IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004

1 234

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004

Robustness Testing of Java Server Applications

Chen Fu, Ana Milanova, Barbara G. Ryder, David Wonnacott

Should we say something about the special issue here? Oaoly paper is technically “invited”.

Abstract—This paper presents a new compile-time analysis and availability, while supporting large numbers of usersp

that enables a testing methodology for white-box coveragessting
of error recovery code (i.e., exception handlers) in Java we
services using compiler-directed fault injection. The anbysis
allows compiler-generated instrumentation to guide the falt
injection and to record the recovery code exercised. (An irgcted
fault is experienced as a Java exception.) The analysis (fentifies
the exception-flow 'def-usesto be tested in this manner, (ii)
determines the kind of fault to be requested at a program poim,
and (iii) finds appropriate locations for code instrumentaton.
The analysis incorporates refinements that establish suffient
context sensitivity to ensure relatively precise def-userks and to
eliminate some spurious def-uses due to demonstrably infsible
control flow. A runtime test harness calculates test coverag of
these links using anexception def-catcmetric. Experiments with
the methodology demonstrate the utility of the increased pecision
in obtaining good test coverage on a set of moderately-sizeldva

demand reliability from these codes that are becoming more
and more commonplace. A good analogy is to the telephone
system, a technology that one expects to be 'always working’
the phone company demands only minutes of down time per
year from its software. New testing technologies are needed
to address the issue of reliability in this environment.iBes

the traditional testing of functionality, there is a neeetsure
reasonable application response to system/resourcelepreb

in order to have performance gracefully degrade rather than
experience application crashes. The robustness tesgegneh

in this paper addresses the problem of how to test the rifjabi

of Java web services in the face of infrequent, but anticipat
able system problems, which are responded to using Java’'s

web services benchmarks.This paper presents a new compile-€Xception handling mechanism.

time analysis that enables a testing methodology for whitbox
coverage testing of error recovery code (i.e., exception hdlers)
in Java web services using compiler-directed fault injectn.
The analysis allows compiler-generated instrumentationd guide
the fault injection and to record the recovery code exercisa.

Traditional fault-injection testing of software in the ope
ing system community is conducted in a black-box manner,
using a probabilistic analysis to determine whether or not a
software component will work properly when subjected to

(An injected fault is experienced as a Java exception.) The SPecific fault loads and workloads [1]. Testing is accontyats

analysis (i) identifies theexception-flow 'def-usesto be tested in
this manner, (ii) determines the kind of fault to be requeste
at a program point, and (iii) finds appropriate locations for
code instrumentation. The analysis incorporates refinemess that
establish sufficient context sensitivity to ensure relatigly precise

by simulating faults caused by environmental errors during
test throughfault injection [2], [3], [4], [5], [6]- Testers as-
sume that applications run under specific workloads, ana the
inject faults randomly into the running code, selectinglt&u

def-use links and to eliminate some spurious def-uses due to@ccording to distribution functions derived from obseivabf

demonstrably infeasible control flow. A runtime test harnes
calculates test coverage of these links using aexception def-
catchmetric. Experiments with the methodology demonstrate the
utility of the increased precision in obtaining good test ceerage
on a set of moderately-sized Java web services benchmarks.

Index Terms— Reliability, Def-Use Testing, Java, Exceptions,
Test Coverage Metrics

FIX: Need to put in real entries in bib.bib for issta04,
tipPalsberg, and tosem-issta04 — leaving these out entiyel
confused the IEEEtrans.bst

I. INTRODUCTION

real systems. After observing application reaction to tndtf
load, the testers derive data describing the likelihood tine
application will deliver correct service (i.e., not crashjder
the given fault loads and workloads [1].

Unfortunately, this approach does not ensure that the error
recovery code in an application is ever exercised nor that th
program takes an appropriate action in the presence offault
In addition, given the probabilistic nature of the apprqatts
hard to force application execution into the untested patrts
error recovery code during further testing. Because marty we
services are written using components with unknown interna
structure, testers need to identify vulnerabilities toteys

HE emergence of the Internet as a ubiquitous computiRgePlems automatically (i.e., with the help of softwarelg)o
infrastructure means that a wide range of applications 1€ testing of error recovery code in web services is necgssa

such as on-line auctions, instant messaging, grid weatteer

Ffor ensuring the high reliability required of these systems

diction programs — are being designed as web services. Thes@U" methodology uses the tools of white-box def-use testing
services must meet the challenges of maintaining perfocmaﬁo aid a tester of web services in this task. There is a largg bo

This work was supported in part by NSF grants EIA-0103722 @aiR-
9900988

Chen Fu ¢henfu@s.rutgers.edu) and Barbara Ryder

(ryder @s. rut gers. edu) are with the Rutgers University Department

of Computer Science, Piscataway, NJ 08854

of existing work onwhite-boxtesting methodologies [7], [8],

[9], aimed at exercising as much application code as passibl
during testing, and measuring code coverage using various
program constructs such as control-flow edges, branches and
basic blocks. However, error recovery code — code which

Ana Milanova (i | anova@s. r pi . edu) is with the Rensselaer Poly- handles errors that occur with small probability, espdgcial

technic Institute Department of Computer Science, Troy, N80
David Wonnacott davew@s. haver f or d. edu) is with the Haverford
College Department of Computer Science, Haverford, PA 1904

due to interactions with the computing environment (e.gk d
crashes, network congestion, operating system bugs) — is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 3

almost always left unexecuted in traditional white-boxites data reachability through object references to confirm the
because it may not be executable by merely manipulating infeasibility of some links, by showing the corresponding
program inputs. interprocedural paths to be infeasible.

Our analysis techniques identify program points vulnezabl « Demonstration ofautomatic program instrumentation
to certain faults and the corresponding error recovery dode directed by our analysis, that effectively constructs a
these specific system faults. The techniques provided allow compiler-directed fault injection engine froMendosus
compiler-inserted instrumentation to inject appropritelts [11], an existing fault injection framework.

as needed and to gather recovery code coverage information. Empirical validation of our methodology using several
This enables a tester to systematically exercise the error mode-rately-sized Java web service applications, includ-
recovery code, by causing execution to exercise the vulner- ing comparison of our new analysis with less precise, less
able operations. Thus the methodology provides a means to costly class-based analysis adapted to find exception-flow
obtain validation of application robustness in the presevic def-uses. These studies demonstrate the appropriateness
system faults. Although our experiments are based on web of the precision of our analysis for this task, in that
applications, the technique is not limited in that area aad c on average, 84% of all exception-flow def-use links are
be applied on general Java applications. covered by the testing.

In our approach, it is important to be able to identify as Qyerview. The rest of this paper is organized as follows.
precisely as possible where an exception, thrown in respong section Il we describe our coverage metric, which is a
to an experienced fault (i.e., a def), is handled (i.e., 3.USe gjight variant of the original metric described in [10], and
key concern in general for def-use testing is how to minimizgye an overview of the compiler-directed fault injection
the number of spurious def-uses reported by the analysiseSi methodology. In Section 111, we discuss our compile-timalan
these def-uses cannot be exercised by any test, a human bggiﬁg for exception-flow def-uses and its precision incregsi
has to examine them, among the uncovered def-use links afigfnements. In Section IV we report our empirical results on
testing, and determine (if she can) that they are spurioygederate-sized Java applications, describing the impatie
This is a time-consuming, difficult job, especially for larg exception-flow def-uses obtained, of varying the compitest

object-oriented applications that use polymorphism Heavignalysis used. In Section V we describe related work. Bipall
Therefore, it is crucial to use a very precise analysis thgfe present our conclusions.

while practical in cost, can eliminate many of these spwiou
def-uses. This is a key goal of our neaception-catch link
analysis
Our target applications are Java web services because these take advantage of the Java exception handling mecha-
programs are widely used to build large-scale distributéiSm to help identify error recovery codexceptionsn Java
cooperative systems. Java is used increasingly to builpoemare used to respond to error conditions [12]. Eaatch block
nents for these services. Furthermore, the exception mmistiS Potentially the starting point of error recovery code for
and mandatory exception handling mechanism facilitates b& matching error/exception raised during the lifetime af th
construction and analysis of error recovery in a Java pragracorresponding ry block.
thus providing a good basis for validating our methodology Faults, Exceptions, Coverage Metric.A fault is some
for automatic identification and testing of error recoveoge. environmental error that being manifested. We begin withta s
In a previous paper [10]' we gave a genera| overview of ng faults that are of interest to the tester — for example,esom
methodology for testing of error recovery code, and defind@sting may focus on disk and network errors. A fault-saresit
appropriate coverage metrics. We presented a proof-(xfgrﬂn Operation, which is either an explid:ihr ow statement or a call
case study in which a proxy server application was instri® unknown method, iaffectedoy a fault in that an exception
mented by hand, and then fault injection was performed aifdProduced when the operation occurs and experiencesta faul
recorded by executing the instrumentation. In this paper @& a run-time error. Often these operations are calls tor@riib
have defined and implemented a compile-time exceptiorhcaféinctions within the Java JDK libraries. We dendteto be
link analysis, fully automated the program instrumentaticthe set of all fault-sensitive operations that may be adfeédty
process, and experimented with several versions of aBa|y%ny element in the SpeCiﬁC set of faults of interest. We assum
on a data set of moderately-sized web service applications?” is known, because it can be precalculated once from the
The specific contributions of this paper are: Java libraries and reused for all the programs subject tit-fau
. Design of a new compile-time exception-catch link analiection testing with this same set of faults. In this paper
ysis to identify error recovery code in relation to certaifPCus on faults related to Jav@Exceptions
resource usage program points (i.e., a def-use analy/n any given program execution, each elementotould
sis for potential exceptions involving resource usagd)Ssibly produce an exception that reaches some subset of th
This analysis essentially is an interprocedural def-ug§ogram'scat ch blocks. By viewing fault-sensitive operations
dataflow analysis calculation with two new refinement&s the definition points of exceptions, andt ch blocks as
(i) performing a points-to analysis using limited contexses of exceptions, we can define a coverage metric in terms
sensitivity by inlining constructors that set object field§f exception-catch (e-c) links
(in order to avoid conflating objects, especially in libesri Definition (e-c link: Given a setP of fault-sensitive oper-
with long call chains) and (ii) using the absence odtions that may produce exceptions in response to the faults

Il. MEASURING COVERAGE OFFAULTHANDLING CODE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 4

of interest, and a set’ of cat ch blocks in a program to be occurs. Given the semantics of Java, there musthhgrerable
tested, we say there ispssible e-c linKp, ¢) betweerp € P statement executed during the corresponding block, that
andc € C if p could possibly trigger; we say that a given resulted in the execution of the fault-sensitive operatibime

e-c link is experiencedn a set of test rung’, if p actually tester must try to have execution exercise both this vublera
transfers control t@ by throwing an exception during a teststatement, often a call, and the fault-sensitive operatiothat

in T, the recovery code is reached. Obtaining test data to acisimpl
this task is the same test case generation problem presented

Definition (Overall Exception Def-catch CoverdgeGiven a :
by any def-use coverage metric.

set I’ of the possiblee-c linksof a program, and a sédt of ; . . .
the e-c linksexperienced in a set of test rufis we say the The compiler uses the set ekc links found to identify

overall exception def-catch coveragé the program byT" is where to place the instrumentation that will communicaté wi
|E| Mendosug11], the fault injection engine, during execution.

