⊕ δb ⊕ [ts 7→ h]. New
edges tot2 in TDG(k) are created from transactors in this
dependence map union. Ift1 is ts, t1 sent a message tot2,
which is the condition i above. Ift1 is in ts’s δc or δb, then
ts is dependent ont1, which is condition ii.

[get] : this transition adds no new transactors tot2’s δs.

THEOREM 2 (UNIVERSAL CHECKPOINTINGPROPERTY).
The Universal Checkpointing Protocol (UCP) terminates under
UCP preconditions A..D.

PROOF. When a transactort becomes stable, all the transactors
that depend on it will eventually know through the UCP; either be-
cause

1. they are directly dependent ont (conditions i, iii, and v in
Lemma 6), and therefore int’s ACQ set by precondition A
(Step I will let them know), or

2. they are indirectly dependent on it (conditions ii and iv in
Lemma 6), and in this case there is a path of transactors
that will eventually ping forward that information (through
Step I or II)

The proof consists of two parts: first, we prove the existence
of this path of transactors; and second, we prove that the stabil-
ity information of transactors always gets propagated by the UCP
protocol through this path.

Part I. Path Existence..For every edgee in TDG(k):

e : t1
h7→ t2

there exists a finite patht1 = s0 → s1 → · · · → sn = t2 such
thatsi+1 ∈ si’s ACQ,∀i ∈ [0..n).

By Lemma 6, if there is an edgee in TDG(k), it is only because
of conditions i, ii, iii, iv, or v.

Under conditions i, iii, and v, there is a path of length1, t1 =
s0 → s1 = t2, because of UCP precondition A.

Under conditions ii and iv, the proof is by induction on the length
of the path. We will assume the condition to be true for paths of
length< n, then:

Condition ii: a transactort dependent ont1 sent a message tot2.

Sincet sent a message tot2, t2 must be int’s ACQ set,
by precondition A1. Therefore, there is a length-one path

t → t2. Sincet is dependent ont1, there is an edget1
h7→ t

in TDG(k) and therefore by inductive hypothesis, there is a
patht1 →∗ t of lengthn − 1. Thus, we can create a path
t1 →∗ t → t2 of lengthn.

Condition iv: a transactort dependent ont1 createdt2.

Sincet createdt2, t2 must be int’s ACQ set, by precondi-
tion A2. Therefore, there is a length-one patht → t2. Since

t is dependent ont1, there is an edget1
h7→ t in TDG(k) and

therefore by inductive hypothesis, there is a patht1 →∗ t of
lengthn − 1. Thus, we can create a patht1 →∗ t → t2 of
lengthn.

Part II. UCP Protocol forwards stability information..
Consider any transactort1 in D. By precondition B,t1 will
eventually stabilize. According to the[sta1] and [sta2] transition
rules, its own dependence information,h, after stabilization will be
〈S(n), lh〉 for somen andlh.

In Step I of the protocol, transactort1 sendsping messages to
all its acquaintances in theACQ set. The[send] rule will put a
messagem in the network with dependence information carrying
the dependence information[t1 7→ 〈S(n), lh〉].

Consider any acquaintancet2 in t1’s ACQ set. By precondi-
tion B, t2 is required to be able to receivet1’s ping message.t2
can be in any of the three following states uponping message re-
ception:

1. t2 has not started UCP protocol. (before Step I)

2. t2 has stabilized but not checkpointed. (end of Step IIb)

3. t2 has both stabilized and checkpointed. (end of Step IIa)

In case 1, the rule[rcv1] will sharpent2’s creation and state
dependence maps with the incoming message, thereby making
[t1 7→ 〈S(n), lh〉] be the latest known information aboutt1 in t2.

Because of precondition C, rules[rol1]..[rol3] and rules
[rcv2]..[rcv4] will not apply. Because of precondition D, rules[fl1]
and[fl2] will not apply.

Furthermore, because of precondition B,t2 will eventually sta-
bilize and forwardt1’s stability information through the acquain-
tances path (UCP Step I).

In case 2, transactort2 will again update its dependence infor-
mation after[rcv1]. Because of precondition C, rules[rol1]..[rol3]
and[rcv2]..[rcv4] will not apply.



Then, according to UCP Step III,t2 will try to checkpoint, and
independently of success or failure, it will forwardt1’s updated
stability information to all its acquaintances inACQ.

In case 3,t1’s dependence information int2 must have been
stable to succeed checkpointing because of[sta1]’s precondition;
therefore, the last round ofping messages in Step IIa must have
forwardedt1’s stability to all oft2’s acquaintances.

Since in all three cases, the stable condition oft1 is properly
propagated byt2 to its ACQ set, andt1 and t2 were chosen ar-
bitrarily, we conclude that UCP guarantees that the stable condi-
tion of all transactors gets propagated to all their dependents in the
TDG. Therefore, all transactors inD eventually successfully reach
Step IIa in the UCP protocol, and therefore a global (universal)
checkpoint is eventually reached.

8. DISCUSSION AND FUTURE WORK
In this paper, we have introduced a formal framework for under-

standing and managing distributed state in the presence of various
classes of failures. Internet-scale distributed computing is becom-
ing ever more important as use of Grid mechanisms and web ser-
vices increases. We believe that in order to develop robust applica-
tions in these settings, it is necessary to incorporate state manage-
ment constructs that are more flexible than traditional transaction
mechanisms.

In addition to the failure-free simulation and universal check-
pointing properties, there are a number of additional aspects of the
τ -calculus that are worthy of further study. For example, onewould
like to show how certain application properties and topologies al-
low specialized checkpointing techniques. As a trivial example,
consider a transactort application that reads, but does not update
the state of another transactort′. If t′ is initially checkpointed, one
can easily show thatt′ can checkpoint without requiring message
exchanges witht. More interestingly, one could define various fail-
ure rates and scenarios, and show situations under which configu-
rations are always able to make progress (under reasonable fairness
assumptions) despite failures.

Finally, there are a number of interesting directions for further
research that build on the ideas developed here, including:model-
ing transactionalcompensationmechanisms, in which consistency
is maintained throughreversalof actions, rather than rolling back
to previous states; modelingisolation andatomicity in a modular
way; studying type systems for statically constraining dependences
and exposing various failure modes; developing techniquesfor op-
timizing dependence information, and modeling additionalclasses
of failures.
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