
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 1

1 234

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 2

Robustness Testing of Java Server Applications
Chen Fu, Ana Milanova, Barbara G. Ryder, David Wonnacott

Should we say something about the special issue here? Only ifour paper is technically “invited”.

Abstract— This paper presents a new compile-time analysis
that enables a testing methodology for white-box coverage testing
of error recovery code (i.e., exception handlers) in Java web
services using compiler-directed fault injection. The analysis
allows compiler-generated instrumentation to guide the fault
injection and to record the recovery code exercised. (An injected
fault is experienced as a Java exception.) The analysis (i) identifies
the exception-flow ’def-uses’to be tested in this manner, (ii)
determines the kind of fault to be requested at a program point,
and (iii) finds appropriate locations for code instrumentation.
The analysis incorporates refinements that establish sufficient
context sensitivity to ensure relatively precise def-use links and to
eliminate some spurious def-uses due to demonstrably infeasible
control flow. A runtime test harness calculates test coverage of
these links using anexception def-catchmetric. Experiments with
the methodology demonstrate the utility of the increased precision
in obtaining good test coverage on a set of moderately-sizedJava
web services benchmarks.This paper presents a new compile-
time analysis that enables a testing methodology for white-box
coverage testing of error recovery code (i.e., exception handlers)
in Java web services using compiler-directed fault injection.
The analysis allows compiler-generated instrumentation to guide
the fault injection and to record the recovery code exercised.
(An injected fault is experienced as a Java exception.) The
analysis (i) identifies theexception-flow ’def-uses’to be tested in
this manner, (ii) determines the kind of fault to be requested
at a program point, and (iii) finds appropriate locations for
code instrumentation. The analysis incorporates refinements that
establish sufficient context sensitivity to ensure relatively precise
def-use links and to eliminate some spurious def-uses due to
demonstrably infeasible control flow. A runtime test harness
calculates test coverage of these links using anexception def-
catchmetric. Experiments with the methodology demonstrate the
utility of the increased precision in obtaining good test coverage
on a set of moderately-sized Java web services benchmarks.

Index Terms— Reliability, Def-Use Testing, Java, Exceptions,
Test Coverage Metrics

FIX: Need to put in real entries in bib.bib for issta04,
tipPalsberg, and tosem-issta04 – leaving these out entirely
confused the IEEEtrans.bst

I. I NTRODUCTION

T HE emergence of the Internet as a ubiquitous computing
infrastructure means that a wide range of applications –

such as on-line auctions, instant messaging, grid weather pre-
diction programs – are being designed as web services. These
services must meet the challenges of maintaining performance

This work was supported in part by NSF grants EIA-0103722 andCCR-
9900988

Chen Fu (chenfu@cs.rutgers.edu) and Barbara Ryder
(ryder@cs.rutgers.edu) are with the Rutgers University Department
of Computer Science, Piscataway, NJ 08854

Ana Milanova (milanova@cs.rpi.edu) is with the Rensselaer Poly-
technic Institute Department of Computer Science, Troy, NY12180

David Wonnacott (davew@cs.haverford.edu) is with the Haverford
College Department of Computer Science, Haverford, PA 19041

and availability, while supporting large numbers of users,who
demand reliability from these codes that are becoming more
and more commonplace. A good analogy is to the telephone
system, a technology that one expects to be ’always working’;
the phone company demands only minutes of down time per
year from its software. New testing technologies are needed
to address the issue of reliability in this environment. Besides
the traditional testing of functionality, there is a need toensure
reasonable application response to system/resources problems,
in order to have performance gracefully degrade rather than
experience application crashes. The robustness testing research
in this paper addresses the problem of how to test the reliability
of Java web services in the face of infrequent, but anticipat-
able system problems, which are responded to using Java’s
exception handling mechanism.

Traditional fault-injection testing of software in the operat-
ing system community is conducted in a black-box manner,
using a probabilistic analysis to determine whether or not a
software component will work properly when subjected to
specific fault loads and workloads [1]. Testing is accomplished
by simulating faults caused by environmental errors during
test throughfault injection [2], [3], [4], [5], [6]. Testers as-
sume that applications run under specific workloads, and then
inject faults randomly into the running code, selecting faults
according to distribution functions derived from observation of
real systems. After observing application reaction to the fault
load, the testers derive data describing the likelihood that the
application will deliver correct service (i.e., not crash)under
the given fault loads and workloads [1].

Unfortunately, this approach does not ensure that the error
recovery code in an application is ever exercised nor that the
program takes an appropriate action in the presence of faults.
In addition, given the probabilistic nature of the approach, it is
hard to force application execution into the untested partsof
error recovery code during further testing. Because many web
services are written using components with unknown internal
structure, testers need to identify vulnerabilities to system
problems automatically (i.e., with the help of software tools).
The testing of error recovery code in web services is necessary
for ensuring the high reliability required of these systems.

Our methodology uses the tools of white-box def-use testing
to aid a tester of web services in this task. There is a large body
of existing work onwhite-boxtesting methodologies [7], [8],
[9], aimed at exercising as much application code as possible
during testing, and measuring code coverage using various
program constructs such as control-flow edges, branches and
basic blocks. However, error recovery code — code which
handles errors that occur with small probability, especially
due to interactions with the computing environment (e.g., disk
crashes, network congestion, operating system bugs) — is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 3

almost always left unexecuted in traditional white-box testing,
because it may not be executable by merely manipulating
program inputs.

Our analysis techniques identify program points vulnerable
to certain faults and the corresponding error recovery codefor
these specific system faults. The techniques provided allow
compiler-inserted instrumentation to inject appropriatefaults
as needed and to gather recovery code coverage information.
This enables a tester to systematically exercise the error
recovery code, by causing execution to exercise the vulner-
able operations. Thus the methodology provides a means to
obtain validation of application robustness in the presence of
system faults. Although our experiments are based on web
applications, the technique is not limited in that area and can
be applied on general Java applications.

In our approach, it is important to be able to identify as
precisely as possible where an exception, thrown in response
to an experienced fault (i.e., a def), is handled (i.e., a use). A
key concern in general for def-use testing is how to minimize
the number of spurious def-uses reported by the analysis. Since
these def-uses cannot be exercised by any test, a human being
has to examine them, among the uncovered def-use links after
testing, and determine (if she can) that they are spurious.
This is a time-consuming, difficult job, especially for large
object-oriented applications that use polymorphism heavily.
Therefore, it is crucial to use a very precise analysis that,
while practical in cost, can eliminate many of these spurious
def-uses. This is a key goal of our newexception-catch link
analysis.

Our target applications are Java web services because these
programs are widely used to build large-scale distributed
cooperative systems. Java is used increasingly to build compo-
nents for these services. Furthermore, the exception construct
and mandatory exception handling mechanism facilitates both
construction and analysis of error recovery in a Java program,
thus providing a good basis for validating our methodology
for automatic identification and testing of error recovery code.

In a previous paper [10], we gave a general overview of our
methodology for testing of error recovery code, and defined
appropriate coverage metrics. We presented a proof-of-concept
case study in which a proxy server application was instru-
mented by hand, and then fault injection was performed and
recorded by executing the instrumentation. In this paper we
have defined and implemented a compile-time exception-catch
link analysis, fully automated the program instrumentation
process, and experimented with several versions of analysis
on a data set of moderately-sized web service applications.

The specific contributions of this paper are:
• Design of a new compile-time exception-catch link anal-

ysis to identify error recovery code in relation to certain
resource usage program points (i.e., a def-use analy-
sis for potential exceptions involving resource usage).
This analysis essentially is an interprocedural def-use
dataflow analysis calculation with two new refinements:
(i) performing a points-to analysis using limited context
sensitivity by inlining constructors that set object fields
(in order to avoid conflating objects, especially in libraries
with long call chains) and (ii) using the absence of

data reachability through object references to confirm the
infeasibilityof some links, by showing the corresponding
interprocedural paths to be infeasible.

• Demonstration ofautomatic program instrumentation
directed by our analysis, that effectively constructs a
compiler-directed fault injection engine fromMendosus
[11], an existing fault injection framework.

• Empirical validation of our methodology using several
mode-rately-sized Java web service applications, includ-
ing comparison of our new analysis with less precise, less
costly class-based analysis adapted to find exception-flow
def-uses. These studies demonstrate the appropriateness
of the precision of our analysis for this task, in that
on average, 84% of all exception-flow def-use links are
covered by the testing.

Overview. The rest of this paper is organized as follows.
In Section II we describe our coverage metric, which is a
slight variant of the original metric described in [10], and
give an overview of the compiler-directed fault injection
methodology. In Section III, we discuss our compile-time anal-
ysis for exception-flow def-uses and its precision increasing
refinements. In Section IV we report our empirical results on
moderate-sized Java applications, describing the impact on the
exception-flow def-uses obtained, of varying the compile-time
analysis used. In Section V we describe related work. Finally,
we present our conclusions.

II. M EASURING COVERAGE OFFAULT HANDLING CODE

We take advantage of the Java exception handling mecha-
nism to help identify error recovery code.Exceptionsin Java
are used to respond to error conditions [12]. Eachcatch block
is potentially the starting point of error recovery code for
a matching error/exception raised during the lifetime of the
correspondingtry block.

Faults, Exceptions, Coverage Metric.A fault is some
environmental error that being manifested. We begin with a set
of faults that are of interest to the tester — for example, some
testing may focus on disk and network errors. A fault-sensitive
operation, which is either an explicitthrow statement or a call
to unknown method, isaffectedby a fault in that an exception
is produced when the operation occurs and experiences a fault
as a run-time error. Often these operations are calls to C library
functions within the Java JDK libraries. We denoteP to be
the set of all fault-sensitive operations that may be affected by
any element in the specific set of faults of interest. We assume
P is known, because it can be precalculated once from the
Java libraries and reused for all the programs subject to fault-
injection testing with this same set of faults. In this paperwe
focus on faults related to JavaIOExceptions.

In any given program execution, each element ofP could
possibly produce an exception that reaches some subset of the
program’scatch blocks. By viewing fault-sensitive operations
as the definition points of exceptions, andcatch blocks as
uses of exceptions, we can define a coverage metric in terms
of exception-catch (e-c) links.

Definition (e-c link): Given a setP of fault-sensitive oper-
ations that may produce exceptions in response to the faults

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 4

of interest, and a setC of catch blocks in a program to be
tested, we say there is apossible e-c link(p, c) betweenp ∈ P

and c ∈ C if p could possibly triggerc; we say that a given
e-c link is experiencedin a set of test runsT , if p actually
transfers control toc by throwing an exception during a test
in T ,

Definition (Overall Exception Def-catch Coverage): Given a
set F of the possiblee-c linksof a program, and a setE of
the e-c linksexperienced in a set of test runsT , we say the
overall exception def-catch coverageof the program byT is
|E|
|F | .

Note that our exception def-catch coverage metric differs
slightly from theoverall fault def-catch coveragemetric used
in our earlier work [10] (where it was termedoverall fault-
catch coverage), due to the different emphasis of this work.
Fault def-catch coverage measures links from specific faults
to handling code, rather than from fault-sensitive operations
to handling code. For example, consider code in whichx

distinct faults could trigger a single fault-sensitive operation
and transfer control to a singlecatch block. Our fault def-
catch metric would treat this asx links from faults to the catch
block, and our exception def-catch metric would treat this as
1 possiblee-c link. The exception-based metric is appropriate
here because we wish to emphasize the ability of static analysis
to prune infeasible links. This ability is not determined bythe
number of faults that can cause a given exception, and the use
of the fault-based metric would skew our results by the size
of the fault sets chosen for operations in which our analysis
succeeds or fails.

In the terms used by traditional def-use analysis [13],
fault def-catch coverage is anall-def-usesmetric with faults
counting asdefs; exception def-catch coverage can be seen as
an all-def-usesmetric with exceptions counting asdefs, or as
a metric that is stricter thanall-useswhen faults are viewed as
defs. FIX: We need to check the above against the actual
definitions of the terms . For a more detailed discussion
of possible coverage metrics for fault-tolerant code, see [10],
[14].