£l This communication will request the injection of a partaul

|'Nf(1)t':e fthat ?r:l ' excelrl)t]:onltd;f}cat(t:hhcoverage rr:e_trlc d'gfefgult when execution reaches they block containing the
Slightly trom theoverall fau't det-calch coveragmetric used ,, naraple operation and will result in the recording of the

in our earlier work [10] (whe_re it was termqni/erall fault— execution of the correspondirgt ch block.
catch coveragg due to the different emphasis of this work.
Fault def-catch coverage measures links from specificdault |-===—-ccc-caceaaoo----

i mpile time !
to handling code, rather than from fault-sensitive opereti ! T“:Zﬁ:::fed Compile time |
to handling code. For example, consider code in which ! :

! I
1
1

distinct faults could trigger a single fault-sensitive oaéon

; Java Exception-Catch :
and transfer control to a singkeat ch block. Our fault def- Application |1\ ik aralysis || Fessible
catch metric would treat this aslinks from faults to the catch - _ _ _ _ __ __ _ _==== T E-C links
block, and our exception def-catch metric would treat tlis a !
1 possiblee-c link The exception-based metric is appropriate Fault Tnjector- |, [Tnstrumented Obeorved
here because we wish to emphasize the ability of static sisaly Mendosus [| Java Program > EC links
to prune infeasible links. This ability is not determinedthy Rum fime
number of faults that can cause a given exception, and the use Measured

Exception

of the fault-based metric would skew our results by the size
of the fault sets chosen for operations in which our analysis
succeeds or fails.
In the terms used by traditional def-use analysis [13'1! o o
fault def-catch coverage is aall-def-usesmetric with faults F9- 1. Compiler-directed fault injection framework
counting adesk; exception def-catch coverage can be seen as
an all-def-usesmetric with exceptions counting ake®, or as Figure 1 shows the organization of our fault-injection sys-
a metric that is stricter thaall-useswhen faults are viewed astem. The box labeledompile timeshows that for a chosen set
dek. FIX: We need to check the above against the actual of faults, corresponding to some set of exceptions and their
definitions of the terms . For a more detailed discussionfault-sensitive operations, the analysis presented iticed|
of possible coverage metrics for fault-tolerant code, 48,[calculates the possibke-c linksand the vulnerable statements
[14]. that are susceptible to them. The compiler inserts the in-
Coverage metrics are generally used to evaluate a test suiteumentation calling on Mendosus to insert a fault during
but they are also influenced by the accuracy of the coveragjecution of the correspondingy block and the recording
analysis tool. A high overall exception def-catch coveragestrumentation for recovery code in tieat ch block. Then,
indicates a thorough test, but a low coverage may resthe tester runs the program and gathersdabserved e-c links
from either insufficient testing (i.e., a small) or an overly from that run. The tester then may have to try to make the
conservative estimate df, the set ofpossible e-c linksAs program execute other vulnerable statements (i.e., byingry
in other forms of coverage testing, it is unacceptableFaion the inputs) in order to cover more of the possikke links
omit any e-c linkspossible at runtime, so our analysis mudtinally, the test harness calculates the overall excetifn
be conservative, producing a supersef-oin the presence of catch coverage for this test suite.
imprecision. This is a common problem in software testing;
it is addressed by using an analysis thatais precise as [1l. COMPILE-TIME ANALYSIS
possibleto eliminate many infeasible paths and by human Figure 2 illustrates the high level structure of the two-
tester examination. As we will see in Section IV, the prexmisi phased compile-time exception-catch link analysis whieh w
of our analysis has a significant impact on the coverageteesilesigned to calculate-c linksin Java programsException-
for the benchmarks. flow analysis takes a static representation (i.e., AST) of a
Fault Injection Framework. Once we have calculated theJava program as well as its call graph, and producesthe
possiblee-c linksfor a program with the analysis in Section Ill,c link set of the given program. Unlike previous exception-
then for a specific fault-sensitive operation, we have ifiedt flow analysis [15], [16], [17] which relied on interprocediir
thecat ch blocks that may handle the resulting exception, if propagation of exception types, our analysis is objecethas

Def-Catch
Coverage

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 5

distinguishing between exception objects created by miffe in both of them, but onhA. bar () may throw an exception of
new() statements. Th®ataReachanalysis serves as a postclassk when called. If some other methddo() contains a
pass filter which uses the reference points-to graph [18], [1call a. bar () for a of static typeA, thenf oo() must define a

of the program to discard as many infeasible linksin the handler for exceptioi or declare that it throws this exception.
set produced by exception-flow analysis as possible, so asHowever if at runtime reference always points to @ object,
increase the precision of the entire analysis. Intuitiviebth of no exception can ever be thrown at the call site.

these analysis phases can vary in their precision, bechege t Our exception-flow analysis is an interprocedural dataflow
effectively are parameterized by the points-to and calplraanalysis that calculates for eacht ch block, all thet hr ow
construction analysis used as their inputs. Various aisalystatements whose exceptions could potentially be handled b
choices are available for call graph construction [20],][21thatcat ch. This is a form ofdef-useanalysis as shown in the
[22] which differ in their cost and the precision of the rég\g following section.

graph. The empirical results discussed in Section IV showException-flow as a dataflow analysis.We define
that the precision of the call graph and points-to graph hagception-flowas the flow of each exception object thrown
significant impact on the precision of the finelc link set pert hr ow statement along the exception handing path [23]
obtained. — from thet hr ow statement to theat ch block where it is

handled.
Exception-Flow Analysis

Call Graph

According to the semantics of exception handling in
Java [12], we can assume there exists a variable for each exe-
cuting Java thread that refers to the currently active etaep
object. During execution, anyhr ow and cat ch operations
are definitions and uses of that variable, respectivelysTive
can apply a variant of the traditional Reaching-Definiti@d][
dataflow analysis to this problem, but there are some unique
aspects of exception-flow that require special handling:

possible e—c links

Points—to Grap———>(_ DataReach Filter (Optional)

1) Types are associated with each use and definition. A use
(i.e., acatch) kills all the reaching definitions whose
type is a subtype of the type of the use.

Fig. 2. Two phases of exception-catch link analysis 2) The dataflow is in the reverse direction to execution
flow; thus exception-flow is a backward dataflow prob-
lem.

3) The key control-flow statements in a method are
andcat ch blocks,t hr ow statements and method calls.
In Java, if code in some method throws an excepteither All other statements do not affect the exception-flow

the exception is handled within the method by defining a solution (given that the call graph is an input to this

cat ch block for it, or the method declares in its signature problem). The order of these statements within a method
that it might throw this kind of exception when called. In is of no consequence. What is important is whether or
the latter case, its callers must either handle the exaeptio not at hr ow or method call is contained inta y block

or declare that they throw it as well [12]. We want to find nest. Therefore, within a method, we are only interested

the relationship betweerat ch blocks and fault-sensitive in paths from the method entry to eathy- catch

operations. We uset hir ow statement” to represent all fault- block or to athrow or a method call not contained
sensitive operations in our discussions for simplicity; we in anytry-cat ch block.

actually mean all instructions or calls that may throw some e analysis is interprocedural because of the nature of ex-

exception, if a fault occurs. o ception handling: an exception propagates along the dynami
A naive analysis that relies only on examination of US| stack until a proper handler is reached. Our analysis is

declared exception types icat ch blocks and method Sig- performed on a call graph whose edge annotations record the

natures is too inaccurate to yield information of_ praCt'CQ:lorresponding call sites, since call sites may occur witiin

use. In part this is because the declared exception can8funt ry- cat ch blocks, which clearly affects the solutin

a supertype, subsuming many exception types that actudflyihin each method, the analysis calculates those exaeptio

cannot be thrown in this <_:ontext. Moreover, a method Ma¥hich reach the entry to that method, by considetihgows
declare that some exception may be thrown, when actuallyq method calls not contained within anyy- cat ch block

no exceptions can ever be raised; this can occur when those ry- cat ch blocks within the method. The former

implementation of some method has changed, but the methggiements yield some of the exceptions possibly raised and

declaration is not updated. Dynamic dispatch can add to thg; handled in the method. Statements within thg- cat ch
imprecision of the declared exception information. Sugpos

classA is the superclass & and methodar () is declared

possible e—c links

A. Exception-flow analysis

%In Java,try blocks can be nested within each other. Handlers are
associated with exceptions in inner to outer order [12].

1we are only consideringhecked exceptions, since exceptions related to 3Adding these annotations is not difficult for any call grapinstruction
1/O faults are checked. algorithm.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004

blocks may also yield unhandled exceptions, depending ohtypes of the objects igen(t) trynest(k)is the (possibly
the types of the respectiveat ch blocks. Thus, the programempty) nest oftrycat ch blocks containing statemerk;
representation used is a variant of a call graph, where eddl(trynest(k)) is the set of exception types handled by the
method node has an inner structure consisting of an edge from ch blocks that correspond timynest(k) or ¢ if trynest(k)
the entry node to each uncoverelr ow or method call, and is empty;CS is the set of call sites im; andtargets(cs)s the

an edge to each outermasty- cat ch block.

set of all run-time target methods that can be reached by call

We define for each method the set of reaching exceptisite cs (there can be more than one target of a polymorphic

objects that can reach its entry:
Definition (ReachingThrows(method/)): The set of all

call). Note also that the set difference operation musteeisp
the exception inheritance hierarchy; subtraction of a &t

t hr ow statements for which there exists an exception handlififluding exception typeet must remove any exceptions of
path [23] from the throw statement to methdd, and the Subtypes oftas well asetitself.

exceptions are not handled in methdfl

These dataflow equations are consistent with the definition

Figure 3 gives an example illustrating the definition off @ monotone dataflow analysis framework [25] and therefore

ReachingThrows We can see that the call sitbar()

inside methodf oo() is inside thetry block, so that
Socket Excepti on thrown in bar () will be handled (i.e.,
killed) in f oo() . However, exceptio her Except i on, also

amenable to fixed-point iteration.

Worst case complexity.The dataflow problem so defined is
distributive and 2-bounded [25]; therefore, the compiexit
the analysis i€)(n?) wheren is the number of methods. Given

thrown by bar (), will not be handled and thus appear&ur program representation, the time cost of processing eac
in ReachingThrows(foo)f the call to bar () had not been method to find the constant terms in these equations is linear
placed within at ry- cat ch block inf oo(), both exceptions In the number oft ry-cat ch blocks, call sites and hrow

(i.e., Socket Excepti on, O her Exception) would appear Statements in the method, which is bounded abové bihe

in ReachingThrows(foo)Therefore, our analysis can be conmaximum number of statements in a method,; this adés a
sidered to have somfiow-sensitiveaspects, in that it capturesterm to the above complexity. Therefore, the overall woastc

the relation oft r y- cat ch blocks to the call sites anichr ow
statements within them.

ReachingThrows$(oo)
O her Excepti on thrown in bar

voi d foo(’/s throws Exception{
try{ /

= har();

/ }catch (I OException ioe){..}
it
!
\
\ Socket Excepti on
N O her Excepti on

ReachingThrowd(ar)

thrown in bar
thrown in bar

voi d”bar (Q throws Exception{

t hrow new Socket Except i on():
\

t hr ow new Ot her Exception();

}

Fig. 3. Example of ReachingThrows

The dataflow equations for thReachingThrowsroblem
are defined on the annotated call graph of the prodgeitn.
need more detail on the finally handling -BGR* We define
RT(m) the ReachingThrows at the entry to methadas

RT(m) =
{t € Ttype(gen(t)) — kill(trynest(t)) # 0}
U UCSECS Um’etargets(cs)
{t € RT(m/)|type(gen(t)) — kill(trynest(t)) # 0}

whereT' is the set oft hr ow statements inn; gen(t)is set
of the exception objects thrown hy type(gen(t))is the set

4Under certain conditions[12f,i nal | ys behave likecat ches and/or
t hr ows. Our algorithm handles these situations correctly, but wit the
details involvingf i nal | ys for brevity.

complexity isO(n? + kn).