Coverage metrics are generally used to evaluate a test suite,
but they are also influenced by the accuracy of the coverage
analysis tool. A high overall exception def-catch coverage
indicates a thorough test, but a low coverage may result
from either insufficient testing (i.e., a smallE) or an overly
conservative estimate ofF , the set ofpossible e-c links. As
in other forms of coverage testing, it is unacceptable forF to
omit any e-c linkspossible at runtime, so our analysis must
be conservative, producing a superset ofF in the presence of
imprecision. This is a common problem in software testing;
it is addressed by using an analysis that isas precise as
possible to eliminate many infeasible paths and by human
tester examination. As we will see in Section IV, the precision
of our analysis has a significant impact on the coverage results
for the benchmarks.

Fault Injection Framework. Once we have calculated the
possiblee-c linksfor a program with the analysis in Section III,
then for a specific fault-sensitive operation, we have identified
thecatch blocks that may handle the resulting exception, if it

occurs. Given the semantics of Java, there must be avulnerable
statement executed during the correspondingtry block, that
resulted in the execution of the fault-sensitive operation. The
tester must try to have execution exercise both this vulnerable
statement, often a call, and the fault-sensitive operation, so that
the recovery code is reached. Obtaining test data to accomplish
this task is the same test case generation problem presented
by any def-use coverage metric.

The compiler uses the set ofe-c links found to identify
where to place the instrumentation that will communicate with
Mendosus[11], the fault injection engine, during execution.
This communication will request the injection of a particular
fault when execution reaches thetry block containing the
vulnerable operation and will result in the recording of the
execution of the correspondingcatch block.

Tester provided

Fault set

Tester provided

Fault set

Fault Injector-

Mendosus

Fault Injector-

Mendosus

Java
Application

Java
Application

Instrumented

Java Program

Instrumented

Java Program

Exception-Catch

Link Analysis

Exception-Catch

Link Analysis

Measured

Exception

Def-Catch

Coverage

Measured

Exception

Def-Catch

Coverage

Compile time

Run time

Possible

E-C links

Possible

E-C links

Observed

E-C links

Observed

E-C links

Fig. 1. Compiler-directed fault injection framework

Figure 1 shows the organization of our fault-injection sys-
tem. The box labeledcompile timeshows that for a chosen set
of faults, corresponding to some set of exceptions and their
fault-sensitive operations, the analysis presented in Section III
calculates the possiblee-c linksand the vulnerable statements
that are susceptible to them. The compiler inserts the in-
strumentation calling on Mendosus to insert a fault during
execution of the correspondingtry block and the recording
instrumentation for recovery code in thecatch block. Then,
the tester runs the program and gathers theobserved e-c links
from that run. The tester then may have to try to make the
program execute other vulnerable statements (i.e., by varying
the inputs) in order to cover more of the possiblee-c links.
Finally, the test harness calculates the overall exceptiondef-
catch coverage for this test suite.

III. C OMPILE-TIME ANALYSIS

Figure 2 illustrates the high level structure of the two-
phased compile-time exception-catch link analysis which we
designed to calculatee-c links in Java programs.Exception-
flow analysis takes a static representation (i.e., AST) of a
Java program as well as its call graph, and produces thee-
c link set of the given program. Unlike previous exception-
flow analysis [15], [16], [17] which relied on interprocedural
propagation of exception types, our analysis is object-based,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 5

distinguishing between exception objects created by different
new() statements. TheDataReachanalysis serves as a post-
pass filter which uses the reference points-to graph [18], [19]
of the program to discard as many infeasiblee-c links in the
set produced by exception-flow analysis as possible, so as to
increase the precision of the entire analysis. Intuitively, both of
these analysis phases can vary in their precision, because they
effectively are parameterized by the points-to and call graph
construction analysis used as their inputs. Various analysis
choices are available for call graph construction [20], [21],
[22] which differ in their cost and the precision of the resulting
graph. The empirical results discussed in Section IV show
that the precision of the call graph and points-to graph has
significant impact on the precision of the finale-c link set
obtained.

possible e−c links

Call Graph

AST
Exception−Flow Analysis

Points−to Graph (Optional)DataReach Filter

possible e−c links

Fig. 2. Two phases of exception-catch link analysis

A. Exception-flow analysis

In Java, if code in some method throws an exception1 either
the exception is handled within the method by defining a
catch block for it, or the method declares in its signature
that it might throw this kind of exception when called. In
the latter case, its callers must either handle the exception
or declare that they throw it as well [12]. We want to find
the relationship betweencatch blocks and fault-sensitive
operations. We use “throw statement” to represent all fault-
sensitive operations in our discussions for simplicity; we
actually mean all instructions or calls that may throw some
exception, if a fault occurs.

A naive analysis that relies only on examination of user
declared exception types incatch blocks and method sig-
natures is too inaccurate to yield information of practical
use. In part this is because the declared exception can be
a supertype, subsuming many exception types that actually
cannot be thrown in this context. Moreover, a method may
declare that some exception may be thrown, when actually
no exceptions can ever be raised; this can occur when the
implementation of some method has changed, but the method
declaration is not updated. Dynamic dispatch can add to the
imprecision of the declared exception information. Suppose
classA is the superclass ofB and methodbar() is declared

1We are only consideringcheckedexceptions, since exceptions related to
I/O faults are checked.

in both of them, but onlyA.bar() may throw an exception of
classE when called. If some other methodfoo() contains a
call a.bar() for a of static typeA, thenfoo() must define a
handler for exceptionE or declare that it throws this exception.
However if at runtime referencea always points to aB object,
no exception can ever be thrown at the call site.

Our exception-flow analysis is an interprocedural dataflow
analysis that calculates for eachcatch block, all thethrow
statements whose exceptions could potentially be handled by
thatcatch. This is a form ofdef-useanalysis as shown in the
following section.

Exception-flow as a dataflow analysis. We define
exception-flowas the flow of each exception object thrown
per throw statement along the exception handing path [23]
— from thethrow statement to thecatch block where it is
handled.

According to the semantics of exception handling in
Java [12], we can assume there exists a variable for each exe-
cuting Java thread that refers to the currently active exception
object. During execution, anythrow and catch operations
are definitions and uses of that variable, respectively. Thus, we
can apply a variant of the traditional Reaching-Definition [24]
dataflow analysis to this problem, but there are some unique
aspects of exception-flow that require special handling:

1) Types are associated with each use and definition. A use
(i.e., a catch) kills all the reaching definitions whose
type is a subtype of the type of the use.

2) The dataflow is in the reverse direction to execution
flow; thus exception-flow is a backward dataflow prob-
lem.

3) The key control-flow statements in a method aretry

andcatch blocks,throw statements and method calls.
All other statements do not affect the exception-flow
solution (given that the call graph is an input to this
problem). The order of these statements within a method
is of no consequence. What is important is whether or
not athrow or method call is contained in atry block
nest2. Therefore, within a method, we are only interested
in paths from the method entry to eachtry-catch
block or to athrow or a method call not contained
in any try-catch block.

The analysis is interprocedural because of the nature of ex-
ception handling: an exception propagates along the dynamic
call stack until a proper handler is reached. Our analysis is
performed on a call graph whose edge annotations record the
corresponding call sites, since call sites may occur withindif-
ferenttry-catch blocks, which clearly affects the solution3.
Within each method, the analysis calculates those exceptions
which reach the entry to that method, by consideringthrows

and method calls not contained within anytry-catch block
and thosetry-catch blocks within the method. The former
statements yield some of the exceptions possibly raised and
not handled in the method. Statements within thetry-catch

2In Java, try blocks can be nested within each other. Handlers are
associated with exceptions in inner to outer order [12].

3Adding these annotations is not difficult for any call graph construction
algorithm.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 6

blocks may also yield unhandled exceptions, depending on
the types of the respectivecatch blocks. Thus, the program
representation used is a variant of a call graph, where each
method node has an inner structure consisting of an edge from
the entry node to each uncoveredthrow or method call, and
an edge to each outermosttry-catch block.

We define for each method the set of reaching exception
objects that can reach its entry:

Definition (ReachingThrows(methodM)): The set of all
throw statements for which there exists an exception handling
path [23] from the throw statement to methodM , and the
exceptions are not handled in methodM .

Figure 3 gives an example illustrating the definition of
ReachingThrows. We can see that the call sitebar()
inside methodfoo() is inside the try block, so that
SocketException thrown in bar() will be handled (i.e.,
killed) in foo(). However, exceptionOtherException, also
thrown by bar(), will not be handled and thus appears
in ReachingThrows(foo). If the call to bar() had not been
placed within atry-catch block in foo(), both exceptions
(i.e., SocketException, OtherException) would appear
in ReachingThrows(foo). Therefore, our analysis can be con-
sidered to have someflow-sensitiveaspects, in that it captures
the relation oftry-catch blocks to the call sites andthrow
statements within them.

}

thrown inOtherException bar

barReachingThrows()

SocketException bar

OtherException barthrown in
fooReachingThrows()

void foo() throws Exception{
 try{
 bar();
 }catch (IOException ioe){..}
}

void bar() throws Exception{
...
 throw new SocketException();
...
 throw new OtherException();

thrown in

Fig. 3. Example of ReachingThrows

The dataflow equations for theReachingThrowsproblem
are defined on the annotated call graph of the program.FIX:
need more detail on the finally handling -BGR4 We define
RT(m), the ReachingThrows at the entry to methodm, as

RT (m) =
{t ∈ T |type(gen(t))− kill(trynest(t)) 6= ∅}

∪
⋃

cs∈CS

⋃

m′∈targets(cs)

{t ∈ RT (m′)|type(gen(t)) − kill(trynest(t)) 6= ∅}

whereT is the set ofthrow statements inm; gen(t) is set
of the exception objects thrown byt; type(gen(t))is the set

4Under certain conditions[12],finallys behave likecatches and/or
throws. Our algorithm handles these situations correctly, but we omit the
details involvingfinallys for brevity.

of types of the objects ingen(t); trynest(k) is the (possibly
empty) nest oftrycatch blocks containing statementk;
kill(trynest(k)) is the set of exception types handled by the
catch blocks that correspond totrynest(k), or ∅ if trynest(k)
is empty;CS is the set of call sites inm; andtargets(cs)is the
set of all run-time target methods that can be reached by call
site cs (there can be more than one target of a polymorphic
call). Note also that the set difference operation must respect
the exception inheritance hierarchy; subtraction of a killset
including exception typeet must remove any exceptions of
subtypes ofet as well aset itself.

These dataflow equations are consistent with the definition
of a monotone dataflow analysis framework [25] and therefore,
amenable to fixed-point iteration.5

Worst case complexity.The dataflow problem so defined is
distributive and 2-bounded [25]; therefore, the complexity of
the analysis isO(n2) wheren is the number of methods. Given
our program representation, the time cost of processing each
method to find the constant terms in these equations is linear
in the number oftry-catch blocks, call sites andthrow
statements in the method, which is bounded above byk, the
maximum number of statements in a method; this adds akn

term to the above complexity. Therefore, the overall worst case
complexity isO(n2 + kn).

Analogous to classical dataflow use-def/def-use chains, our
analysis producese-c linksbetween each of thethrow state-
ments and their correspondingcatch blocks. By performing
exception-flow analysis, we can find all thee-c links(ti, hj)
where throw ti can potentially triggercatch block hj .
Furthermore, by recording the interprocedural propagation
path of ti, we can provide the call chains fromhj to ti to
help the human tester understand why a specifice-c link is
not covered in some test.

Selective constructor inlining.The exception-flow analysis
described previously relies on having an annotated call graph
for the program. In order to increase precision, we added se-
lective context sensitivity to the points-to analysis thatwe use
to build the call graph. Rather than building a full and costly
context-sensitive points-to analysis, we performedselective
constructor inlining; that is, we inlined each constructor at
its call sites, when that constructor contained athis reference
field initialization using one of its parameters. Without this
transformation, a context-insensitive analysis would make it
seem that the same-named fields of all objects initialized in
this constructor could point to all the parameters so used [26],
[27]. If we run a context-insensitive points-to analysis after this
transformation, we obtain some degree of context sensitivity
for constructors, eliminating some imprecision and obtaining
a more precise call graph and points-to graph for both our
exception-flow and DataReach analysis phases.