Analogous to classical dataflow use-def/def-use chains, ou
analysis produces-c linksbetween each of thehr ow state-
ments and their correspondirgt ch blocks. By performing
exception-flow analysis, we can find all tleec links (¢;, ;)
where t hrow ¢; can potentially triggercat ch block h;.
Furthermore, by recording the interprocedural propagatio
path of¢;, we can provide the call chains frof; to ¢; to
help the human tester understand why a speeifc link is
not covered in some test.

Selective constructor inlining. The exception-flow analysis
described previously relies on having an annotated caplgra
for the program. In order to increase precision, we added se-
lective context sensitivity to the points-to analysis that use
to build the call graph. Rather than building a full and cpstl
context-sensitive points-to analysis, we perfornmdective
constructor inlining that is, we inlined each constructor at
its call sites, when that constructor containethis reference
field initialization using one of its parameters. Withoutsth
transformation, a context-insensitive analysis would enék
seem that the same-named fields of all objects initialized in
this constructor could point to all the parameters so uséj [2
[27]. If we run a context-insensitive points-to analysiteathis
transformation, we obtain some degree of context sertsitivi
for constructors, eliminating some imprecision and ohitajn
a more precise call graph and points-to graph for both our
exception-flow and DataReach analysis phases.

B. Data reachability analysis

We want to use a fairly precise program analysis to eliminate
as many infeasible interprocedural paths as possiblegiacee

5The iteration is only necessary here to handle interpraegdoops. Our
implementation uses a prioritized worklist algorithm; eedn the worklist
are kept in postorder order.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 7

e-c linksbased on these paths cannot be covered. Using a more
precise analysis for call graph construction such as paints
analysis [18], [19] helps to reduce the number of infeasible
e-c linksfound. However, in practice even a very precise call
graph building algorithm introduces many infeasible links
Figure 4 is an example of typical use of the Java network-disk
I/O packages. Figure 5 illustrates how infeasible linksare ,' \ , '|
introduced even given a fairly precise call graph for theecod ; BufferedInputStream. £11 () ’ i
As we can see, thery block inreadFi | e is only sensitive] * |
to disk faults and thery block inr eadNet is only sensitive | - . !
to network faults. But exception-flow information is mergedrijernputstream. reads. ..
in Buf f er edl nput Stream fil | ()®and propagated to both Disk Access == --=====""""
readFi | e andreadNet ; thus, two infeasiblee-c links are call Graph Edges
introduced reducing the acheiveable runtime coverages® le

than 50%.

1
FilterInputStream.read(byte[])

the work that otherwise must be done by human testers when riadFth\ riadNei
' 1

1

1

1

1

) z
BufferedInputStream.read(byte[],intyint) !
1
1
1

1

]

i
1
i
i

‘Bufferedlnputstream. readl (bytel[], j,ht, int)
\ 1

. .
~ .
~o .

- .,
-

Feasible e—c link=+==# Infeasible e—c link - - - -»

Fig. 5. Call Graph for Java I/O Usage
void readFile(String s){
byte[] buffer = new byt e[256];

try{ type can be shown to be infeasible if those type of ob-
I nput Stream f =new Fil el nput Strean(s); jects are not reachable through dereferences at the rele-
I nput Stream i n=new Buf f er edl nput Strean(f) ;vant call site. Continuing with Figure 4, consider the call
for (...) site i n. read() in methodreadFile. We want to know
c = in.read(buffer); whether Socket | nput Stream read() can be called dur-
ycatch (1 OException e){ ... } ing the lifetime of in.read(). In the explanation be-
} low, we refer toin.read() as theoriginal call and to
Socket | nput Stream read() as thetarget call site The
voi d readNet (Socket s){ argument about data reachability relies on the following
byte[] buffer = new byte[256]; intuition: if Socket | nput Stream read() is called, some
try{ object of typeSocket | nput St r eammust have been created
I nput Stream n =s. get | nput Strean(); previously to serve as the receiver. There are only threesway
I nput St r eam i n=new Buf f er edl nput St r eanm(n) ; this can occur:
for (...) FIX: ANA: item 1 does not seem right. Does not mention
c = in.read(buffer); field dereferences of objects created during the lifetime of
}catch (1 CException e){ ...} the call. BGR fixed in 2nd item; is this ok?
} 1) The object is createduring the lifetime of the original
Fig. 4. Code Example for Java I/0 Usage call and passed to the target call site by assignments

between method return values and local variables.
This inaccuracy can be resolved by using a different pro-2) The object is associated witm by field dereferences
gram representation such as a call tree [28] instead of a of (i) one of the global variables (i.e., Java static fields)

call graph. However, constructing a call tree by compile- or (ii) one of the objects created during the lifetime of
time analysis is too expensive and once constructed, this the original call, that occuduring the lifetime of the
representation is too large to scale appropriately. Fomga, original call.

to remove the infeasible-c linksin Figure 5, the call tree 3) The object is associated wit by field dereferences of
algorithm must be able to find that there are only 2 feasitlle ca one of the arguments of the original call (including the
chains which share a middle segment of length 3. Separating receiver), that occuduring the lifetime of the original
these 2 chains would require a context-sensitive points-to call.
analysis analogous to 4-CFA [29], [30], an expensive af&lys Therefore given an original call site, we can express the
In many cases the length of the shared segment is even longekibility of a particular call path in terms of whether ssm
(e.g., when you need to wrap the basic InputStream with mafgta reachability is possible according to these conditiGor
than one filter class, such @ufferedlnput Streamand example, to show that the-c linkreferred to above is infeasi-
Dat al nput St r ean). ble, we verify that there is no object in the points-to sethaf t

The intuitive idea of our approach is to use data reachsceiver of the target call site with tyBacket | nput St r eam
ability to confirm control-flow reachability, in that inter-that can either be created in one of the methods reachable
procedural paths requiring receiver objects of a specifiom the original call, or reachable by transitive field lsad

o __ _ o from the receiver or the arguments of the original call site o

We use a fully qualified haming convention in our examplest th, we . L . . .
express all method names in a ClassName.MethodName foewen, for Static fields. This means that the exception-flow def-usk isat
instance methods. infeasible. Note, we only consider object fields and staicl§

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 8

loaded inmethods reachable from the original callearly, statement;: ... =r.f in M:
we need reasonably precise points-to information [31]] {&€8 (MeR)= feF
obtain the high-quality data reachability information. 6) (o€ UANfeF)= Ptlo.f) CU

The rest of this section describes the original data reach-The algorithm initializes the set of reachable meth&dto
ability algorithm from [32] using a declarative constrainthe set of targets at the original call, to the set of objects
formalism from [33]. In addition, it describes the impréciss pointed to by the actual arguments at the original call, dwed t
of the original data reachability algorithm. Secti®@Ppresents set of accessed fields to the empty set. Auxiliary function
a schema of successively more precise data reachability al§taticLookup returns the dynamic target of the call based on
rithms. the static type of the receiver objectand the compile-time

1) Original DataReach Algorithm:in previous work [32] targetm. Constraint 1 specifies the addition of new methods
we introduced a data reachablility algorithm referred to de the set of reachable methods at virtual calls; a new method
DataReach This algorithm requires as input a points-td//’ is added toR only if the receiver object that triggers
graph [31], [18]. The nodes of the points-to graph are tibe invocation ofM’ is in the setU. Constraint 3 specifies
reference variables in the program and the object names ttfgit an object is added to s&t whenever there is an object
represent the set of heap objects created during prograraation statement in a reachable method; similarly caimtr
execution. Our analysis assumes a common object nam#gspecifies that objects are added tfo whenever a static
scheme which assigns one object name per allocation sfield is accessed. Finally, constraint 5 collects the setedd fi
other more precise object naming schemes are possible hs vgntifiers accessed in reachable methods, and constraint 6
but they tend to be more expensiva, [[?]. Auxiliary function accounts for the computation of the transitive closureljof
Pt: Ref — P(O) takes as an argument a reference variab¥éth respect to the set of accessed fields
or a reference object field and returns a subseP@d), the The solution of these constraints can be used to judge
powerset of the set of object nam@s DataReach is defined whether or not an edge in the call graph downstream from the
in terms of three setd7, F and R. SetU is initialized to the original call site, can be reached on a feasible (i.e., etedate)
set of objects passed as actual arguments at the origirial ga@th from that call site. The algorithm starts from the gicah
intuitively, it contains the universe of objects that maywflo site, does a breadth-first search on the call graph and judges
to the target call from the original call. Sét is the set of feasibility of each encountered call edge using Eetbefore
all instance fields that are read during the lifetime of thik caactually following the edge. The algorithm outputs the set
As the algorithm examines static and instance field acceseésall methods reachable through data reachability from the
in the methods reachable during the lifetime of the origingliven original call site.
call, it adds tol/ those objects that thereby become reachable.Recall the intended use of our DataReach algorithm. If a
In other words, the algorithm adds objegtto U if and only fault occurs during the lifetime of the original call, then a
if there is a patho; 0. 58 0; in the points-to graph, exception may be handlgd bycat ch plock assomateq with
where field identifiersfo, ... f, € F ando; € U before this thet ry in which the qngma! call S|tel is nested. In this case,
addition. SetR denotes the set of methods reachable durifgere is @ correspondingrc link resulting from an excepting
the lifetime of the original call. gall_to some me_th_odn or t hrow in methodm during the

The DataReach algorithm can be specified by the followiA etime _of the original call. If at the target c_aII tm, the set
constraints (using the constraint-based formalism frogj)[3 ©' POssible target methods does not containthen thee-c

The statement of these constraints is followed with a discultg]k IS \:,rp])u.rtlgus (t'r']e" It correspodn?s ttc;‘_arl_ ||r(1fteazlble cor!tro(Ij-
sion of their meaning. ow path); thus, there is no need for this link to be exercise

2) Imprecision of DataReachThe original data reach-

o input: Pt: Ref — P(0) . ability algorithm produced relatively precise results ehi

« initialize: M < R for each targef\/ at original call led to an average of 85%-c link coverage on an initial
Pt(v) C U for each actual argumentat original call get of benchmarks [32]. However, it estimatgsrelatively
F=0 conservatively; examples from several new benchmark pro-

1) For each methodV/, each virtual call sitee.m(...) grams reveal that in many cases this conservative estirsate i
occurring in M, each objecto € Pt(e) where not sufficient. Therefore, there is a need to investigateemor

StaticLookup(o,m) = M": precise analyses. Consider the sample set of statements in
(MeRAN(oeU)=M €eR Figure 6 and DataReach analysis starting at original €all

2) For each methodM and for each static call sitein methodReadl. SetU will contain objectso;, 0o and os
C.M'(...)In M: and every object reachable from them along fields accessed
(MeR)= M eR in the reachable methods m A n and Hasht abl e. put .