B. Data reachability analysis

We want to use a fairly precise program analysis to eliminate
as many infeasible interprocedural paths as possible, to reduce

5The iteration is only necessary here to handle interprocedural loops. Our
implementation uses a prioritized worklist algorithm; nodes in the worklist
are kept in postorder order.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 7

the work that otherwise must be done by human testers when
e-c linksbased on these paths cannot be covered. Using a more
precise analysis for call graph construction such as points-to
analysis [18], [19] helps to reduce the number of infeasible
e-c linksfound. However, in practice even a very precise call
graph building algorithm introduces many infeasiblee-c links.
Figure 4 is an example of typical use of the Java network-disk
I/O packages. Figure 5 illustrates how infeasiblee-c linksare
introduced even given a fairly precise call graph for the code.
As we can see, thetry block in readFile is only sensitive
to disk faults and thetry block in readNet is only sensitive
to network faults. But exception-flow information is merged
in BufferedInputStream.fill()6 and propagated to both
readFile and readNet; thus, two infeasiblee-c links are
introduced reducing the acheiveable runtime coverage to less
than 50%.

void readFile(String s){
byte[] buffer = new byte[256];
try{
InputStream f =new FileInputStream(s);
InputStream in=new BufferedInputStream(f);
for (...)
c = in.read(buffer);

}catch (IOException e){ ... }
}

void readNet(Socket s){
byte[] buffer = new byte[256];
try{
InputStream n =s.getInputStream();
InputStream in=new BufferedInputStream(n);
for (...)
c = in.read(buffer);

}catch (IOException e){ ...}
}

Fig. 4. Code Example for Java I/O Usage

This inaccuracy can be resolved by using a different pro-
gram representation such as a call tree [28] instead of a
call graph. However, constructing a call tree by compile-
time analysis is too expensive and once constructed, this
representation is too large to scale appropriately. For example,
to remove the infeasiblee-c links in Figure 5, the call tree
algorithm must be able to find that there are only 2 feasible call
chains which share a middle segment of length 3. Separating
these 2 chains would require a context-sensitive points-to
analysis analogous to 4-CFA [29], [30], an expensive analysis.
In many cases the length of the shared segment is even longer
(e.g., when you need to wrap the basic InputStream with more
than one filter class, such asBufferedInputStream and
DataInputStream).

The intuitive idea of our approach is to use data reach-
ability to confirm control-flow reachability, in that inter-
procedural paths requiring receiver objects of a specific

6We use a fully qualified naming convention in our examples; that is, we
express all method names in a ClassName.MethodName format,even for
instance methods.

readFile

FilterInputStream.read(byte[])

BufferedInputStream.fill()

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

FileInputStream.read(...)

Disk Access

Call Graph Edges

SocketInputStream.read(...)

readNet

Network Access

e−c linkInfeasiblee−c linkFeasible

Fig. 5. Call Graph for Java I/O Usage

type can be shown to be infeasible if those type of ob-
jects are not reachable through dereferences at the rele-
vant call site. Continuing with Figure 4, consider the call
site in.read() in method readFile. We want to know
whether SocketInputStream.read() can be called dur-
ing the lifetime of in.read(). In the explanation be-
low, we refer to in.read() as the original call and to
SocketInputStream.read() as the target call site. The
argument about data reachability relies on the following
intuition: if SocketInputStream.read() is called, some
object of typeSocketInputStream must have been created
previously to serve as the receiver. There are only three ways
this can occur:

FIX: ANA: item 1 does not seem right. Does not mention
field dereferences of objects created during the lifetime of
the call. BGR fixed in 2nd item; is this ok?

1) The object is createdduring the lifetime of the original
call and passed to the target call site by assignments
between method return values and local variables.

2) The object is associated within by field dereferences
of (i) one of the global variables (i.e., Java static fields)
or (ii) one of the objects created during the lifetime of
the original call, that occurduring the lifetime of the
original call.

3) The object is associated within by field dereferences of
one of the arguments of the original call (including the
receiver), that occurduring the lifetime of the original
call.

Therefore given an original call site, we can express the
feasibility of a particular call path in terms of whether some
data reachability is possible according to these conditions. For
example, to show that thee-c link referred to above is infeasi-
ble, we verify that there is no object in the points-to set of the
receiver of the target call site with typeSocketInputStream
that can either be created in one of the methods reachable
from the original call, or reachable by transitive field loads
from the receiver or the arguments of the original call site or
static fields. This means that the exception-flow def-use path is
infeasible. Note, we only consider object fields and static fields

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 8

loaded inmethods reachable from the original call. Clearly,
we need reasonably precise points-to information [31], [18] to
obtain the high-quality data reachability information.

The rest of this section describes the original data reach-
ability algorithm from [32] using a declarative constraint
formalism from [33]. In addition, it describes the imprecisions
of the original data reachability algorithm. Section?? presents
a schema of successively more precise data reachability algo-
rithms.

1) Original DataReach Algorithm:In previous work [32]
we introduced a data reachablility algorithm referred to as
DataReach. This algorithm requires as input a points-to
graph [31], [18]. The nodes of the points-to graph are the
reference variables in the program and the object names that
represent the set of heap objects created during program
execution. Our analysis assumes a common object naming
scheme which assigns one object name per allocation site;
other more precise object naming schemes are possible as well
but they tend to be more expensive [?], [?]. Auxiliary function
Pt : Ref → P(O) takes as an argument a reference variable
or a reference object field and returns a subset ofP(O), the
powerset of the set of object namesO. DataReach is defined
in terms of three sets:U, F andR. SetU is initialized to the
set of objects passed as actual arguments at the original call;
intuitively, it contains the universe of objects that may flow
to the target call from the original call. SetF is the set of
all instance fields that are read during the lifetime of the call.
As the algorithm examines static and instance field accesses
in the methods reachable during the lifetime of the original
call, it adds toU those objects that thereby become reachable.
In other words, the algorithm adds objectoj to U if and only

if there is a pathoi
f0→ o1 . . .

fk→ oj in the points-to graph,
where field identifiersf0, . . . fk ∈ F and oi ∈ U before this
addition. SetR denotes the set of methods reachable during
the lifetime of the original call.

The DataReach algorithm can be specified by the following
constraints (using the constraint-based formalism from [33]).
The statement of these constraints is followed with a discus-
sion of their meaning.

• input: Pt : Ref → P(O)
• initialize: M ∈ R for each targetM at original call

Pt(v) ⊆ U for each actual argumentv at original call
F = ∅

1) For each methodM , each virtual call sitee.m(. . .)
occurring in M , each object o ∈ Pt(e) where
StaticLookup(o, m) = M ′:
(M ∈ R) ∧ (o ∈ U) ⇒ M ′ ∈ R

2) For each methodM and for each static call site
C.M ′(. . .) in M :
(M ∈ R) ⇒ M ′ ∈ R

3) For each methodM and for each object creation state-
mentsi: . . . = new oi in M :
(M ∈ R) ⇒ oi ∈ U

4) For each methodM and for each static field read
statementsi: . . . = C.f in M :
(M ∈ R) ⇒ Pt(C.f) ⊆ U

5) For each methodM and for each instance field read

statementsi: . . . = r.f in M :
(M ∈ R) ⇒ f ∈ F

6) (o ∈ U ∧ f ∈ F) ⇒ Pt(o.f) ⊆ U

The algorithm initializes the set of reachable methodsR to
the set of targets at the original call,U to the set of objects
pointed to by the actual arguments at the original call, and the
set of accessed fieldsF to the empty set. Auxiliary function
StaticLookup returns the dynamic target of the call based on
the static type of the receiver objecto and the compile-time
targetm. Constraint 1 specifies the addition of new methods
to the set of reachable methods at virtual calls; a new method
M ′ is added toR only if the receiver object that triggers
the invocation ofM ′ is in the setU . Constraint 3 specifies
that an object is added to setU whenever there is an object
creation statement in a reachable method; similarly constraint
4 specifies that objects are added toU whenever a static
field is accessed. Finally, constraint 5 collects the set of field
identifiers accessed in reachable methods, and constraint 6
accounts for the computation of the transitive closure ofU

with respect to the set of accessed fieldsF .
The solution of these constraints can be used to judge

whether or not an edge in the call graph downstream from the
original call site, can be reached on a feasible (i.e., executable)
path from that call site. The algorithm starts from the givencall
site, does a breadth-first search on the call graph and judgesthe
feasibility of each encountered call edge using setU , before
actually following the edge. The algorithm outputsR, the set
of all methods reachable through data reachability from the
given original call site.

Recall the intended use of our DataReach algorithm. If a
fault occurs during the lifetime of the original call, then an
exception may be handled by acatch block associated with
the try in which the original call site is nested. In this case,
there is a correspondinge-c link resulting from an excepting
call to some methodm or throw in methodm during the
lifetime of the original call. If at the target call tom, the set
of possible target methods does not containm, then thee-c
link is spurious (i.e., it corresponds to an infeasible control-
flow path); thus, there is no need for this link to be exercised.

2) Imprecision of DataReach:The original data reach-
ability algorithm produced relatively precise results which
led to an average of 85%e-c link coverage on an initial
set of benchmarks [32]. However, it estimatesU relatively
conservatively; examples from several new benchmark pro-
grams reveal that in many cases this conservative estimate is
not sufficient. Therefore, there is a need to investigate more
precise analyses. Consider the sample set of statements in
Figure 6 and DataReach analysis starting at original callc1
in methodRead1. Set U will contain objectso1, o2 and o5

and every object reachable from them along fields accessed
in the reachable methodsA.m, A.n and Hashtable.put.
Since context-insensitive points-to analyses and even some
of the practical context-sensitive ones (e.g., 1-CFA) do not
distinguish between objects stored in different containers or
maps, any object that is stored in aHashtable object (or in
a subtype ofHashtable) will be reachable fromo5 along a
path of field accesses inF . Thus, the set of objects reachable
from o5 includeso4 and we have{o1, o2, o4, o5} ⊆ U . As

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 9

a result, bothY.read and Z.read are determined to be
feasible targets at callx.read() and the analysis erroneously
concludes that both thethrow in Y.read and thethrow
in Z.read will be handled by thecatch block in method
Read1. Similarly, starting DataReach from the original call
c2 in methodRead2, the analysis determines that both the
throw in Y.read and thethrow in Z.read will be handled
by the catch block in methodRead2. It is easy to see
that the only two feasiblee-c links are (i) betweenthrow
new SomeIOException and thecatch in Read1, and (ii)
betweenthrow new OtherIOException and thecatch in
Read2.

C. A Schema for Data Reachability Analysis

We propose a new general schema for data reachability anal-
ysis, that includes our original DataReach algorithm as an in-
stantiation. Similarly to the call graph construction algorithms
by Tip and Palsberg [33], our schema can be instantiated to
yield different algorithms by varying the number of sets used
to calculate the objects which are visible in methods reachable
from the original call, (i.e., the set from which the possible
receivers at the target call are drawn). DataReach keeps a
single set each forU andF . The new data reachability algo-
rithms in our schema keep separate sets for program entities
such as methods, classes and reference variables. The major
differences with Tip and Palsberg’s algorithms are that (i)our
algorithm propagates objects rather than class types, and (ii)
it is formulated on apartial program rather than on a whole-
program. The algorithms in our schema keep specialized
local information for program entities such as methods and
reference variables, which makes possible increased precision
for data reachability calculations. For example, considerthe
set of statements in Figure 6. Clearly, theHashtable object
o5 created in methodA.n does not flow toA.m(); thus, the
precision of the data reachability analysis will benefit if instead
of keeping a single setU throughout the analysis, setsUM are
kept for each methodM .

This paper discusses three instantiations of the schema: one
set U valid throughout the data reachability analysis (this
instantiation corresponds to the original DataReach algorithm),
separate setsUM for each methodM , and separate setsUV for
each reference variableV . It is possible to define an algorithm,
where there is a set per each class (i.e., aggregating the method
sets for all methods in that class into a single setUC); for
brevity we omit a detailed discussion of this instantiation.

1) Separate sets for methods (M-DataReach):The M-
DataReachalgorithm keeps distinct setsUM andFM for each
methodM ; UM is computed with respect toFM from the
points-to graph given as input to the algorithm, instead of
calculating oneU and oneF set program-wide. Analogously
to [33], ParamTypes(M) is used for the set of static types of
the arguments of methodM (excluding the implicit parameter
this), and the notationReturnType(M) is used for the static
return type ofM . MatchingObjects(t, U) denotes the set of
objects inU of type t (or of a subtype oft). We extend the
notationMatchingObjects(.) to apply to a set of types as fol-
lows: MatchingObjects(T, U) =

⋃

t∈T

MatchingObjects(t, U).