3) For each method/ and for each object creation stateSince context-insensitive points-to analyses and evenesom
ments;: ... = new o; in M: of the practical context-sensitive ones (e.g., 1-CFA) db no
(MeR)=0,€U distinguish between objects stored in different contairar

4) For each methodV and for each static field readmaps, any object that is stored inHasht abl e object (or in
statement;: ... =C.f in M: a subtype ofHasht abl e) will be reachable fronv; along a
(M eR)= PtC.f)CU path of field accesses if. Thus, the set of objects reachable

5) For each method/ and for each instance field readrom o5 includeso, and we have{o1,02,04,05} C U. As

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 9

a result, bothY. read and Z. r ead are determined to be The following constraints define M-DataReach:
feasible targets at catl. read() and the analysis erroneously , input: Pt: Ref — P(0)

concludes that both thehrow in Y. read and thet hr ow « initialize: M € R for each target method/ at original
in Z. read will be handled by thecat ch block in method call

Readl. Similarly, starting DataReach from the original call Pt(v) C Uy, for each actual argumentat original call
c2 in methodRead?2, the analysis determines that both the and for each target/

throwin Y. r ead and thet hr owin Z. r ead will be handled Uy = () for each non-target methadl

by the catch block in methodRead?2. It is easy to see Fy = 0 for each method

that the only two feasible-c linksare (i) between hr ow

new Somel GException and thecat ch in Readl, and (i) 1) For each methody, each virtual call sitee.m(...)

betweent hr ow new O her | OExcepti on and thecat ch in occurring in M, each objecto € Pt(e) where
Read2. StaticLookup(o,m) = M":
. . (MeR)AN(oeUy) =
C. A Schema for Data Reachability Analysis M' € R A
We propose a new general schema for data reachability anal- MatchingObjects(Param Types(M'),Unr) C Upnpr A
ysis, that includes our original DataReach algorithm asnan i MatchingObjects (ReturnType(M'), Upr) C Upr A
stantiation. Similarly to the call graph construction aitfons o€ Uy

by Tip and Palsberg [33], our schema can be instantiated to2) For each methodM and for each static call site
yield different algorithms by varying the number of setsdise C.M'(...)in M:

to calculate the objects which are visible in methods relaleha (M eR)=

from the original call, (i.e., the set from which the possibl M'e R A

receivers at the target call are drawn). DataReach keeps a MatchingObjects(Param Types(M'), Unr) € Unr A
single set each fol/ and F. The new data reachability algo- MatchingObjects(ReturnType(M'), Unrr) € Unm

rithms in our schema keep separate sets for program entities) FOr €ach method/ and for each object creation state-
such as methods, classes and reference variables. The major MeNtsi: ... = new o; in M:
differences with Tip and Palsberg’s algorithms are thaoi) (M € R) = 0; € Un o
algorithm propagates objects rather than class types, ignd (4) For each method/ and for each static field read
it is formulated on gartial program rather than on a whole- statement;: ... = C.f in M:
program. The algorithms in our schema keep specialized (M € R) = PHC.f) € Unm) i
local information for program entities such as methods and®) For each method/ and for each instance field read
reference variables, which makes possible increasedsiaci statement;: ... = r.f in M:
for data reachability calculations. For example, consither (M€ R)= f€Fu
set of statements in Figure 6. Clearly, thesht abl e object ~ 0) (0 € Um A f € Fi) = Pt(o.f) € Un
o5 created in method. n does not flow toA. i) : thus, the Intuitively, constraints 1 and 2 refine the analogous con-
precision of the data reachability analysis will benefinitead Straints from DataReach, respectively. First, the recaibgect
of keeping a single séf throughout the analysis, sets, are © at a virtual call should be available in the universe for the
kept for each method/. method M enclosing the call. Second, s&w, of the caller
This paper discusses three instantiations of the schenea: 8 is updated with the objects from st of the calleeM’
set U valid throughout the data reachability analysis (thigatching the return types of the callee. Third, &g of the
instantiation corresponds to the original DataReach ifyn), callee is updated with the objects from dét; of M that
separate sefs,; for each method/, and separate setg, for match the parameter types of the callee. Constraints 3 and 4
each reference variablé. It is possible to define an algorithm,respectively gather objects createdlih and objects that flow
where there is a set per each class (i.e., aggregating thecetio M due to static field reads. Finally, constraint 5 gathers the
sets for all methods in that class into a single Bef); for ~Set of instance fields that may be accesset/iand constraint
brevity we omit a detailed discussion of this instantiation 6 accounts for the computation of the transitive closuré& gf
1) Separate sets for methods (M-DataReacfihe M- (the closure is found by traversing the points-to graphtisgr
DataReactalgorithm keeps distinct seté,; and F; for each from the objects irl/), with respect only to fields id},, that
method M; Uy, is computed with respect té; from the is, the fields that are accessed/f).
points-to graph given as input to the algorithm, instead of Example.Consider the code in Figure 6. After initialization
calculating ondJ and oneF' set program-wide. Analogouslyat original call c1 we have Ua,, = {o1,02}. Applying
to [33], Param Types(M) is used for the set of static types ofconstraint 3 at calh(x) results in objects); and o, being
the arguments of methatll (excluding the implicit parameter added to the upper level universefn; no objects flow back
t his), and the notatioeturn Type(M) is used for the static t0 Ua.n,. Clearly, no fields are accessedAnmand therefore
return type of M. MatchingObjects(t,U) denotes the set of the closure of the universe {84 .., = {01, 02}. Therefore, the
objects inU of type ¢ (or of a subtype of). We extend the only possible receiver at call. read() is o and the only
notation MatchingObjects(.) to apply to a set of types as fol-possible exception that may be thrown back to the original

lows: MatchingObjects(T,U) = U MatchingObjects(t,U). call isSomel OExcept i on. This is a simplified example which
T illustrates a frequently occurring situation in benchmeokie.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004

abstract class X {
voi d abstract read() throws | OException
public class Y extends X {
public void read() throws | OException {

i 1
})

public class Z extends X {
public void read() throws | OException {

(...) throw new Sonel OException();

i 1
})

(...) throw new Q herl OException();

public class A {
public void m X x) throws | OException {
n(x);
X. read()
}
public void n(X x) {
s5: Hashtable ht = new Hashtabl e();

it (..)
b}

Imprecision of DataReach algorithm

ht.put(...,x);

Fig. 6.

2) Separate sets for variables (V-DataReachydditional
precision over M-DataReach can be achieved by distingugshi

the object sets for each reference variable and referenc

object field. For this instantiation of the schema, called V-
DataReach, the algorithm keeps distinct s&is and U, ¢
for each reference variablé and for each reference object

%) For

10

public void Readl() {

try {
sl: A a = new A();
s2: Yy = new Y();
cl: a.my);
}
catch (I Oexception) { ... }
}
public void Read2() {
try {
s3: A a = new A();
s4: Z z = new Z();
c2: a.mz);
}
catch (I Oexception) { ... }
}
M' € R A

U,, C Up,wherep, are the formal parameters af’ A

M’ .ret_var g Ul .
each method/ and for each reference assignment

statements;: [= r in M:
(MeR)=U, CU,

fieldso.f. The predicaté//ethodLocal(o) returns true if object 4) For ?a(_:hl TethO(M ?‘”‘j\;_‘“ each object creation state-
o does not escape the method where it is created (i.e., the ?Enesl%) N neleu(c}i A

lifeti f the object d t d the lifeti f thd)cal 0i ! o

FIetime Ot the oDJect does ot excesd e lretime 0 ra 5) For each methodV/ and for each static field read

it returns false otherwise. This information can be triyial
computed from a points-to graph as shown in [18].

The following constraints define V-DataReach, in analogous6)

way to the two previous instantiations of the schema.

e input: Pt: R— P(O)

« initialize: M € R for each targef\/ at original call
Initialize U, for formalsp of targets accordingly
Initialize all otherU, andU, ; to ()

1) For each method/,
each virtual call sitd = e.m(eq, ...
M,
eacho € Pt(e) where StaticLookup(o,m) = M":
(MeR)AN(oeU,) = :
M' e R A It

,€r) OcCcurring in

statement = C.f in M:
(M € R)= Pt(C.f) CU
For each method)M/, for each instance field write
statement.f = r in M and eacho, € Pt(l) where
MethodLocal(o;):
(M eRANo; € Ul) = U, CU,,.y
For each method/, for each instance field read state-
ment! = r.f in M and eaclv; € Pt(r):
(M eRAMNo; €U,) =
MethodLocal(o0;) = U,,.; C U; A
{ MethodLocal(o;) = Pt(o;.f) C U

Intuitively, constraints 1,2,3,4 and 5 refine the corresiiog
constraints from M-DataReach; V-DataReach keeps flowinfor
mation per reference variable instead of per method. Thezef

produces more precise results as it is illustrated by the

U., C Uy,where f; are the formal parameters of’ Afollowing example.

UM’.ret_uar g Ul A
0 € Unm this
2) For each method/ and for each static call site
l=C.M(ey,...,en) in M:
(M eR)=

Example. Consider the set of statements in Figure 7. Start-

ing from original callcl: a.n(...) in Readl DataReach
will compute U = {o01,02,03}. At target callx1. read()

in A.m the two possible receivers according to the in-
put points-to graph areo; and o,. Since botho; and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004

abstract class X {
voi d abstract read() throws | OException

class Y extends X {
public void read() throws | OException {

if (...) throw new Sonel OException();

11

public void Readl() {

try {
s3: Aa = new A();
cl: a.mB.xy, B.xz);

} o} }
class Z extends X { catch (I Oexception) { ... }
public void read() throws | OException { }
if (...) throw new O herl Cexception();
} o}
public void Read2() {
class A { try {
public void m X x1, X x2) throws | OException s4: A a = new A();
c2: a.mB.xz, B.xy);
x1.read() }
} o} catch (I Oexception) { ... }
}
class B {
sl: public static X xy = new Y();
s2: public static X xz = new Z();

Fig. 7. Imprecision of M-DataReach algorithm

oo are in U, they are determined to be valid receiverdjelds of o; are assigned during the lifetime of the original
therefore, thet hrow Sonmel OException and thethrow call. Therefore, as a result of constraint 6 for instancedfiel
O her | OExcept i on statements flow to the catch Readl. write this.f = a in the constructor of classy we have
The same situation occurs when DataReach starts from orig;, s = {o2}. Similarly, as a result of constraint 7 for instance
inal call c2: a.m(...) in Read2. The same imprecision field reada = this.f in Wread, the setU, will be read
occurs with M-DataReach because it computes a single &®im the set,, ;. ThereforeU, ¢.q. = {02} and as a result
Ua.m. V-DataReach is able to avoid this imprecision becaugiege only possible target at the call r ead() is Dny. r ead.

it keeps separate sefts; andU,, for x1 andz2 respectively. Consequently, V-DataReach concludes that no exceptidn wil

Constraints 6 and 7 refine constraint 6 from M-DataReadp€ thrown and caught iget Dry. Analogously, V-DataReach
The role of the first constraint is to separate instance figk@ncludes that starting from original call the exception in
writes to objects whose lifetime does not exceed the lifetah Res- read may be thrown and caught get Res which leads
the original call. For those objects, all field writes occuridg t0 the onlye-c link.
the lifetime of the original call and the values assignedetlf 3) Conclusions:This section summarizes our algorithms.
can be collected from the right-hand-side of the field writEor a given program let be the number of classes{ be the
statement in set/, ;. Constraint 7 accounts for propagatingqiumber of methodsy be the number of reference variables,
field values. For objects whose lifetime does not exceed theéncluding static fields® be the number of object allocation
lifetime of the original call, the values of an accessed fielsites, andF be the number of instance field identifiers.

[are collected from the corresponding &t ;. For objects The complexity of a data reachability analysis that fits
whose lifetime may exceed the lifetime of the original cal),, schema depends on the numieof U sets kept dur-
(i-e., the object escapes the original call, or it is cre@iore jng propagation. The overall complexity can be broken into
control_enters the original call) th_e possible f|eld yalues three components: (i) the complexity of generating inclu-
approximated from the global points-to solution since &10gion constraints for program statements (constraints @r4 f
fields may be set outside of the original call. The followingyatareach and M-DataReach, and 1-5 for V-DataReach), (ii)
e.xam_ple taken from theittpClient benchmark illustrates this e complexity of solving the system of inclusion consttsjn
situation. and (iii) the complexity of computing the field closure for

Example. Consider the example in Figure 11. StartingetsU (constraints 5 and 6 for DataReach and M-DataReach
V-DataReach from original calkcl in get Dmy we have and 6 and 7 for V-DataReach). Clearly the complexity of (i)
UgetData.w = {01} @ndUgetpata.a = {02}. Clearly, objectr; is dominated by the time to process virtual calls which is
does not escape its creating method (i.e., it’s lifetimesdo®t O(O * E) where E is the number of call graph edges. The
exceed the lifetime of the original call); therefore thetamce complexity of (i) is O(O * k?) (for each setl/; at mostO

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004

class A {
void read() throws | OException; }

cl ass Dny extends A {
void read() { // do nothing. } }

cl ass Res extends X {
public void read() throws | OException {
/1l Code reads disk files and throws
/1 1 OException

b}

public class W{
Af;
void WA a) { this.f = a; }
void read() throws | OException {

Aa=this.f;
a.read();
}
}
Fig. 8. Imprecision of M-DataReach algorithm

objects can be propagated to at mbsitherU; throughU;).

12

class M {
void getData(A a) throws | OException {
Ww = new Wa); //ol
w. read(); }

void getDny() {

try {
cl: getData(new Dmy()); //02

} catch (1 Oexceptione) {...} }

void getRes() {

try {
c2: getData(new Res()); //03

} catch (1 Oexceptione) {...} }
}

The instrumentation is accomplished through method calls.

Finally, the complexity of (iii) isO(O? * F x k). Therefore the For eache-c link (p,c), we first locate thecat ch block ¢
worst-case complexity of our algorithms parameterizedcpy and the correspondingry block. At the entry of thetry

the number ofU sets is:0(O x E + O x k? + O? x F x k).

block, a special method call is inserted to dir&éteéndosus

The following table summarizes our analyses in order ¢d inject the fault selected at static instrumentation tirAe

growing precision and complexity:

TABLE |
DATA REACHABILITY ALGORITHMS

Algorithm U sets
DataReach 1
C-DataReach C
M-DataReach M
V-DataReach v

Complexity

OE+O+0%xF)
OO*E+0+C>+0%xFxC)
O(0O x M2 + 0% x F x M)
OO+ V2+ 0%+ FxV)

IV. EMPIRICAL RESULTS

the entry of thecat ch block, another method call is inserted
to query and record the call stack encapsulated in the caught
exception. The instrumentation methods called are dedigoe
that each instrumentation point can be turned on and off by a
command line option. Note that the fault must be selected so
that exactly one fault-sensitive operation will fail andaw

an exception. In addition, we collect the set of I1/O objects
created in user code during execution, in order to limit the
scope of the injected faults to this set, so that I1/O opemnatio
conducted by Java virtual machine instead of user code will
not be affected, which include, for instance, security @oli
loading and class loading.

In this section we discuss the instrumentation used in our
methodology, report our empirical findings, and discussesom .
case histories from our experiments. Initial findings on & sB- Experimental setup & benchmarks

of four moderate-sized web server applications have bee
reported previously in [32]. In this paper we report the hssu
of additional analyses applied to these programs and pre
extensive case studies of them. New experiments with th
additional, larger applications, including one writterttwthe
Tomcatframework, are presented and discussed as well.

A. Instrumentation

"We implemented Exception-flow analysis and DataReach
analysis as two separate modules in the Java analysis and

Sen

transformation framework Soot [19] version 2.0.1, using a

5 ®8GHz P-IV PC with Linux 2.4.20-13.9 and the SUN JVM

1.3.108 for Linux. By separating the two phases of our analy-
sis, we were able to show the gains from adding the DataReach
postpass. Soot provides a call graph builder usigss
Hierarchy Analysis(CHA) [20], and Spark a field-sensitive,

The methodology described in Section I requires that tif@w-insensitive and context-insensitive points-to asaly(a
Java program be instrumented to report coverage ofetbe form of 0-CFA)[30], [34], [18], [31]. We implemented anothe
links exercised and to communicate wittendosuso request call graph builder usingRapid Type Analysi{RTA)[21].
specific faults. A detailed description of the methodologgsw The instrumentation phase is also implemented as a separate
described in our previous paper [10]; we briefly summarize itodule in Soot.

here.

We experimented with the following seven different anaysi

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 13

TABLE ||
configurations” BENCHMARKS

; : ; : Name Classes Methods| LOC | .class Size

1) CHA — Bu_lld call graph W|Fh Clasg Hierarchy AnegS|s. FTPD TI(1407) | 128(7479)| 2783 39018

2) RTA — Build call graph with Rapid Type Analysis. INFS 56(1664) | 447(9603) | 10478 | 175,297

3) PTA — Build call graph using Spark. Muffin 278(1365) | 2080(7677)| 32892 | 727,118

4) InPTA — Build call graph with Spark plus selective [Haboob [338(1403)[1323(7432) 39948 | 731413

constructor inlining HttpClient | 252(2210) | 1334(4741)] 61405] 1,049,784

: : . SpecJVM | 484(2161) | 2489(4592)| N/A | 2,817,687

5) PTA-DR — Use Spark to provide the points-to graph vk 307(2266) | 1565(5029)| N/A | 2.902.947

and call graph plus use DataReach as a postpass filter.
6) INPTA-DR — Use Spark plus selective constructor in- o) .

lining to provide the points-to graph and the call graph, AS shown in Figure 1, dynamic testing is conducted by

and use DataReach as a postpass filter. running thg instrumented code W|th various worquad_s to
7) INPTA-MDR — Use Spark plus selective constructopxercise different vulnerable operations in the apploredi

inlining to provide the points-to graph and the call graplf-xPeriencede-c I_inks are re_cor_ded in a Iog file during_the
and use M-DataReach as a postpass filter. test. By processing the-c link information file and log file
after the test we obtain the coverage data. The dynamic tests

|] were performed on a cluster of 800MHz Pl PCs using Linux
« FTPD, a Ftp Server in Java by Peter Sorotokin V0.6 5 5 14.5 0: we used IBM Java 2.13 Virtual Machine for Linux

« JNFS, a server application that runs on top of a natiygy || of our benchmarksMendosusvas running as a daemon
file system and listens to and handles requests for b?ﬁbcess on each of these machines.

read and write accesses to files. The server communicateﬁ1 this testing we made the usual assumptions that (i)

with .various cligntg via RMI [35] faults are independent of each other and (ii) faults occur
« Muffin, a web filtering proxy server [36] rarely. We only injected one fault per run, resulting in at

« Haboob, a simple web server based on SEDA, a stagest onee-c link covered per test; therefore, we needed to

event-_drlven archltecture__[37] run each benchmark several times, each time targeting one
« HttpClient, an HTTP utility package from thépache ¢ ¢ jink Because we lack a model for faults that tend to
Jakarta Project[38]. We collected its unit tests to form happen together, systematically testing more than one faul
a whole program to serve as a benchmark. at a time is difficult. A testing harness was constructed,
« SpecJVM, a standard benchmark suite[39] that measu(ggic, jterated over the-c linksinformation file, repeatedly
performance of Java virtual machine, especially for runynning one benchmark program as necessary. As usual it was
ning client side Java programs the tester's responsibility to find proper inputs and pragra

« VMark, a Java server side performance benchmark. It i3 nfigurations, so that designated vulnerable statement (a
based onVolanoChat[40] — a web based chat server, it_sensitive operation) were executed.

The benchmark includes the chat server and simulated

We used seven Java applications as our benchmarks:

client
Column 2 of Table Il shows the number of user classeS; Empirical data
with those in parentheses comprising the JDK library classe Table Il lists the number ok-c links reported for each

reachable from each application. The data in column 3 are thénchmark in each analysis configuration. Column 9 lists
number of user methods and those in parenthesis are the 3K number of links, amoung those discovered in INPTA-
library methods reachable from each application. ColumnMDR, whose corresponding y block was executed by a test
gives the number of lines of code in user code source filescecution. The last column shows the numbereeé links
when available. The last column shows the size of.thass actually covered for each benchmark in the fault injection
files (in bytes) of each benchmark, excluding the Java JOKsting. Table IV is the overall exception def-catch cogera
library code. The reachable method counts are calculated fpy all the benchmarks derived from the data in Table Ill. We
Spark, with the lines of code calculated using the UNIX can see from the tables that the use of points-to analysis for
utility. INFS is the only multi-node applicatiéhlso note that call graph construction dramatically reduced the number of
we run all the benchmarks in SpecJVM together as one Jaya linksreported in all of the benchmarks.
program, because I/O module in SpecJVM is shared across alyve offer 2 different calculations for the percentage
the benchmarks. links covered. In columns 2-8 of Table IV, we use the metric
We have Java source code for all the benchmarks excgptcribed in Section 1 (i.e., the ratio efc linkscovered to
SpecJVM and VMark. Only part of the source code fopossiblee-c linksfound by our analysis). In the last column (9)
SpecJVM is provided and there is no source code for VMaréf Table IV, we calculate the ratio of the numberet links
Although we can conduct our experiments using only bytexercised to the number of links whose corresponding
code, the unavailability of source code hindered the pmcasiock was executed by a test execution. Effectively, thinae
of interpreting our experimental results. measure factors in how well the tests we are using to execute
the program actually cover the settafy blocks in the code. If
ex7ﬁ((:eiltfctive constructor inlining and DataReach were onlylusiere stated o cannot cause execution to reach the block containing
ECUN)émly’ we assume the network supporting RMI is reliatheat is, we @ vulnerable operation, then we cannot expect to inject & fau
ignore faults that affect RMI transportation. to test the recovery code corresponding to that operatiba. T

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 14

difference between the values of these two metrics indscathat it actually finishes more quickly than a worst-case more
the need for additional tests for our benchmarks and also lefficient, less precise analysis.
us distinguish possible spurioasc linkswhich have not been In the remainder of this section we will discuss the per-
covered frome-c links (spurious or not spurious) which hadformance of our methodology in detail on Muffin, HttpClient,
no chance of being covered in these executions. SpecJVM and VMark.