The following constraints define M-DataReach:
• input: Pt : Ref → P(O)
• initialize: M ∈ R for each target methodM at original

call
Pt(v) ⊆ UM for each actual argumentv at original call
and for each targetM
UN = ∅ for each non-target methodN
FM = ∅ for each methodM

1) For each methodM , each virtual call sitee.m(. . .)
occurring in M , each object o ∈ Pt(e) where
StaticLookup(o, m) = M ′:
(M ∈ R) ∧ (o ∈ UM) ⇒














M ′ ∈ R ∧
MatchingObjects(ParamTypes(M ′), UM) ⊆ UM ′ ∧
MatchingObjects(ReturnType(M ′), UM ′) ⊆ UM ∧
o ∈ UM ′

2) For each methodM and for each static call site
C.M ′(. . .) in M :
(M ∈ R) ⇒






M ′ ∈ R ∧
MatchingObjects(ParamTypes(M ′), UM) ⊆ UM ′ ∧
MatchingObjects(ReturnType(M ′), UM ′) ⊆ UM

3) For each methodM and for each object creation state-
mentsi: . . . = new oi in M :
(M ∈ R) ⇒ oi ∈ UM

4) For each methodM and for each static field read
statementsi: . . . = C.f in M :
(M ∈ R) ⇒ Pt(C.f) ⊆ UM

5) For each methodM and for each instance field read
statementsi: . . . = r.f in M :
(M ∈ R) ⇒ f ∈ FM

6) (o ∈ UM ∧ f ∈ FM) ⇒ Pt(o.f) ⊆ UM

Intuitively, constraints 1 and 2 refine the analogous con-
straints from DataReach, respectively. First, the receiver object
o at a virtual call should be available in the universe for the
methodM enclosing the call. Second, setUM of the caller
M is updated with the objects from setUM ′ of the calleeM ′

matching the return types of the callee. Third, setUM of the
callee is updated with the objects from setUM of M that
match the parameter types of the callee. Constraints 3 and 4
respectively gather objects created inM , and objects that flow
to M due to static field reads. Finally, constraint 5 gathers the
set of instance fields that may be accessed inM and constraint
6 accounts for the computation of the transitive closure ofUM

(the closure is found by traversing the points-to graph starting
from the objects inUM with respect only to fields inFM , that
is, the fields that are accessed inM).

Example.Consider the code in Figure 6. After initialization
at original call c1 we have UA.m = {o1, o2}. Applying
constraint 3 at calln(x) results in objectso1 and o2 being
added to the upper level universe ofA.n; no objects flow back
to UA.m. Clearly, no fields are accessed inA.m and therefore
the closure of the universe isUA.m = {o1, o2}. Therefore, the
only possible receiver at callx.read() is o2 and the only
possible exception that may be thrown back to the original
call isSomeIOException. This is a simplified example which
illustrates a frequently occurring situation in benchmarkcode.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 10

abstract class X {
void abstract read() throws IOException

public class Y extends X { public void Read1() {
public void read() throws IOException { try {
... s1: A a = new A();
if (...) throw new SomeIOException(); s2: Y y = new Y();

} } c1: a.m(y);
public class Z extends X { }

public void read() throws IOException { catch (IOException) { ... }
... }
if (...) throw new OtherIOException();

} }
public void Read2() {

public class A { try {
public void m(X x) throws IOException { s3: A a = new A();
n(x); s4: Z z = new Z();
x.read() c2: a.m(z);
} }

public void n(X x) { catch (IOException) { ... }
s5: Hashtable ht = new Hashtable(); }

...
if (...) ht.put(...,x);
} }

Fig. 6. Imprecision of DataReach algorithm

2) Separate sets for variables (V-DataReach):Additional
precision over M-DataReach can be achieved by distinguishing
the object sets for each reference variable and reference
object field. For this instantiation of the schema, called V-
DataReach, the algorithm keeps distinct setsUV and Uo.f

for each reference variableV and for each reference object
fieldso.f . The predicateMethodLocal (o) returns true if object
o does not escape the method where it is created (i.e., the
lifetime of the object does not exceed the lifetime of the call);
it returns false otherwise. This information can be trivially
computed from a points-to graph as shown in [18].

The following constraints define V-DataReach, in analogous
way to the two previous instantiations of the schema.

• input: Pt : R → P(O)
• initialize: M ∈ R for each targetM at original call

Initialize Up for formalsp of targets accordingly
Initialize all otherUv andUo.f to ∅

1) For each methodM ,
each virtual call sitel = e.m(e1, . . . , en) occurring in
M ,
eacho ∈ Pt(e) whereStaticLookup(o, m) = M ′:
(M ∈ R) ∧ (o ∈ Ue) ⇒














M ′ ∈ R ∧
Uei

⊆ Ufi
wherefi are the formal parameters ofM ′ ∧

UM ′.ret var ⊆ Ul ∧
o ∈ UM ′.this

2) For each methodM and for each static call site
l = C.M ′(e1, . . . , en) in M :
(M ∈ R) ⇒







M ′ ∈ R ∧
Uei

⊆ Upi
wherepi are the formal parameters ofM ′ ∧

UM ′.ret var ⊆ Ul

3) For each methodM and for each reference assignment
statementsi: l = r in M :
(M ∈ R) ⇒ Ur ⊆ Ul

4) For each methodM and for each object creation state-
mentsi: l = new oi in M :
(M ∈ R) ⇒ oi ∈ Ul

5) For each methodM and for each static field read
statementl = C.f in M :
(M ∈ R) ⇒ Pt(C.f) ⊆ Ul

6) For each methodM , for each instance field write
statementl.f = r in M and eachoi ∈ Pt(l) where
MethodLocal (oi):
(M ∈ R ∧ oi ∈ Ul) ⇒ Ur ⊆ Uoi.f

7) For each methodM , for each instance field read state-
ment l = r.f in M and eachoi ∈ Pt(r):
(M ∈ R ∧ oi ∈ Ur) ⇒
{

MethodLocal (oi) ⇒ Uoi.f ⊆ Ul ∧
6 MethodLocal (oi) ⇒ Pt(oi.f) ⊆ Ul

Intuitively, constraints 1,2,3,4 and 5 refine the corresponding
constraints from M-DataReach; V-DataReach keeps flow infor-
mation per reference variable instead of per method. Therefore
it produces more precise results as it is illustrated by the
following example.

Example. Consider the set of statements in Figure 7. Start-
ing from original callc1: a.m(...) in Read1 DataReach
will compute U = {o1, o2, o3}. At target call x1.read()
in A.m the two possible receivers according to the in-
put points-to graph areo1 and o2. Since both o1 and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 11

abstract class X {
void abstract read() throws IOException

class Y extends X { public void Read1() {
public void read() throws IOException { try {
... s3: A a = new A();
if (...) throw new SomeIOException(); c1: a.m(B.xy,B.xz);

} } }
class Z extends X { catch (IOException) { ... }

public void read() throws IOException { }
...
if (...) throw new OtherIOException();

} }
public void Read2() {

class A { try {
public void m(X x1,X x2) throws IOException s4: A a = new A();
... c2: a.m(B.xz,B.xy);
x1.read() }

} } catch (IOException) { ... }
}

class B {
s1: public static X xy = new Y();
s2: public static X xz = new Z();
...
}

Fig. 7. Imprecision of M-DataReach algorithm

o2 are in U , they are determined to be valid receivers;
therefore, thethrow SomeIOException and the throw

OtherIOException statements flow to the catch inRead1.
The same situation occurs when DataReach starts from orig-
inal call c2: a.m(...) in Read2. The same imprecision
occurs with M-DataReach because it computes a single set
UA.m. V-DataReach is able to avoid this imprecision because
it keeps separate setsUx1 andUx2 for x1 andx2 respectively.

Constraints 6 and 7 refine constraint 6 from M-DataReach.
The role of the first constraint is to separate instance field
writes to objects whose lifetime does not exceed the lifetime of
the original call. For those objects, all field writes occur during
the lifetime of the original call and the values assigned to fields
can be collected from the right-hand-side of the field write
statement in setUo.f . Constraint 7 accounts for propagating
field values. For objectso whose lifetime does not exceed the
lifetime of the original call, the values of an accessed field
f are collected from the corresponding setUo.f . For objects
whose lifetime may exceed the lifetime of the original call
(i.e., the object escapes the original call, or it is createdbefore
control enters the original call) the possible field values are
approximated from the global points-to solution since those
fields may be set outside of the original call. The following
example taken from theHttpClient benchmark illustrates this
situation.

Example. Consider the example in Figure 11. Starting
V-DataReach from original callc1 in getDmy we have
UgetData.w = {o1} andUgetData.a = {o2}. Clearly, objecto1

does not escape its creating method (i.e., it’s lifetime does not
exceed the lifetime of the original call); therefore the instance

fields of o1 are assigned during the lifetime of the original
call. Therefore, as a result of constraint 6 for instance field
write this.f = a in the constructor of classW, we have
Uo1.f = {o2}. Similarly, as a result of constraint 7 for instance
field reada = this.f in W.read, the setUa will be read
from the setUo1.f . Therefore,Uread.a = {o2} and as a result
the only possible target at the calla.read() is Dmy.read.
Consequently, V-DataReach concludes that no exception will
be thrown and caught ingetDmy. Analogously, V-DataReach
concludes that starting from original callc2 the exception in
Res.read may be thrown and caught ingetRes which leads
to the onlye-c link .

3) Conclusions:This section summarizes our algorithms.
For a given program letC be the number of classes,M be the
number of methods,V be the number of reference variables,
including static fields,O be the number of object allocation
sites, andF be the number of instance field identifiers.

The complexity of a data reachability analysis that fits
our schema depends on the numberk of U sets kept dur-
ing propagation. The overall complexity can be broken into
three components: (i) the complexity of generating inclu-
sion constraints for program statements (constraints 1-4 for
DataReach and M-DataReach, and 1-5 for V-DataReach), (ii)
the complexity of solving the system of inclusion constraints,
and (iii) the complexity of computing the field closure for
setsU (constraints 5 and 6 for DataReach and M-DataReach
and 6 and 7 for V-DataReach). Clearly the complexity of (i)
is dominated by the time to process virtual calls which is
O(O ∗ E) whereE is the number of call graph edges. The
complexity of (ii) is O(O ∗ k2) (for each setUi at mostO

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 12

class A { class M {
void read() throws IOException; } void getData(A a) throws IOException {

W w = new W(a); //o1
class Dmy extends A { w.read(); }

void read() { // do nothing. } }
void getDmy() {

class Res extends X { try {
public void read() throws IOException { c1: getData(new Dmy()); //o2
// Code reads disk files and throws } catch (IOException e) {...} }
// IOException

} }
void getRes() {

public class W { try {
A f; c2: getData(new Res()); //o3
void W(A a) { this.f = a; } } catch (IOException e) {...} }
void read() throws IOException { }
A a = this.f;
a.read();

}
}
Fig. 8. Imprecision of M-DataReach algorithm

objects can be propagated to at mostk otherUj throughUi).
Finally, the complexity of (iii) isO(O2 ∗F ∗k). Therefore the
worst-case complexity of our algorithms parameterized byk,
the number ofU sets is:O(O ∗ E + O ∗ k2 + O2 ∗ F ∗ k).

The following table summarizes our analyses in order of
growing precision and complexity:

TABLE I

DATA REACHABILITY ALGORITHMS

Algorithm U sets Complexity
DataReach 1 O(E ∗ O + O2 ∗ F)
C-DataReach C O(O ∗ E + O ∗ C2 + O2 ∗ F ∗ C)
M-DataReach M O(O ∗M2 + O2 ∗ F ∗M)
V-DataReach V O(O ∗ V2 + O2 ∗ F ∗ V)

IV. EMPIRICAL RESULTS

In this section we discuss the instrumentation used in our
methodology, report our empirical findings, and discuss some
case histories from our experiments. Initial findings on a set
of four moderate-sized web server applications have been
reported previously in [32]. In this paper we report the results
of additional analyses applied to these programs and present
extensive case studies of them. New experiments with three
additional, larger applications, including one written with the
Tomcatframework, are presented and discussed as well.

A. Instrumentation

The methodology described in Section II requires that the
Java program be instrumented to report coverage of thee-c
links exercised and to communicate withMendosusto request
specific faults. A detailed description of the methodology was
described in our previous paper [10]; we briefly summarize it
here.

The instrumentation is accomplished through method calls.
For eache-c link (p, c), we first locate thecatch block c

and the correspondingtry block. At the entry of thetry
block, a special method call is inserted to directMendosus
to inject the fault selected at static instrumentation time. At
the entry of thecatch block, another method call is inserted
to query and record the call stack encapsulated in the caught
exception. The instrumentation methods called are designed so
that each instrumentation point can be turned on and off by a
command line option. Note that the fault must be selected so
that exactly one fault-sensitive operation will fail and throw
an exception. In addition, we collect the set of I/O objects
created in user code during execution, in order to limit the
scope of the injected faults to this set, so that I/O operations
conducted by Java virtual machine instead of user code will
not be affected, which include, for instance, security policy
loading and class loading.

B. Experimental setup & benchmarks

We implemented Exception-flow analysis and DataReach
analysis as two separate modules in the Java analysis and
transformation framework Soot [19] version 2.0.1, using a
2.8GHz P-IV PC with Linux 2.4.20-13.9 and the SUN JVM
1.3.108 for Linux. By separating the two phases of our analy-
sis, we were able to show the gains from adding the DataReach
postpass. Soot provides a call graph builder usingClass
Hierarchy Analysis(CHA) [20], andSpark, a field-sensitive,
flow-insensitive and context-insensitive points-to analysis (a
form of 0-CFA)[30], [34], [18], [31]. We implemented another
call graph builder usingRapid Type Analysis(RTA)[21].
The instrumentation phase is also implemented as a separate
module in Soot.

We experimented with the following seven different analysis

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 13

configurations:7

1) CHA — Build call graph with Class Hierarchy Analysis.
2) RTA — Build call graph with Rapid Type Analysis.
3) PTA — Build call graph using Spark.
4) InPTA — Build call graph with Spark plus selective

constructor inlining.
5) PTA-DR — Use Spark to provide the points-to graph

and call graph plus use DataReach as a postpass filter.
6) InPTA-DR — Use Spark plus selective constructor in-

lining to provide the points-to graph and the call graph,
and use DataReach as a postpass filter.

7) InPTA-MDR — Use Spark plus selective constructor
inlining to provide the points-to graph and the call graph,
and use M-DataReach as a postpass filter.

We used seven Java applications as our benchmarks:

• FTPD, a Ftp Server in Java by Peter Sorotokin v0.6
• JNFS, a server application that runs on top of a native

file system and listens to and handles requests for both
read and write accesses to files. The server communicates
with various clients via RMI [35]

• Muffin, a web filtering proxy server [36]
• Haboob, a simple web server based on SEDA, a staged

event-driven architecture [37]
• HttpClient, an HTTP utility package from theApache

Jakarta Project[38]. We collected its unit tests to form
a whole program to serve as a benchmark.

• SpecJVM, a standard benchmark suite[39] that measures
performance of Java virtual machine, especially for run-
ning client side Java programs

• VMark, a Java server side performance benchmark. It is
based onVolanoChat[40] — a web based chat server.
The benchmark includes the chat server and simulated
client

Column 2 of Table II shows the number of user classes,
with those in parentheses comprising the JDK library classes
reachable from each application. The data in column 3 are the
number of user methods and those in parenthesis are the JDK
library methods reachable from each application. Column 4
gives the number of lines of code in user code source files,
when available. The last column shows the size of the.class
files (in bytes) of each benchmark, excluding the Java JDK
library code. The reachable method counts are calculated by
Spark, with the lines of code calculated using the UNIXwc
utility. JNFS is the only multi-node application.8 Also note that
we run all the benchmarks in SpecJVM together as one Java
program, because I/O module in SpecJVM is shared across all
the benchmarks.

We have Java source code for all the benchmarks except
SpecJVM and VMark. Only part of the source code for
SpecJVM is provided and there is no source code for VMark.
Although we can conduct our experiments using only byte-
code, the unavailability of source code hindered the process
of interpreting our experimental results.

7Selective constructor inlining and DataReach were only used where stated
explicitly.

8Currently, we assume the network supporting RMI is reliable; that is, we
ignore faults that affect RMI transportation.

TABLE II

BENCHMARKS

Name Classes Methods LOC .class Size
FTPD 11(1407) 128(7479) 2783 39,218
JNFS 56(1664) 447(9603) 10478 175,297
Muffin 278(1365) 2080(7677) 32892 727,118
Haboob 338(1403) 1323(7432) 39948 731,413

HttpClient 252(2210) 1334(4741) 61405 1,049,784
SpecJVM 484(2161) 2489(4592) N/A 2,817,687
VMark 307(2266) 1565(5029) N/A 2,902,947

As shown in Figure 1, dynamic testing is conducted by
running the instrumented code with various workloads to
exercise different vulnerable operations in the applications.
Experiencede-c links are recorded in a log file during the
test. By processing thee-c link information file and log file
after the test we obtain the coverage data. The dynamic tests
were performed on a cluster of 800MHz PIII PCs using Linux
2.2.14-5.0; we used IBM Java 2.13 Virtual Machine for Linux
for all of our benchmarks.Mendosuswas running as a daemon
process on each of these machines.

In this testing we made the usual assumptions that (i)
faults are independent of each other and (ii) faults occur
rarely. We only injected one fault per run, resulting in at
most onee-c link covered per test; therefore, we needed to
run each benchmark several times, each time targeting one
e-c link. Because we lack a model for faults that tend to
happen together, systematically testing more than one fault
at a time is difficult. A testing harness was constructed,
which iterated over thee-c links information file, repeatedly
running one benchmark program as necessary. As usual it was
the tester’s responsibility to find proper inputs and program
configurations, so that designated vulnerable statement (and
fault-sensitive operation) were executed.

C. Empirical data

Table III lists the number ofe-c links reported for each
benchmark in each analysis configuration. Column 9 lists
the number of links, amoung those discovered in InPTA-
MDR, whose correspondingtry block was executed by a test
execution. The last column shows the number ofe-c links
actually covered for each benchmark in the fault injection
testing. Table IV is the overall exception def-catch coverage
for all the benchmarks derived from the data in Table III. We
can see from the tables that the use of points-to analysis for
call graph construction dramatically reduced the number of
e-c linksreported in all of the benchmarks.

We offer 2 different calculations for the percentagee-c
links covered. In columns 2-8 of Table IV, we use the metric
described in Section II (i.e., the ratio ofe-c linkscovered to
possiblee-c linksfound by our analysis). In the last column (9)
of Table IV, we calculate the ratio of the number ofe-c links
exercised to the number of links whose correspondingtry

block was executed by a test execution. Effectively, this second
measure factors in how well the tests we are using to execute
the program actually cover the set oftry blocks in the code. If
we cannot cause execution to reach thetry block containing
a vulnerable operation, then we cannot expect to inject a fault
to test the recovery code corresponding to that operation. The

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 14

difference between the values of these two metrics indicates
the need for additional tests for our benchmarks and also lets
us distinguish possible spuriouse-c linkswhich have not been
covered frome-c links (spurious or not spurious) which had
no chance of being covered in these executions.

The context sensitivity obtained by adding selective con-
structor inlining before performing points-to analysis had
effect only on the larger three benchmarks (i.e., compare
columns PTA and InPTA in Table III). However, when com-
bined with the DataReach postpass, the additional precision
provided, reduced the number of reportede-c links in six
of the seven benchmarks (i.e., compare columns PTA and
InPTA-DR in Table III). For thee-c linksreported by InPTA-
DR, the coverage percentage of the four smaller benchmarks
was stabilized at approximately 84% with small variance. In
Muffin and HttpClient, the additional precision helped cut the
number of reportede-c links by more than half. Haboob is
special because it is the only benchmark that uses a self-
constructed non-blocking network library, which does not have
as much polymorphism as the standard JDK library. Thus
the simple PTA analysis is sufficient to analyze Haboob, as
shown in Table III. From this data we see that DataReach is a
client of precise points-to analysis for which added precision
can make a difference. In all three larger benchmarks, M-
DataReach provides more precision over original DataReach
algorithm (i.e., compare columns InPTA-DR and InPTA-MDR
in Table III).

More disappointingly, on the larger benchmarks the cover-
age obtained exhibited a larger variance across the programs,
from 15% to 72%. Sections IV-D.2, IV-D.3 and IV-D.4 discuss
the large benchmarks and describe the causes for the lack of
coverage gleaned from code inspection, where possible.

Figure 9 shows the running times of each part of the
static analysis on all benchmarks using configurations PTA-
DR, InPTA-DR and InPTA-MDR. Running times of the
instrumentation phase are too small to be shown, under 5
seconds for all the benchmarks. Our analysis always finished
in less than 2 hours. In the worst case for the InPTA-MDR
configuration, the time our analysis took to find onee-c link
in a program on average is less than 3 minutes. DataReach is
most time consuming phase of our approach, but it is effective
in reducing spuriouse-c links (i.e., comparing the columns
for PTA and PTA-DR, InPTA and InPTA-DR in Table III).
For FTPD and Haboob, DataReach used about 50% of the
total running time; for other benchmarks, it used more than
90% of the total running time. We believe that an optimized
implementation of DataReach will improve overall analysis
performance significantly. M-DataReach is slower than Data-
Reach in most of the benchmarks, except SpecJVM. It takes
72% more time to finish in FTPD, 43% in Haboob, 40%
in Muffin and 15% in HttpClient. While it taks 14% less
time to finish in SpecJVM. And M-DataReach provides more
precision on three larger benchmarks.

Note also that for JNFS, Muffin and VMark, the more
precise analysis, InPTA-DR, ran more quickly than the related
less precise analysis, PTA-DR. This is a phenomenon often
seen in practice in static analysis, when a more precise analysis
eliminates so much spurious information from a solution,

that it actually finishes more quickly than a worst-case more
efficient, less precise analysis.

In the remainder of this section we will discuss the per-
formance of our methodology in detail on Muffin, HttpClient,
SpecJVM and VMark.

D. Case Studies

Finding benchmarks for the experimental validation of our
approach has been hard. We need benchmarks which include
input data that exercises different parts of the program code.
There is no standard benchmark suite designed for this pur-
pose. Of all the programs that are used as benchmarks in this
paper, VMark, HttpClient and SpecJVM came with input data
or tests; for the others, we had to compose tests. While by
comparing columns 8 and 9 of Table IV, we can see that input
data or tests included in these benchmarks are not sufficient
to drive the programs totry blocks that contain vulnerable
operations.

For Muffin, SpecJVM and HttpClient, we manually in-
spected all thee-c linkswhosetry blocks are reached during
the test while thee-c linksare not experienced9. We categorize
thesee-c linksas follows:

1) Feasiblee-c linksuncovered because of insufficient tests
or input data.

2) Infeasiblee-c links that no static analysis is able to
prune.

3) Infeasiblee-c linksthat may be eliminated using context-
sensitive object renaming.

4) Infeasiblee-c linksthat may be eliminated using context-
sensitive points-to analysis.

TABLE V

NUMBER OF UNCOVEREDe-c linksIN CATEGORY 1, 2, 3AND 4

Program 1 2 3 4 Total
Muffin 1(14%) 3(43%) 3(43%) 7
SpecJVM 4(13%) 26(87%) 30
HttpClient 10(25%) 24(60%) 6(15%) 40

Table V shows the number of inspectede-c links in each
of the categories for each benchmark studied, with those in
parentheses showing the percentage of the number ofe-c links
in this category over the total number of inspectede-c links
in that benchmark. The last column lists the total number of
inspectede-c links. We will show examples extract from each
benchmarks to illustrate each category in detail.

1) Muffin: There are 3e-c linksdiscovered in Muffin are
in category 4. As mentioned in Section III-A, our analysis
provides the call chains that start fromcj and end withpi

for any e-c link (pi, cj). The code given below is one of the
possible call chains found for one of thesee-c links.10 There
are several hundred call paths given for this singlee-c link.
org.doit.muffin.Handler.processRequest()
org.doit.muffin.Https.recvReply()
org.doit.muffin.Reply.read()
org.doit.muffin.Reply.read()
java.io.SequenceInputStream.read()

9We were not successful on doing this study for VMark in detailbecause
we don’t have access to its source code .