The context sensitivity obtained by adding selective con-
structor inlining before performing points-to analysisdhap. case Studies

effect only on the larger three benchmarks (i.e., compare_. .. . I
columns PTA and InPTA in Table I1l). However, when com- Finding benchmarks for the experimental validation of our

bined with the DataReach postpass, the additional precis%pproaCh has been hard. We need benchmarks which include
: . - P 7" Input data that exercises different parts of the progranecod
provided, reduced the number of reporteet linksin six

of the seven benchmarks (i.e., compare columns PTA aﬁgere is no standard benchmark suite designed for this pur-

INPTA-DR in Table I11). For thee-c linksreported by INPTA- pose. Of all the programs that are used as benchmarks in this

aper, VMark, HttpClient and SpecJVM came with input data
DR, the coverage percentage of the four smaller benchmaﬂﬁests; for the others, we had to compose tests. While by

was stabilized at approximately 84% with small variance. In

Muffin and HttpClient, the additional precision helped du t comparnng col_umns 8 a_nd 9 of Table IV, we can see that mput
. ._data or tests included in these benchmarks are not sufficient
number of reportece-c linksby more than half. Haboob is

special because it is the only benchmark that uses a sé?f-dnve the programs tory blocks that contain vulnerable

. . . operations.
constructed non-blocking network library, which does rentén : . .
as much polymorphism as the standard JDK library. ThusFOr Muffin, SpecJVM and HitpClient, we manually in

: o - Spected all thee-c linkswhoset ry blocks are reached during
the simple PTA analysis is sufficient to analyze Haboob, "fhge test while thee-c linksare not experiencédWe categorize

shown in Table IIl. From this data we see that DataReach $ihsee-c linksas follows:
client of precise points-to analysis for which added piiecis)) . -
can make a difference. In all three larger benchmarks, M-) Fe§\S|bI€e-c linksuncovered because of insufficient tests
DataReach provides more precision over original DataReach . ©" Input data. . , .
algorithm (i.e., compare columns INPTA-DR and InPTA-MDR) Infeasiblee-c links that no static analysis is able to
in Table I11). pr;‘”e'_bl inksth be eliminated usi

More disappointingly, on the larger benchmarks the cover- 3) In easiblee-cin sthat may be € iminated using context-
age obtained exhibited a larger variance across the pragram sen3|t|ye Obje_Ct renaming. o)
from 15% to 72%. Sections IV-D.2, IV-D.3 and IV-D.4 discuss #) Infeasiblee-c linksthat may be eliminated using context-
the large benchmarks and describe the causes for the lack of SENSitivé points-to analysis.
coverage gleaned from code inspection, where possible.

TABLE V
F!gure 9 §hOWS the running tlme_s of eaf:h part of the NUMBER OF UNCOVEREDe-C linksIN CATEGORY 1, 2, 3AND 4
static analysis on all benchmarks using _conflguranons PTA Program 1 5 3 7T Tom
DR, InPTA-DR and InPTA-MDR. Running times of the [Muffin 1(14%) | 3(43%) 3(43%) 7
instrumentation phase are too small to be shown, under % SpecJVM 4(13%) | 26(87%) 30
seconds for all the benchmarks. Our analysis always finished HtClient | 10(25%) | 24(60%) | 6(15%) 40

in less than 2 hours. In the worst case for the INPTA-MDR Table V shows the number of inspecteet linksin each
configuration, the time our analysis took to find ame link of the categories for each benchmark studied, with those in
in a program on average is less than 3 minutes. DataReachagsentheses showing the percentage of the numbeicdinks
most time consuming phase of our approach, but it is effectiin this category over the total number of inspected links
in reducing spurioug-c links (i.e., comparing the columnsin that benchmark. The last column lists the total number of
for PTA and PTA-DR, InPTA and InPTA-DR in Table III). inspectede-c links We will show examples extract from each
For FTPD and Haboob, DataReach used about 50% of thenchmarks to illustrate each category in detail.
total running time; for other benchmarks, it used more than1) Muffin: There are 3e-c linksdiscovered in Muffin are
90% of the total running time. We believe that an optimizeih category 4. As mentioned in Section Ill-A, our analysis
implementation of DataReach will improve overall analysigrovides the call chains that start from and end withp;
performance significantly. M-DataReach is slower than Datéor any e-c link (p;, ¢;). The code given below is one of the
Reach in most of the benchmarks, except SpecJVM. It takesssible call chains found for one of these links!® There
72% more time to finish in FTPD, 43% in Haboob, 40%re several hundred call paths given for this sirefe link
in Muffin and 15% in HttpClient. While it taks 14% lessor g. doi t. muf fi n. Handl er. processRequest ()
time to finish in SpecJVM. And M-DataReach provides mor@r g. doi t. nuf fin. H t ps. recvRepl y()
precision on three larger benchmarks. org.doit.muffin. Reply.read()

Note also that for JNFS, Muffin and VMark, the morer g. doi t. muffin. Reply.read()
precise analysis, INPTA-DR, ran more quickly than the eelatj ava. i 0. Sequencel nput Stream read()
less premse .analySIS’. PTA-DR.' This is a phenom_enon OfteraWe were not successful on doing this study for VMark in delt@itause
seen in practice in static analysis, when a more precisgsinal ye don't have access to its source code .
eliminates so much spurious information from a solution, 1%Parameters are omitted for readability.

ST

sisAjeuy weibold 21eIS Jo umop-yealg 1so) awi] 6 ‘B4

ISSASAA MMM MMM MM AN

B

HttpClient

e
Ye)

—
<
<

N
=N

6444.9

6504.5

6.3

62.1

12.1

5616.9

5697.3

0.0
30.3

8.8
4911.7

4950.9

| PN

AR AN A A AN RANNANNAN]
PR

]
FFTTTFTTFTTFTFTFTFTFTFTFTTTIS,

SpecJVM

6.0
78.9

12.3
4192.9

4290.1

5
58

4

12.
4807.8

4884.1

0.0

132.2
10.0

LAORLRRRRRRRLLY

B s A A A N N N
B

Fd E-Flow DataReach 4 Total

PTA

Ed Inline

AR,

Vmark

5.0
60.

7

8.7
5736.0 | 4503.7

5810.4 | 4645.9

5.7

64.1

9.0
5423.0

5501.7

0.0
715

7.3
6005.2

6090.1

Muffin

7.4
348.4

22.5
3664.8

6.7
323.1

252

2619.9

2974.9 | 4043.1

0.0
313.2

19.2
4582.0

4914.5

[

EANAAMAAMNAANAAMANAAN

DR InPTA—D]‘ InPTA-MPTA-DR ‘InPTA—D4InPTA—M PTA-DR ‘InPTA—D4InPTA—M PTA-DR ‘InPTA—D4InPTA—M PTA-DR ‘InPTA—D4InPTA—M

Haboob

64.5

13
103
184.5

42
67.7

16.8

1.7

160.4

62.2
2.5

97.2

171.9

N N A D N R R D R RN RN NN
T TTTTTTTTTTTITTTITTTTTT T T T T T T T T TFTTIIss,

[

B A AR
VI LTSS TSI TSI T IT TS LSS LSS

INFS

4.1

176.5
12.6
3046.3

3239.5

52

5222
20.

4

3010.6

3558.4

0.0

172.4
16.9
5071.2

5260.5

N N N N A A A A N N N NN
oSSR

NASSASABAAMAMAMAMAM MMM MMM

| A A A A

DR ‘InPTA—D]‘InPTA-M PTA-DR InPTA—D4InPTA—M PTA

FTPD

PTA.

2.7
37

9.3
249.2

298.2

3.9

6.7

54

1

144.6
220.6

53.7

1

2.1

155.8
221.6

10,000 T

1,000 A
100
1

(60]) puooasg

7002 HOW'E'ON ‘¢ “TOA ‘ONIYIINIONT IHVMLF0S NO SNOILOVSNVHL 3331

Inline
PTA

E-Flow

DataReach

Total

Benchmarks

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 16

TABLE Il
NUMBER OFe-c links

Program CHA | RTA] PTA | InPTA | PTA-DR | InPTA-DR | InPTA-MDR | Reached]] Covered
FTPD 34 34 16 16 16 13 13 13 11
JNFS 104 104 39 39 22 19 19 19 16
Muffin 480 258 112 112 87 42 42 42 35
Haboob 96 73 12 12 12 12 12 12 10
HttpClient 1946 | 1946 255 251 238 118 107 105 65
SpecJVM 511 511 90 82 72 54 47 37 7
VMark 2039 | 2039 130 100 109 57 47 18 13

TABLE IV

OVERALL EXCEPTIONDEF-CATCH COVERAGE

Program CHA | RTA' | PTA | InPTA | PTA-DR | InPTA-DR | InPTA-MDR || Effective Coverage

FTPD 32% | 32% | 69% | 69% 69% 85% 85% 85%

JNFS 15% | 15% | 41% | 41% 72% 84% 84% 84%

Muffin 7% | 14% | 31% | 31% 20% 83% 83% 83%

Haboob 10% | 14% | 83% | 83% 83% 83% 83% 83%

HtpClient | 3% | 3% | 25% | 26% 27% 55% 61% 62%

SpecdVM | 1% | 1% | 8% 9% 0% 13% 5% 19%

VMark 1% | 1% | 10% | 13% 2% 23% 28% 72%
java.util.zip. GZI Pl nputStreamread() is needed to confirm this hypothesis.
java.util.zip.InflaterlnputStream read() Recall that we use inlining of constructors that set object
java.util.zip.InflaterlnputStreamfill() fields throught hi s, to gain partial context sensitivity in our
java.io. Bufferedl nput Streamread() points-to analysis. Although this introduces some adudéio
java.io. Buf f er edl nput St ream r_eadl() precision into our analysis, it remains a context-inséresit
java.io.Bufferedl nputStreamfill() points-to analysis. By using M-DataReach, discussed in Sec
java.util.jar.JarlnputStream read() tion ??, rather than DataReach, we may be able to increase
java.util.zip.ZiplnputStreamread() further the precision of our analysis. This result has been
java.util.zip. ZiplnputStream readEnd() confirmed in our experiments. However, even M-DataReach
java. util.zip.ZiplnputStreamreadFul | y() can not always increase precision. For example, when the
java.io. Pushbackl nput Stream read() receiver of a virtual method invocation is an element exédc
java.io.FilterlnputStream read() from a container, as in the call chains corresponding toethes
java.io. FilelnputStreamread() threee-c links many spurious method calls may be introduced

We inspected these call chains and found all of the calhd they can not be eliminated by M-DataReach.
chains for this particulae-c link share the same prefix, but 2) SpecJVM: There is no network related program in
after Sequencel nput Stream read() they begin to vary gpecjvM; therefore, we were surprised to see both disk and
by selectingread() methods from different subclasses Ofetwork 1/0 relatece-c linksfound by our analysis. After code
| nput St r eam and following different permutations of Calls-inspection we discovered that SpecJVM has a dedicated 1/0
After reading the source code Béquencel nput Streamwe package that is shared among all the benchmark programs.
found that this class uses dmuneration class to keep aj the 1/0 requests are handled in this package; requests
track of subsequenitnput St reans. Although no object of ¢4 pe fulfilled by reading files either on a local disk or
GZI Pl nput St reamhas ever been assigned to the subsequei 5 remote HTTP server. Input data is read from HTTP
input stream ofSequencel nput Stream the usage of the geryer when the benchmark is running as a Java applet;
container class confuses the points-to analysis into @iodu giherwise data is read from local disks. When the program
the current resultread() in Sequencel nput Streammay s rynning as a Java applet, it is either enclosed in some
call read() in GZI Pinput Stream and also almost everyyeh browser, or in alava Applet Viewethat is provided
subclass of nput St r eam with the Java JDK. In either case, unfortunately, we failed

Call chains for all threee-c linksin the second categoryto set up the current implementation of the fault injection
share the same characteristics described here: they allév framework to perform fault injection targeted solely on the
the use of containers. This phenomenon is caused by conteyiplet, without affecting the enclosing program: eithee th
insensitive points-to analysis, in a manner similar to th&keb browser or thelava Applet ViewerThus, we could not
analysis imprecision for constructors discussed preWouscover the network-relateetc linkswithout changing the code
More precise points-to analysis [41] addresses this pnoblén the SpecJVM slightly. We discovered thsiec. har ness
by distinguishing calls by their receiver object when amadyg package maintains a8pecBasePat h variable which is the
methods, thus producing a more sparse (and precise) poitigse location of SpecJVM itself. The valueSpfecBasePat h
to graph; this should reduce the call chains fog-a link or is set to a remote URL when SpecJVM is running as a Java
maybe even make it possible for DataReach to judge tha-theapplet. We modified 7 lines of source code in the benchmark
c link is actually infeasible. We believe that additional contexto keep the value oSpecBasePat h as a URL pointing to a
sensitivity added to the points-to analysis would furthrar i remote file so that I/O requests are fulfilled through network
prove the precision of owe-c links but further experimentation access, even when SpecJVM is running as a stand-alone Java

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 17

program. This enabled the network-relateet linksto be all the inspecteck-c linksin HitpClient. And below is a brief
covered. description of these-c links

Even after this process, as can be seen from Table Il, weln many tests of the HttpClient package, the HTTP requests
still can not cover a large portion of theec linkswhosetry and responses are faked in the local memory instead of being
blocks have been reached. And 87% of theselinksbelong sent and received through network. This is done so that some
to category 3: Infeasible-c linksthat may be eliminated using functionality of HttpClient which do not necessarily invel

context-sensitive object renaming. I/O operation can be tested quickly. A special HTTP connec-
tion class is defined for this purpose. In general, yet amothe
? network connection will be established if the connectioasus
4 a secured protocol (i.e. “https”) and a proxy server is djasti

. alrea_dy “opened”. Its r_lard coded in these test cases that the

- D.read(special HTTP connection class never uses secure protocol or

TG read (D "'" any proxy server, so as to avoid real /O operations. But it
Mo om0 is hard (if possible) for any static analysis to recognize th
@ Veclink - - | ® infeasibility of these complicated control-flow paths ahds
oo eliminate the correspondingtc links
, , Significant portion of inspected-c linksfall in category
Fig. 10. Recursive Call Graph 2 in Muffin(43%) and SpecJVM(13%) too. All of thesec

The call chains corresponding to these €8 links share |inks correspond to infeasible control flow paths, while the
an pattern. We use a simplified example to illustrate thigfeasibility of these paths can not be recognized by static
for better readability. Consider call chaimt.read() — analysis due to usage of string variables in tfiecondition
B.read() — C.read() — D.read() — B.read() — expressions.

E.read(). The fault-sensitive operation i8. read() that, There are 6e-c links of HttpClient in category 3. A
when executed, will throw anOExcept i on if an appropriate simplified example is showed in Figure 11 to illustrate this
fault is injected. There arery-catch clauses in both case. Consider the call chavm get Dny — M get Data —
A.read() and C read() that catchl CException. The wread — Res.read. By reading the code we can see this
two outgoing edges fronB.read() come from a single call chain is infeasible, because in methddyet Dy a Dny
polymorphism call site. The call graph and the generatefbject 02 is passed to thaw object ol created in method
e-c links are shown in Figure 10 (a). The-c link from M get Data. So onlyDny. read will be called inWread if
E.read() to A read() is infeasible, because the actualye start fromM get Dmy. But when the M-DataReach analysis
points-to relationship between objects in the program esussxamines this call chain, firgtl will be put into Uas.getpata
the call chainA. read() — B.read() — E.read() to be when M getData is processed. Thewnl is propagated to
infeasible. Context-sensitive renaming may be able to help,,..,. A field dereferencavf will be reached in method
on this case. If we spliB. read() according to its caller, as w r ead. According to the program points-to graph, bath
shown in Figure 10 (b), before performing points-to analyshndo3 are in the points-to set afl. f, thus they are both put
and exception-flow analysis, we may be able get a better Gallo Uyy,...q. S0 Res. read is considered reachable by the
graph and thus more precisec link information. analysis.

3) HittpClient: Control flow in methods of HttpClient is Using context-sensitive renaming before running poiots-t
complicated. And many control flow decisions depend ainalysis may help solve this problem [41]. In the renaming
values of string variables, for instance, protocol nameS[P phase ol will be renamed to two different objects depending
response code, data encoding method names. In this benbk-caller of its enclosing method get Dat a: 01/ getDmy
mark, 10e-c linksfall into category 1: feasible but we doand o1/ getres- Thus only o2 will be in the points-to set
not have sufficient tests to drive the program into the sgecitf olas gerpmy.f and only Dny. read will be considered
control paths that these-c linkscorrespond to. For example,reachable given the call chain started frivrget Drry.
when some connection object is to be recycled (i.e., closed4) Vmark: By testing these benchmarks, we found that the
and reused for another host), HttpClient will try to read rovaests and/or input data that came with HttpClient, SpecJVM
the networkonly if the previous HTTP response on thisand VMark are insufficient to drive execution into different
connection is encoded ahiunkedand the previous responseparts of these programs. We believe this is the reason why
content isnot fully consumed. So the-c linkfrom a network there are so mang-c linkswhoset ry blocks are not reached
read to thecat ch block in the network connection recyclingduring our experiments, especially in Vmark. VMark is a
method is feasible. But unfortunately none of our tests & thweb chat server built on top dfomcaf42], which is a Java
scenario. More carefully designed test cases and spedalizervlet container. When used as a Java server-side perfoema
HTTP responses are needed to drive the program into differ@enchmark in VMark, many parts @bmcatare not exercised,
control-flow paths in order to cover these 10 links. which results in many of the-c linksfound by the analysis

Complicated control flow also confuses static analysibeing unreached by the tests. For instance,Tamcat an
There are 24e-c linksfall in category 2 (infeasible-c links operator can change the configuration and force reloading of
no static analysis is able to prune), which account for 60% tife affected servlets. Also whéfomcatreceives a shutdown

K in the connection properties, even if the current connadso
1
)

i

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 18

class A) class M
void read() throws |COException; void getData(A a) throws | CException{ M get Dy M get Res

} Ww = new Wa); //ol
class Dny extends A{ w. read():
void read() {...}

}
voi d get Dy() { M get Dat a
class Res extends A{ tryf ol created
void read() throws ICException{ get Dat a(new Dny()); //02
} . throw new | OException; .. } catch (1 OException e) {...}
}
} voi d getRes() { Wr ead
class W try{ \ ol f dereferenc
Af, get Dat a(new Res()); //o03
vmg WAd?) {)f Ea; } . (} catch (1 OException e) {...}
void read(A a) throws | ception } f r
tread(): } Drry. read Res ead

}
}

Fig. 11. New Object

request, the changed configuration must be flushed to #ieds of faults injected, and their definition of coverag@eT
disk. Because this part diomcatis not exercised in VMark, primary goal of their approach was to increase fault agowet

e-c links corresponding to the I/O operations necessary tmd fault coverage, not to increase program coverage. They
perform these functionalities are left unreached and thege injected a set of hardware-centric faults such as corrgptin
uncovered. By examining the call chains of the linksin registers and memory; these faults primarily affected pog
VMark, we found that of thee-c linkswhoset ry blocks are state, not communication with the operating system or 1/O
not reached, only three-c linksare related to the chat servehardware. They used a basic-block definition of program
code; the call chains corresponding to all the oteear links coverage, rather than measuring coverage of a prograrh-leve
lie are completely within th@omcatcode. In the 18 reachedconstruct such as @at ch block. Bieman et. al [45] explored
e-c links 13 e-c linksare related to the chat server. Thus, an alternative approach where a fault is injected by viotpt
significant portion offomcatis left unexercised in VMark. set of pre- or post-conditions in the code, which are require
to be expressed explicitly in the program by the programmer.
This approach used branch coverage, a program-coverage
metric.

This paper presents exception-catch link analysis and itsin the terminology of Hamlet's summary paper reconciling
use in def-use testing of Java program recovery code. Thergraditional program-coverage metrics and probabilistialtf
much previous research relevant to this work in: faultdtign analysis [46], our work can be classified as a probabilistic
testing, dataflow testing coverage metrics, exceptiordlean input sequence generator, exploring the low-frequencytisp
analysis and compilation, points-to analysis (for refeeento a program. Using the terminology presented by Tang and
variables) and infeasible path analysis. We will discuss tiHecht [47], which surveyed the entire software dependgbili
most relevant research results in these areas each in turn.process, our method can be classified as a stress-testseecau

Fault injection. There has been considerable previous woiik generates unlikely inputs to the program.
in the operating systems community on using runtime fault Dataflow testing and coverage metricsThere is a large
injection for testing the robustness of programs. In the dbedy of work that explores def-use dataflow testingn dif-
pendability community, (prograrmgoverageis defined as the ferent programming language paradigms. The seminal papers
conditional probability that the system properly procesae established a set of related dataflow test coverage metiits a
fault, given that a fault occurs [43]. A stochastic model ofxplained their interrelations [13], [48]. The contrilmrti of
expected fault occurrance is used to guide the selection @fr work is to define and implement a def-use analysis of
faults that are then injected into a running program and tla@propriate precision that fairly accurately matches ptioas
resulting execution is observed [1]. This approach yields (ae., representative exception objects created at spemidi-
stochastic-based fault coverage that treats the runnogy@m ation sites) to their handlers. This is especially impadrtan
as ablack box8]; the behavior of the program after the fault issnsure the dependability of the web applications that are ou
injected is the criteria by which coverage is acheived or ot focus [10].
contrast, the experiments in this paper measure coverage in Sinha et. al defined an interesting and novel set of coverage
manner similar to the software engineering testing comtgunimetrics for testing exception constructs and gave their sub
which uses the percentage of program entities (e.g., besnclsumption relations [49]. The metrics were defined for chdcke
methods, def-use relations) exercised as a quantitatizsume exceptions explicitly thrown in user code, however theynsee
of coverage [13], [8]. easily extensible to both implicit and explicit checked epxc

Recently, there has been some research in the dependahiiitys. Our overall exception def-catch coverage metriensee
community that uses similar program-based coverage meagivalent to an extended version of thalle-deactscriteria
sures to those in this paper. Tsai et. al [44] placed breakpoidefined for both implicit and explicit exceptions. Because w
at key program points along known execution paths arae most interested in recovery code that deals with prablem
injected faults at each point, (e.g., by corrupting a valwue to system interactions, we focus on implicit checked
in a register). Their work differs from ours in its goal, theexceptions that are thrown in JDK libraries, whereas they de

V. RELATED WORK

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004 19

with user-thrown exceptions, that are probably user-défase appropriatecat ch blocks™.

well. No exception analysis or implementation experienite w Another analysis of programs containing exception hagdlin
their metrics is presented. constructs [51] calculates control dependences in theepoes
of implicit checked exceptions in Java. This analysis fesus

The overall exception def-catch coverage metric éc - :)
. o on defining a new interprocedural program representatian th
links, that relates resource-usage faults to specific exception ;)

) . i . exposes exceptional control-flow in user code. In a morentece
objects, differs slightly from our previousverall fault-catch