10Parameters are omitted for readability.

IE
E

E
T

R
A

N
S

A
C

T
IO

N
S

O
N

S
O

F
T

W
A

R
E

E
N

G
IN

E
E

R
IN

G
,

V
O

L
.

?
,

N
O

.?
,M

ON
T

H
20

04
15

1

10

100

1,000

10,000

Benchmarks

S
e
c
o
n
d
 (

lo
g
)

Inline PTA E-Flow DataReach Total

Inline 3.9 2.7 0.0 5.2 4.1 4.2 4 0.0 6.7 7.4 0.0 5.7 5.0 0.0 5.1 6.0 0.0 6.3 5.6

PTA 53.7 56.7 37 172.4 522.2 176.5 62.2 67.7 64.5 313.2 323.1 348.4 77.5 64.1 60.7 132.2 58.4 78.9 30.3 62.1 44.1

E-Flow 12.1 15.4 9.3 16.9 20.4 12.6 12.5 16.8 13 19.2 25.2 22.5 7.3 9.0 8.7 10.0 12.8 12.3 8.8 12.1 9.9

DataReach 155.8 144.6 249.2 5071.2 3010.6 3046.3 97.2 71.7 103 4582.0 2619.9 3664.8 6005.2 5423.0 5736.0 4503.7 4807.8 4192.9 4911.7 5616.9 6444.9

Total 221.6 220.6 298.2 5260.5 3558.4 3239.5 171.9 160.4 184.5 4914.5 2974.9 4043.1 6090.1 5501.7 5810.4 4645.9 4884.1 4290.1 4950.9 5697.3 6504.5

PTA-DR InPTA-DRInPTA-M PTA-DR InPTA-DRInPTA-MPTA-DR InPTA-DRInPTA-M PTA-DR InPTA-DRInPTA-M PTA-DR InPTA-DRInPTA-M PTA-DR InPTA-DRInPTA-M PTA-DR InPTA-DRInPTA-M

FTPD JNFS Haboob Muffin Vmark SpecJVM HttpClient

F
ig

.
9.

T
im

e
C

os
t

B
re

ak
-d

ow
n

of
S

ta
tic

P
ro

gr
am

A
na

ly
si

s

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 16

TABLE III

NUMBER OF e-c links

Program CHA RTA PTA InPTA PTA-DR InPTA-DR InPTA-MDR Reached Covered
FTPD 34 34 16 16 16 13 13 13 11
JNFS 104 104 39 39 22 19 19 19 16
Muffin 480 258 112 112 87 42 42 42 35
Haboob 96 73 12 12 12 12 12 12 10
HttpClient 1946 1946 255 251 238 118 107 105 65
SpecJVM 511 511 90 82 72 54 47 37 7
VMark 2039 2039 130 100 109 57 47 18 13

TABLE IV

OVERALL EXCEPTIONDEF-CATCH COVERAGE

Program CHA RTA PTA InPTA PTA-DR InPTA-DR InPTA-MDR Effective Coverage
FTPD 32% 32% 69% 69% 69% 85% 85% 85%
JNFS 15% 15% 41% 41% 72% 84% 84% 84%
Muffin 7% 14% 31% 31% 40% 83% 83% 83%
Haboob 10% 14% 83% 83% 83% 83% 83% 83%

HttpClient 3% 3% 25% 26% 27% 55% 61% 62%
SpecJVM 1% 1% 8% 9% 10% 13% 15% 19%
VMark 1% 1% 10% 13% 12% 23% 28% 72%

java.util.zip.GZIPInputStream.read()
java.util.zip.InflaterInputStream.read()
java.util.zip.InflaterInputStream.fill()
java.io.BufferedInputStream.read()
java.io.BufferedInputStream.read1()
java.io.BufferedInputStream.fill()
java.util.jar.JarInputStream.read()
java.util.zip.ZipInputStream.read()
java.util.zip.ZipInputStream.readEnd()
java.util.zip.ZipInputStream.readFully()
java.io.PushbackInputStream.read()
java.io.FilterInputStream.read()
java.io.FileInputStream.read()

We inspected these call chains and found all of the call
chains for this particulare-c link share the same prefix, but
after SequenceInputStream.read() they begin to vary
by selectingread() methods from different subclasses of
InputStream and following different permutations of calls.
After reading the source code ofSequenceInputStream we
found that this class uses anEnumeration class to keep
track of subsequentInputStreams. Although no object of
GZIPInputStream has ever been assigned to the subsequent
input stream ofSequenceInputStream, the usage of the
container class confuses the points-to analysis into producing
the current result:read() in SequenceInputStream may
call read() in GZIPinputStream and also almost every
subclass ofInputStream.

Call chains for all threee-c links in the second category
share the same characteristics described here: they all involve
the use of containers. This phenomenon is caused by context-
insensitive points-to analysis, in a manner similar to the
analysis imprecision for constructors discussed previously.
More precise points-to analysis [41] addresses this problem
by distinguishing calls by their receiver object when analyzing
methods, thus producing a more sparse (and precise) points-
to graph; this should reduce the call chains for ae-c link, or
maybe even make it possible for DataReach to judge that thee-
c link is actually infeasible. We believe that additional context
sensitivity added to the points-to analysis would further im-
prove the precision of oure-c links, but further experimentation

is needed to confirm this hypothesis.
Recall that we use inlining of constructors that set object

fields throughthis, to gain partial context sensitivity in our
points-to analysis. Although this introduces some additional
precision into our analysis, it remains a context-insensitive
points-to analysis. By using M-DataReach, discussed in Sec-
tion ??, rather than DataReach, we may be able to increase
further the precision of our analysis. This result has been
confirmed in our experiments. However, even M-DataReach
can not always increase precision. For example, when the
receiver of a virtual method invocation is an element extracted
from a container, as in the call chains corresponding to these
threee-c links, many spurious method calls may be introduced
and they can not be eliminated by M-DataReach.

2) SpecJVM: There is no network related program in
SpecJVM; therefore, we were surprised to see both disk and
network I/O relatede-c linksfound by our analysis. After code
inspection we discovered that SpecJVM has a dedicated I/O
package that is shared among all the benchmark programs.
All the I/O requests are handled in this package; requests
can be fulfilled by reading files either on a local disk or
on a remote HTTP server. Input data is read from HTTP
server when the benchmark is running as a Java applet;
otherwise data is read from local disks. When the program
is running as a Java applet, it is either enclosed in some
web browser, or in aJava Applet Viewerthat is provided
with the Java JDK. In either case, unfortunately, we failed
to set up the current implementation of the fault injection
framework to perform fault injection targeted solely on the
applet, without affecting the enclosing program: either the
Web browser or theJava Applet Viewer. Thus, we could not
cover the network-relatede-c linkswithout changing the code
in the SpecJVM slightly. We discovered thatspec.harness

package maintains anSpecBasePath variable which is the
base location of SpecJVM itself. The value ofSpecBasePath

is set to a remote URL when SpecJVM is running as a Java
applet. We modified 7 lines of source code in the benchmark
to keep the value ofSpecBasePath as a URL pointing to a
remote file so that I/O requests are fulfilled through network
access, even when SpecJVM is running as a stand-alone Java

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 17

program. This enabled the network-relatede-c links to be
covered.

Even after this process, as can be seen from Table II, we
still can not cover a large portion of thee-c linkswhosetry
blocks have been reached. And 87% of thesee-c linksbelong
to category 3: Infeasiblee-c linksthat may be eliminated using
context-sensitive object renaming.

(a) (b)

C.read()

D.read()

E.read()

A.read()A.read()

B.read()

E.read()

B.read() B.read()

C.read()

D.read()

Method Call

e−c link

Fig. 10. Recursive Call Graph

The call chains corresponding to these 26e-c links, share
an pattern. We use a simplified example to illustrate this
for better readability. Consider call chain:A.read() →

B.read() → C.read() → D.read() → B.read() →

E.read(). The fault-sensitive operation isE.read() that,
when executed, will throw anIOException if an appropriate
fault is injected. There aretry-catch clauses in both
A.read() and C.read() that catch IOException. The
two outgoing edges fromB.read() come from a single
polymorphism call site. The call graph and the generated
e-c links are shown in Figure 10 (a). Thee-c link from
E.read() to A.read() is infeasible, because the actual
points-to relationship between objects in the program causes
the call chainA.read() → B.read() → E.read() to be
infeasible. Context-sensitive renaming may be able to help
on this case. If we splitB.read() according to its caller, as
shown in Figure 10 (b), before performing points-to analysis
and exception-flow analysis, we may be able get a better call
graph and thus more precisee-c link information.

3) HttpClient: Control flow in methods of HttpClient is
complicated. And many control flow decisions depend on
values of string variables, for instance, protocol names, HTTP
response code, data encoding method names. In this bench-
mark, 10 e-c links fall into category 1: feasible but we do
not have sufficient tests to drive the program into the specific
control paths that thesee-c linkscorrespond to. For example,
when some connection object is to be recycled (i.e., closed
and reused for another host), HttpClient will try to read over
the network only if the previous HTTP response on this
connection is encoded aschunked, and the previous response
content isnot fully consumed. So thee-c link from a network
read to thecatch block in the network connection recycling
method is feasible. But unfortunately none of our tests fit this
scenario. More carefully designed test cases and specialized
HTTP responses are needed to drive the program into different
control-flow paths in order to cover these 10 links.

Complicated control flow also confuses static analysis.
There are 24e-c links fall in category 2 (infeasiblee-c links
no static analysis is able to prune), which account for 60% of

all the inspectede-c linksin HttpClient. And below is a brief
description of thesee-c links.

In many tests of the HttpClient package, the HTTP requests
and responses are faked in the local memory instead of being
sent and received through network. This is done so that some
functionality of HttpClient which do not necessarily involve
I/O operation can be tested quickly. A special HTTP connec-
tion class is defined for this purpose. In general, yet another
network connection will be established if the connection uses
a secured protocol (i.e. “https”) and a proxy server is specified
in the connection properties, even if the current connection is
already “opened”. Its hard coded in these test cases that the
special HTTP connection class never uses secure protocol or
any proxy server, so as to avoid real I/O operations. But it
is hard (if possible) for any static analysis to recognize the
infeasibility of these complicated control-flow paths and thus
eliminate the correspondinge-c links.

Significant portion of inspectede-c links fall in category
2 in Muffin(43%) and SpecJVM(13%) too. All of thesee-c
links correspond to infeasible control flow paths, while the
infeasibility of these paths can not be recognized by static
analysis due to usage of string variables in theif condition
expressions.

There are 6e-c links of HttpClient in category 3. A
simplified example is showed in Figure 11 to illustrate this
case. Consider the call chainM.getDmy → M.getData →

W.read → Res.read. By reading the code we can see this
call chain is infeasible, because in methodM.getDmy a Dmy

object o2 is passed to theW object o1 created in method
M.getData. So onlyDmy.read will be called inW.read if
we start fromM.getDmy. But when the M-DataReach analysis
examines this call chain, firsto1 will be put into UM.getData

when M.getData is processed. Theno1 is propagated to
UW.read. A field dereferenceW.f will be reached in method
W.read. According to the program points-to graph, botho2
ando3 are in the points-to set ofo1.f , thus they are both put
into UW.read. So Res.read is considered reachable by the
analysis.

Using context-sensitive renaming before running points-to
analysis may help solve this problem [41]. In the renaming
phase,o1 will be renamed to two different objects depending
the caller of its enclosing methodM.getData: o1M.getDmy

and o1M.getRes. Thus only o2 will be in the points-to set
of o1M.getDmy.f and only Dmy.read will be considered
reachable given the call chain started fromM.getDmy.

4) Vmark: By testing these benchmarks, we found that the
tests and/or input data that came with HttpClient, SpecJVM
and VMark are insufficient to drive execution into different
parts of these programs. We believe this is the reason why
there are so manye-c linkswhosetry blocks are not reached
during our experiments, especially in Vmark. VMark is a
web chat server built on top ofTomcat[42], which is a Java
servlet container. When used as a Java server-side performance
benchmark in VMark, many parts ofTomcatare not exercised,
which results in many of thee-c links found by the analysis
being unreached by the tests. For instance, inTomcat an
operator can change the configuration and force reloading of
the affected servlets. Also whenTomcatreceives a shutdown

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 18

class M{
 void getData(A a) throws IOException{
 W w = new W(a); //o1
 w.read();
 }
 void getDmy() {
 try{
 getData(new Dmy()); //o2
 } catch (IOException e) {...}
 }
 void getRes() {
 try{
 getData(new Res()); //o3
 } catch (IOException e) {...}
 }
}

W.read

M.getData

?
Dmy.read Res.read

M.getDmy

o1 created

M.getRes

o1.f dereference

class A{
 void read() throws IOException;
}
class Dmy extends A{
 void read() {...}
}
class Res extends A{
 void read() throws IOException{
 .. throw new IOException; ..
 }
}
class W{
 A f;
 void W(A a) { f = a; }
 void read(A a) throws IOException{
 f.read();
 }
}

Fig. 11. New Object

request, the changed configuration must be flushed to the
disk. Because this part ofTomcatis not exercised in VMark,
e-c links corresponding to the I/O operations necessary to
perform these functionalities are left unreached and therefore,
uncovered. By examining the call chains of thee-c links in
VMark, we found that of thee-c linkswhosetry blocks are
not reached, only threee-c linksare related to the chat server
code; the call chains corresponding to all the othere-c links
lie are completely within theTomcatcode. In the 18 reached
e-c links, 13 e-c linksare related to the chat server. Thus, a
significant portion ofTomcatis left unexercised in VMark.

V. RELATED WORK

This paper presents exception-catch link analysis and its
use in def-use testing of Java program recovery code. There is
much previous research relevant to this work in: fault-injection
testing, dataflow testing coverage metrics, exception-handler
analysis and compilation, points-to analysis (for reference
variables) and infeasible path analysis. We will discuss the
most relevant research results in these areas each in turn.

Fault injection. There has been considerable previous work
in the operating systems community on using runtime fault
injection for testing the robustness of programs. In the de-
pendability community, (program)coverageis defined as the
conditional probability that the system properly processes a
fault, given that a fault occurs [43]. A stochastic model of
expected fault occurrance is used to guide the selection of
faults that are then injected into a running program and the
resulting execution is observed [1]. This approach yields a
stochastic-based fault coverage that treats the running program
as ablack box[8]; the behavior of the program after the fault is
injected is the criteria by which coverage is acheived or not. In
contrast, the experiments in this paper measure coverage ina
manner similar to the software engineering testing community,
which uses the percentage of program entities (e.g., branches,
methods, def-use relations) exercised as a quantitative measure
of coverage [13], [8].

Recently, there has been some research in the dependability
community that uses similar program-based coverage mea-
sures to those in this paper. Tsai et. al [44] placed breakpoints
at key program points along known execution paths and
injected faults at each point, (e.g., by corrupting a value
in a register). Their work differs from ours in its goal, the

kinds of faults injected, and their definition of coverage. The
primary goal of their approach was to increase fault activations
and fault coverage, not to increase program coverage. They
injected a set of hardware-centric faults such as corrupting
registers and memory; these faults primarily affected program
state, not communication with the operating system or I/O
hardware. They used a basic-block definition of program
coverage, rather than measuring coverage of a program-level
construct such as acatch block. Bieman et. al [45] explored
an alternative approach where a fault is injected by violating a
set of pre- or post-conditions in the code, which are required
to be expressed explicitly in the program by the programmer.
This approach used branch coverage, a program-coverage
metric.

In the terminology of Hamlet’s summary paper reconciling
traditional program-coverage metrics and probabilistic fault
analysis [46], our work can be classified as a probabilistic
input sequence generator, exploring the low-frequency inputs
to a program. Using the terminology presented by Tang and
Hecht [47], which surveyed the entire software dependability
process, our method can be classified as a stress-test, because
it generates unlikely inputs to the program.

Dataflow testing and coverage metrics.There is a large
body of work that explores def-use ordataflow testingin dif-
ferent programming language paradigms. The seminal papers
established a set of related dataflow test coverage metrics and
explained their interrelations [13], [48]. The contribution of
our work is to define and implement a def-use analysis of
appropriate precision that fairly accurately matches exceptions
(i.e., representative exception objects created at specific cre-
ation sites) to their handlers. This is especially important to
ensure the dependability of the web applications that are our
focus [10].

Sinha et. al defined an interesting and novel set of coverage
metrics for testing exception constructs and gave their sub-
sumption relations [49]. The metrics were defined for checked
exceptions explicitly thrown in user code, however they seem
easily extensible to both implicit and explicit checked excep-
tions. Our overall exception def-catch coverage metric seems
equivalent to an extended version of theirall-e-deactscriteria
defined for both implicit and explicit exceptions. Because we
are most interested in recovery code that deals with problems
due to system interactions, we focus on implicit checked
exceptions that are thrown in JDK libraries, whereas they deal

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 19

with user-thrown exceptions, that are probably user-defined as
well. No exception analysis or implementation experience with
their metrics is presented.

The overall exception def-catch coverage metric fore-c
links, that relates resource-usage faults to specific exception
objects, differs slightly from our previousoverall fault-catch
coverage metric [10]. Our original metric required the injection
of each kind of fault that could trigger a particular exception
for a fault-sensitive instruction, rather than trying to cause a
specific exception to occur. Both metrics are analogous to the
all-usesmetric in traditional def-use testing [13], with fault-
sensitive operations corresponding to definitions of exceptions
andcatch blocks corresponding to uses. Overall fault-catch
coverage requires the application of the complete range of
faults during testing, consistent with existing operatingsys-
tems fault-injection technology. In this paper, because weare
injecting faults at the interface between JDK I/O methods and
native methods rather than at the device-level [10], we cannot
differentiate between some device-level faults that result in the
same exception; thus we inject only one fault to trigger each
exception.

As stated in Section I, traditional fault-injection testing is
performed by treating the application as a black box. Success
is judged by how often the application does not crash in
response to an injected fault. Other white-box, control-flow
coverage metrics have been proposed by some groups for
use with fault-injection testing; these correspond to previous
metrics (e.g., branch, edge and basic block coverage) and have
been summarized previously [10].

Analysis of exception handling.Two previous exception-
flow analyses were aimed at improving exception handling in
programs, for example avoiding exception handling through
subsumption [15], [16]. These differ from our exception-catch
link analysis in significant ways. First, their call graph is
constructed using class hierarchy analysis, which yields avery
imprecise call graph [20], [21]. Second, these analyses trace
exception types through the call graph of the program to the
relevantcatch clauses that might handle them. Conceptually,
these analyses use one abstract object per class. An operation
that can throw a particular exception is treated as a source
of an abstract object that is then propagated along reverse
control-flow paths to possible handlers (i.e.,catch blocks).

Jo et. al [16] present an interprocedural set-based [50]
exception-flow analysis; only checked exceptions are analyzed.
Experiments show that this is more accurate than an intrapro-
cedural JDK-style analysis on a set of benchmarks five of
which contain more than 1000 methods. Robillard et. al [15]
describe a dataflow analysis that propagates both checked and
unchecked exception types interprocedurally. Neither approach
analyzes Java libraries unless source code is available (not the
case for the JDK). They each handle a large subset of the
Java language, but make the choice to omit or approximate
some constructs (e.g.,static initializers, finallys). Both of
these analyses are more imprecise than ours, especially in
their approximation of interprocedural control-flow; neither of
them trace definitions of specific exception objects to their

appropriatecatch blocks11.
Another analysis of programs containing exception handling

constructs [51] calculates control dependences in the presence
of implicit checked exceptions in Java. This analysis focuses
on defining a new interprocedural program representation that
exposes exceptional control-flow in user code. In a more recent
technical report [17], Sinha et. al present an interprocedural
program representation which more accurately embeds the
possible intraprocedural control-flow through exception con-
structs (i.e.,trys,catchs and finallys). Class hierarchy
analysis is used to construct the call edges in this represen-
tation. An exception-flow analysis is defined by propagation
of exception types on this representation to calculate links
between explicitly thrown checked exceptions in user code and
their possible handlers. It seems clear that this analysis could
be extended to include implicit checked exceptions as well,
assuming that the program representation could be constructed
from the bytecodes of the JDK library methods, and that the
fault-sensitive operations could be identified. The CHA version
of our analysis seems the most similar to the analysis presented
in [17]; this version is shown on our benchmarks to be too
imprecise for obtaining coverage ofe-c linkscorresponding to
implicit checked exceptions, the focus of our work.

Choi et. al [52] designed a new intraprocedural control-flow
representation, that accounted for operations that might gen-
erate unchecked exceptions calledPEIs, potentially excepting
instructions; they used this representation as a basis for safe
dataflow analyses for an optimizing compiler. It is difficultto
compare their representation with the others described here,
because they capture different sorts of exceptions, such as
NullPointerException, that correspond to different possibly
excepting instructions.

Exceptions and compilation.Dynamic analyses have been
developed to enable optimization of exception handling in pro-
grams that use exceptions to direct control-flow between meth-
ods, such as some of the Java Spec compiler benchmarks [39]).
The IBM Tokyo JIT compiler [23], successfully uses a
feedback-directed optimization to inline exception handling
paths and eliminatethrows in order to optimize exception-
intensive programs whose performance can be improved up
to 18% without affecting performance of non-intensive codes.
In LaTTe[53], exception handlers are predicted from profiles
of previous executions and exception handling code is only
translated in the JIT on demand, so as to avoid the cost when
it is not necessary. TheMRL VM [54] performs lazy exception
throwing, in that it avoids creating exception objects, where
possible, unless they are live on entry to their handler.

Points-to analysis.There is a wide variety of reference and
points-to analyses for Java which differ in terms of cost and
precision. The information computed by these analyses can
be used as input to our exception-flow and data reachability
analyses; clearly, the precision of the underlying analysis
affects the quality of the computed coverage requirements.A
detailed discussion of points-to and reference analyses and
the dimensions of precision in their design spectrum appears

11Note, in our analysis we use the usual approximation of one representative
exception object for each creation site, these two algorithms do not distinguish
between exceptions of the same type created by two differentsites.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 20

in [34]. Our partially context-sensitive points-to analysis is
most closely related to the context-sensitive analyses in our
previous work [26], [27]. These approaches avoid the cost
of non-discriminatory context sensitivity, which seems tobe
impractical; they rely on techniques which preserve the practi-
cality of the underlying context-insensitive analysis while im-
proving precision substantially. This is achieved by effectively
selecting parts of the program for which the analysis computes
more precise information, either by using parameterization
mechanisms as in [26], [27], or partial constructor inlining
as in our current algorithm. Other context-sensitive points-to
analyses that seem to be substantially more costly than ours,
are presented in [55], [22], [56], [57]; these analysis algorithms
implement non-discriminatorily context sensitivity.

Infeasible paths. Bodik et al. present an algorithm for
static detection of infeasible paths using branch correlation
analysis, for the purposes of refining the computation of def-
use coverage requirements in C programs [58]. Our data
reachability analysis focuses on the detection of infeasible
paths in Java which arise due to object-oriented features
and idioms such as polymorphism; this is not addressed
in [58]. Souter and Pollock present a methodology (without
empirical investigation) for demand-driven analysis for the
detection of type infeasible call chains [59], [60]. Similarly
to their work, our analysis is demand-driven as we analyze
the program starting from the original call. However, our
data reachability analysis propagates information in terms of
objects instead of classes which will result in more precise
analysis results. In addition, our work proposes a technique
for summarizing the effects of callees; this problem is not
addressed in [59] and [60]. Our simple RTA-like technique
for collecting potential receiver objects proves suitablefor
the problem of eliminating infeasiblee-c links; the empirical
results demonstrate that it can eliminate substantial number of
infeasible links.

VI. CONCLUSIONS

We have defined a fairly precise exception-catch link anal-
ysis which has been shown useful on our benchmarks for
testing error recovery code of Java programs. Our full analysis
algorithm outperforms other (less precise) versions of the
analyses that we investigated on our benchmarks, and exhibits
significant precision gains in the set ofe-c linkscalculated. Our
use of data unreachability to infer control-flow unreachability
shows promise in allowing us to prune spuriouse-c links.

Our automatic compiler-directed fault injection methodol-
ogy applied to our benchmarks leaves, on average, approxi-
mately 16% of the links uncovered and therefore needing to
be examined by a human tester. This is an upper bound on the
false positive e-c linksthat are reported for these benchmarks.
Given that testing is by its nature an interactive activity,the
uncoverede-c linkscan be seen as drawing a tester’s attention
to recovery code that requires human reasoning as part of the
normal testing process.

Our future plans include testing application uses of other
Java JDK libraries, such asjava.rmi, and expanding our
analysis to handle multi-node programs and middleware that
use configuration files for dynamic loading of classes.

REFERENCES

[1] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault
injection and dependability evaluation of fault-tolerantsystems,”IEEE
Transactions on Computers, vol. 42, no. 8, pp. 913–923, Aug. 1993.

[2] M. Cukier, R. Chandra, D. Henke, J. Pistole, and W. H. Sanders, “Fault
injection based on a partial view of the global state of a distributed
system,” inSymposium on Reliable Distributed Systems, 1999, pp. 168–
177.

[3] S. Dawson, F. Jahanian, and T. Mitton, “ORCHESTRA: A Fault In-
jection Environment for Distributed Systems,” inProc. 26th Int. Symp.
on Fault Tolerant Computing(FTCS-26), Sendai, Japan, June 1996, pp.
404–414.

[4] S. Han, K. Shin, and H. Rosenberg, “DOCTOR: An IntegratedSoftware
Fault Injection Environment for Distributed Real-Time Systems,” in Int.
Computer Performance and Dependability Symp. (IPDS’95), Erlangen,
Germany, Apr. 1995, pp. 204–213.

[5] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “FERRARI: A
Tool for the Validation of System Dependability Properties,” in Proc.
22nd Int. Symp. on Fault Tolerant Computing(FTCS-22). Boston,
Massachusetts: IEEE Computer Society Press, 1992, pp. 336–344.

[6] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton,
D. Rancey, A. Robinson, and T. Lin, “FIAT — Fault Injection based
Automated Testing environment,” inProc. 18th Int. Symp. on Fault-
Tolerant Computing (FTCS-18). Tokyo, Japan: IEEE Computer Society
Press, 1988, pp. 102–107.

[7] R. V. Binder, Testing Object-oriented Systems. Addison Wesley, 1999.
[8] G. J. Myers,The Art of Software Testing. John Wiley and Sons, 1979.
[9] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE

Transactions on Software Engineering, vol. 3, no. 4, pp. 279–290, July
1977.

[10] C. Fu, R. P. Martin, K. Nagaraja, T. D. Nguyen, B. G. Ryder, and
D. Wonnacott, “Compiler-directed program-fault coveragefor highly
available Java internet services,” inProceedings of the International
Conference on Dependable Systems and Networks (DSN 2003), June
2003.

[11] X. Li, R. P. Martin, K. Nagaraja, T. D. Nguyen, and B. Zhang, “Men-
dosus: A SAN-Based Fault-Injection Test-Bed for the Construction of
Highly Available Network Services,” inProceedings of the 1st Workshop
on Novel Uses of System Area Networks (SAN-1), Cambridge, MA, Jan.
2002.

[12] K. Arnold and J. Gosling,The Java Programming Language, Second
Edition. Addison-Wesley, 1997.

[13] S. Rapps and E. Weyuker, “Selecting software test data using data flow
information,” IEEE Transactions on Software Engineering, vol. SE-11,
no. 4, pp. 367–375, Apr. 1985.

[14] C. Fu, R. P. Martin, K. Nagaraja, T. D. Nguyen, B. G. Ryder, and
D. Wonnacott, “Compiler-directed program-fault coveragefor highly
available Java internet services,” Department of ComputerScience,
Rutgers University, Tech. Rep. DCS-TR-518, Jan. 2003.

[15] M. P. Robillard and G. C. Murphy, “Static analysis to support the
evolution of exception structure in object-oriented systems,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 12,
no. 2, pp. 191–221, 2003.

[16] J.-W. Jo, B.-M. Chang, K. Yi, and K.-M. Cho, “An uncaughtexception
analysis for Java,”Journal of Systems and Software, 2004, in press.

[17] S. Sinha, A. Orso, and M. J. Harrold, “Automated supportfor develop-
ment, maintenance, and testing in the presence of implicit control flow,”
College of Computing, Georgia Institute of Technology, Tech. Rep. GIT-
CC-03-48, September 2003.

[18] A. Rountev, A. Milanova, and B. G. Ryder, “Points-to analysis for
java using annotated constraints,” inProceedings of the Conference on
Object-oriented Programming, Languages, Systems and Applications,
2001, pp. 43–55.

[19] M. Sable, “Soot: a java optimization framework,” see
http://www.sable.mcgill.ca/soot/.

[20] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy,” inProceedings of 9th European
Conference on Object-oriented Programming (ECOOP’95), 1995, pp.
77–101.

[21] D. Bacon and P. Sweeney, “Fast static analysis of C++ virtual functions
calls,” in Proceedings of ACM SIGPLAN Conference on Object-oriented
Programing Systems, Languages and Applications (OOPSLA’96), Oct.
1996, pp. 324–341.

[22] D. Grove and C. Chambers, “A framework for call graph construction al-
gorithms,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 23, no. 6, 2001.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,MONTH 2004 21

[23] T. Ogasawara, H. Komatsu, and T. Nakatani, “A study of exception
handling and its dynamic optimization in java,” inProceedings of
ACM SIGPLAN Conference on Object-oriented Programing Systems,
Languages and Applications (OOPSLA’01), 2001, pp. 83–95. [Online].
Available: citeseer.nj.nec.com/ogasawara01study.html

[24] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers – Principles,
Techniques and Tools. Addison Wesley, 1988.

[25] T. J. Marlowe and B. G. Ryder, “Properties of data flow frameworks: A
unified model,” inActa Informatica, Vol. 28, 1990, pp. 121–163.

[26] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to and side-effect analysis,” inProceedings of the
International Symposium on Software Testing and Analysis, 2002, pp.
1–11.

[27] A. Milanova, “Precise and practical flow analsis of object-oriented
software,” Ph.D. dissertation, Rutgers University, 2003,also available
as DCS-TR-539.

[28] M. L. Scott, Programming Language Pragmatics. Morgan Kaufmann,
2000.

[29] M. Sharir and A. Pnueli, “Two approaches to interprocedural data
flow analysis,” in Program Flow Analysis: Theory and Applications,
S. Muchnick and N. Jones, Eds. Prentice Hall, 1981, pp. 189–234.

[30] O. Shivers, “Control-flow analysis of higher-order languages,” Ph.D.
dissertation, Carnegie Mellon University, 1991.

[31] O. Lhoták and L. Hendren, “Scaling Java points-to analysis using Spark,”
in International Conference on Compiler Construction, ser. LNCS 2622,
2003, pp. 153–169.

[32] C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott, “Testing of
java web services for robustness,” inProceedings of the International
Symposium on Software Testing and Analysis (ISSTA), July 2004, pp.
23–33.

[33] F. Tip and J. Palsberg, “Scalable propagation-based call graph construc-
tion algorithms,” inProceedings of the Conference on Object-oriented
Programming, Languages, Systems and Applications, Oct. 2000, pp.
281–293.

[34] B. G. Ryder, “Dimensions of precision in reference analysis of object-
oriented programming languages,” in Proceedings of the Twelveth
International Conference on Compiler Construction, April2003, pp.
126–137, invited paper.

[35] M. J. Radwin, “The java network file system,” see
http://www.radwin.org/michael/projects/jnfs/.

[36] “The Muffin world wide web filtering system,” see
http://muffin.doit.org/.

[37] M. Welsh, D. E. Culler, and E. A. Brewer, “SEDA: An architecture
for well-conditioned, scalable internet services,” inSymposium on
Operating Systems Principles, 2001, pp. 230–243. [Online]. Available:
citeseer.nj.nec.com/welsh01seda.html

[38] A. S. Foundation, “Apache jarkarta project.” [Online]. Available:
http://jakarta.apache.org/

[39] Specbench.org, “Spec jvm98 benchmarks.” [Online]. Available:
http://www.spec.org/jvm98/

[40] V. LLC, “Volanomark.” [Online]. Available:
http://www.volano.com/benchmarks.html

[41] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sen-
sitivity for points-to analysis for java,”ACM Transactions on Software
Engineering Methodology, in press, 2004.

[42] A. S. Foundation, “Apache jakarta tomcat.” [Online]. Available:
http://jakarta.apache.org/tomcat/

[43] W. G. Bouricius, W. C. Carter, and P. Schneider, “Reliability modeling
techniques for self repairing computer systems,” inIn Proceedings of
the 24th National Conference of the ACM, March 1969, pp. 295–309.

[44] T. Tsai, M. Hsueh, H. Zhao, Z. Kalbarczyk, and R. Iyer, “Stress-
based and path-based fault injection,”IEEE Transactions on Computers,
vol. 48, no. 11, pp. 1183–1201, Nov. 1999.

[45] J. Bieman, D. Dreilinger, and L. Lin, “Using fault injection to increase
software test coverage,” inProc. 7th Int. Symp. on Software Reliability
Engineering (ISSRE’96). IEEE Computer Society Press, 1996, pp.
166–74.

[46] D. Hamlet, “Foundations of software testing: dependability theory,” in
Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations
of software engineering. ACM Press, 1994, pp. 128–139. [Online].
Available: http://doi.acm.org/10.1145/193173.19540

[47] D. Tang and H. Hecht, “An approach to measuring and assessing
dependability for critical software systems,” inIn Proceedings of the
Eighth International Symposium on Software Reliability Engineering,
Albuquerque, NM, Nov. 1997, pp. 192–202.

[48] P. Frankl and E. Weyuker, “An applicable family of data flow testing
criteria,” IEEE Transactions on Software Engineering, vol. 14, no. 10,
pp. 1483–1498, Oct. 1988.

[49] S. Sinha and M. J. Harrold, “Criteria for testing exception-handling con-
structs in Java programs,” in Proceedings of the International Conference
on Software Maintenance, 1999.

[50] N. Heintze, “Set-based analysis of ml programs,” inProceedings of the
ACM Conference on Lisp and Functional Programmig, 1994, pp. 306–
317.

[51] S. Sinha and M. J. Harrold, “Analysis and testing of programs with
exception-handling constructs,”IEEE Transactions on Software Engi-
neering, vol. 26, no. 9, pp. 849–871, September 2000.

[52] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient and precise
modeling of exceptions for analysis of Java programs,” in Proceedings
of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, September 1999, pp. 21–31.

[53] S. Lee, B.-S. Yang, S. Kim, S. Park, S.-M. Moon, K. Ebcioglu, and
E. Altman, “Efficient Java exception handling in just-in-time compila-
tion,” in Proceedings of the ACM SIGPLAN Java Grande Conference,
2000.

[54] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth, “Practicing judo: Java
under dynamic optimzations,” in Proceeedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2000, pp. 13–26.

[55] J. D. David Grove, Greg DeFouw and C. Chambers, “Call graph
construction in object-oriented languages,” inProceedings of ACM SIG-
PLAN Conference on Object-oriented Programing Systems, Languages
and Applications (OOPSLA’97), Oct. 1997, pp. 108–124.

[56] R. O’Callahan, “The generalized aliasing as a basis forsoftware tools,”
Ph.D. dissertation, Carnegie Mellon University, 2000.

[57] R. Chatterjee, B. G. Ryder, and W. A. Landi, “Relevant context infer-
ence,” in Proceedings of the ACM SIGACT/SIGPLAN Symposium on
Principles of Programming Languages, Jan. 1999.

[58] R. Bodik, R. Gupta, and M. L. Soffa, “Refining data flow information
using infeasible paths,” inProceedings of the Sixth European Software
Engineering Conference (ESEC/FSE 97), M. Jazayeri and H. Schauer,
Eds. Springer–Verlag, 1997, pp. 361–377.

[59] A. L. Souter and L. L. Pollock, “Type infeasible call chains,” in Pro-
ceedings of the IEEE International Workshop on Source Code Analysis
and Manipulation, 2001.

[60] ——, “Characterization and automatic identification oftype infeasible
call chains,”Information and Software Technology, vol. 44, no. 13, pp.
721–732, October 2002.