: - : : e technical report [17], Sinha et. al present an interprocadu
coverage metric [10]. Our original metric required the ajen rogram representation which more accurately embeds the
of each kind of fault that could trigger a particular excepti program rep y em
for a fault-sensitive instruction, rather than trying tausa a possmle.mtraprocedural control-flow through exceptiam-c

o . ’ . ﬁtructs (i.e.,trys,catchs andfinal I ys). Class hierarchy
specific exception to occur. Both metrics are analogouseo tanaI sis is used to construct the call edges in this represen
all-usesmetric in traditional def-use testing [13], with fault- y g P

i . . s . tation. An exception-flow analysis is defined by propagation
sensitive operations corresponding to definitions of etioap f exception types on this representation to calculateslink

andcat ch blogks correspon.ding to uses. Overall faUIt'CatCE' tween explicitly thrown checked exceptions in user codk a
coverage requires the appllcatlon.of thg .complete .rangetﬂ%eir possible handlers. It seems clear that this analysisdc
Iaelum“: fgﬁﬂﬂg.égﬁgzﬁégﬁ:;ﬁtemlI,\]'Vt'::se)(:t::rgb%%zruastm be extended to include implicit checked exceptions as well,
T J : 9y Paper, assuming that the program representation could be cotstruc
injecting faults at the interface between JDK 1/O methods a%om the bytecodes of the JDK library methods, and that the

nf';mve m_ethods rather than at the device-level [10], we malnr}ault-sensitive operations could be identified. The CHAsia@n
differentiate between some device-level faults that téaithe ; - .
L - : f our analysis seems the most similar to the analysis pteden
same exception; thus we inject only one fault to trigger eaaq e S
; in [17]; this version is shown on our benchmarks to be too
exception. . . L . ,
imprecise for obtaining coverage efc linkscorresponding to
As stated in Section I, traditional fault-injection tegtirs implicit checked exceptions, the focus of our work.
performed by treating the application as a black box. Succes Choi et. al [52] designed a new intraprocedural control-flow
is judged by how often the application does not crash iepresentation, that accounted for operations that might g
response to an injected fault. Other white-box, controkfloerate unchecked exceptions callells, potentially excepting
coverage metrics have been proposed by some groups ifetructions they used this representation as a basis for safe
use with fault-injection testing; these correspond to jmmey dataflow analyses for an optimizing compiler. It is diffictdt
metrics (e.g., branch, edge and basic block coverage) ared heompare their representation with the others described, her
been summarized previously [10]. because they capture different sorts of exceptions, such as

. NullPointerException that correspond to different possibly
Analysis of exception handling.Two previous exception- excepting instructions.

flow analyses were aimed at improving exception handling in Exceptions and compilation.Dynamic analyses have been

pr%gramst,_ for1e5xani|éleTa;:/mdlr:jgﬁex?eptlon handlmtg rtgt(;u%veloped to enable optimization of exception handlingo: p
subsumption [15], [16]. These differ from our exceptio rams that use exceptions to direct control-flow betweemmet

link analysis ".1 significant ways. First,.their.calllgraph i%ds, such as some of the Java Spec compiler benchmarks [39]).
constructed using class hierarchy analysis, which yieldsra The IBM Tokyo JIT compiler [23], successfully uses a

imprecise call graph [20], [21]. Second, these analysastr s L . .)
exception types through the call graph of the program to %eedback directed optimization to inline exception hargll

| wcat ch cl that miaht handle th c tall aths and eliminate hr ows in order to optimize exception-
relevanicat ch clauses that mignt handie them. L.onceptualiy, gy q programs whose performance can be improved up
these analyses use one abstract object per class. An operg

8 18% without affecting performance of non-intensive de

that can throw a particular exception is treated as a SourﬂeLaTTe[SB], exception handlers are predicted from profiles

of an abstract object that is then propagated along reve[se

trol-f ths ble hand] i eat oh block previous executions and exception handling code is only
control-flow paths to possible handlers (i.eat ch blocks). translated in the JIT on demand, so as to avoid the cost when

Jo et. al [16] present an interprocedural set-based [50]s not necessary. THERL VM[54] performs lazy exception
exception-flow analysis; only checked exceptions are aealy throwing, in that it avoids creating exception objects, rehe
Experiments show that this is more accurate than an intrappwssible, unless they are live on entry to their handler.
cedural JDK-style analysis on a set of benchmarks five ofPoints-to analysis.There is a wide variety of reference and
which contain more than 1000 methods. Robillard et. al [1Bpints-to analyses for Java which differ in terms of cost and
describe a dataflow analysis that propagates both checkkd grecision. The information computed by these analyses can
unchecked exception types interprocedurally. Neither@gpgh be used as input to our exception-flow and data reachability
analyzes Java libraries unless source code is availableh@o analyses; clearly, the precision of the underlying analysi
case for the JDK). They each handle a large subset of thiects the quality of the computed coverage requireménts.
Java language, but make the choice to omit or approximatetailed discussion of points-to and reference analysés an
some constructs (e.gstatic initializers, finallg). Both of the dimensions of precision in their design spectrum agpear

these analyses are more imprecise than ours, especially i
y P P y IHNote, in our analysis we use the usual approximation of opeesentative

their appr':')(irm;‘_ti(.)r.1 of interproc_e_dural Con-trol-fIO\.N; theit of exception object for each creation site, these two algostblo not distinguish
them trace definitions of specific exception objects to theietween exceptions of the same type created by two diffesiees:.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004

in [34]. Our partially context-sensitive points-to anasyss
most closely related to the context-sensitive analysesuin Oy
previous work [26], [27]. These approaches avoid the cost
of non-discriminatory context sensitivity, which seemsbi®
impractical; they rely on techniques which preserve thetpra [
cality of the underlying context-insensitive analysis l&him-
proving precision substantially. This is achieved by dffesty
selecting parts of the program for which the analysis coegput (3]
more precise information, either by using parameterinatio
mechanisms as in [26], [27], or partial constructor inlgin
as in our current algorithm. Other context-sensitive psotot
analyses that seem to be substantially more costly than ours
are presented in [55], [22], [56], [57]; these analysis &thms
implement non-discriminatorily context sensitivity.

Infeasible paths. Bodik et al. present an algorithm for
static detection of infeasible paths using branch coiiat
analysis, for the purposes of refining the computation of def®
use coverage requirements in C programs [58]. Our data
reachability analysis focuses on the detection of infdasib
paths in Java which arise due to object-oriented featur?
and idioms such as polymorphism; this is not addressegj
in [58]. Souter and Pollock present a methodology (withouie]
empirical investigation) for demand-driven analysis fbe t
detection of type infeasible call chains [59], [60]. Simi§a [1q]
to their work, our analysis is demand-driven as we analyze
the program starting from the original call. However, our
data reachability analysis propagates information in seah
objects instead of classes which will result in more preci$gl]
analysis results. In addition, our work proposes a techiqu
for summarizing the effects of callees; this problem is not
addressed in [59] and [60]. Our simple RTA-like technique
for collecting potential receiver objects proves suitafde [12]
the problem of eliminating infeasible-c links; the empirical |13
results demonstrate that it can eliminate substantial rurab
infeasible links.

2]

(5]

[14]
VI. CONCLUSIONS

We have defined a fairly precise exception-catch link anf}\l-
ysis which has been shown useful on our benchmarks for
testing error recovery code of Java programs. Our full asisly
algorithm outperforms other (less precise) versions of tIE]%]
analyses that we investigated on our benchmarks, and éshibi
significant precision gains in the setet linkscalculated. Our [17]
use of data unreachability to infer control-flow unreachigbi
shows promise in allowing us to prune spuriais links

Our automatic compiler-directed fault injection methodol18]
ogy applied to our benchmarks leaves, on average, approxi-
mately 16% of the links uncovered and therefore needing to
be examined by a human tester. This is an upper bound on e
false positive e-c linkthat are reported for these benchmark?ZO]
Given that testing is by its nature an interactive activibg
uncoverecke-c linkscan be seen as drawing a tester’s attention
to recovery code that requires human reasoning as part of Eﬁ
normal testing process.

Our future plans include testing application uses of other
Java JDK libraries, such amva.rmi and expanding our

. : : 22]

analysis to handle multi-node programs and middleware tﬂa%
use configuration files for dynamic loading of classes.

20

REFERENCES

J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Plhw&-ault
injection and dependability evaluation of fault-toleraystems,"|EEE
Transactions on Computersol. 42, no. 8, pp. 913-923, Aug. 1993.
M. Cukier, R. Chandra, D. Henke, J. Pistole, and W. H. ®asd‘Fault
injection based on a partial view of the global state of aritisted
system,” inSymposium on Reliable Distributed Systef#99, pp. 168—
177.

S. Dawson, F. Jahanian, and T. Mitton, “ORCHESTRA: A Fdut
jection Environment for Distributed Systems,” froc. 26th Int. Symp.
on Fault Tolerant Computing(FTCS-26%endai, Japan, June 1996, pp.
404-414.

4] S. Han, K. Shin, and H. Rosenberg, “DOCTOR: An Integrafadtware

Fault Injection Environment for Distributed Real-Time 8yss,” inint.
Computer Performance and Dependability Symp. (IPDS'&)angen,
Germany, Apr. 1995, pp. 204-213.

G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “FERRAR
Tool for the Validation of System Dependability Propertiea Proc.
22nd Int. Symp. on Fault Tolerant Computing(FTCS-22)Boston,
Massachusetts: IEEE Computer Society Press, 1992, pp3336—

Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Koacki, J. Barton,
D. Rancey, A. Robinson, and T. Lin, “FIAT — Fault Injection sl
Automated Testing environment,” iRroc. 18th Int. Symp. on Fault-
Tolerant Computing (FTCS-18)Tokyo, Japan: IEEE Computer Society
Press, 1988, pp. 102-107.

ﬁ R. V. Binder, Testing Object-oriented SystemsAddison Wesley, 1999.

G. J. Myers,The Art of Software Testing John Wiley and Sons, 1979.
R. G. Hamlet, “Testing programs with the aid of a compildEEE
Transactions on Software Engineerjingpl. 3, no. 4, pp. 279-290, July
1977.

C. Fu, R. P. Martin, K. Nagaraja, T. D. Nguyen, B. G. Rydand
D. Wonnacott, “Compiler-directed program-fault coveraige highly
available Java internet services,” Proceedings of the International
Conference on Dependable Systems and Networks (DSN, 2008
2003.

X. Li, R. P. Martin, K. Nagaraja, T. D. Nguyen, and B. ZlgarfMen-
dosus: A SAN-Based Fault-Injection Test-Bed for the Cargdion of
Highly Available Network Services,” iffroceedings of the 1st Workshop
on Novel Uses of System Area Networks (SANG&jnbridge, MA, Jan.
2002.

K. Arnold and J. Gosling,The Java Programming Language, Second
Edition. Addison-Wesley, 1997.

S. Rapps and E. Weyuker, “Selecting software test dsiiagudata flow
information,” IEEE Transactions on Software Engineeringl. SE-11,
no. 4, pp. 367-375, Apr. 1985.

C. Fu, R. P. Martin, K. Nagaraja, T. D. Nguyen, B. G. Rydand
D. Wonnacott, “Compiler-directed program-fault coveraige highly
available Java internet services,” Department of Comp@&eience,
Rutgers University, Tech. Rep. DCS-TR-518, Jan. 2003.

] M. P. Robillard and G. C. Murphy, “Static analysis to popt the

evolution of exception structure in object-oriented sysg ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 12,
no. 2, pp. 191-221, 2003.

J.-W. Jo, B.-M. Chang, K. Yi, and K.-M. Cho, “An uncaugéception
analysis for Java,Journal of Systems and Softwa&004, in press.

S. Sinha, A. Orso, and M. J. Harrold, “Automated supgortdevelop-
ment, maintenance, and testing in the presence of implcitrol flow,”
College of Computing, Georgia Institute of Technology, TeRep. GIT-
CC-03-48, September 2003.

A. Rountev, A. Milanova, and B. G. Ryder, “Points-to §sis for
java using annotated constraints,” fmoceedings of the Conference on
Object-oriented Programming, Languages, Systems andicatiphs
2001, pp. 43-55.

M. Sable, “Soot: a java optimization
http://ww. sabl e.ntgill.cal/soot/.

J. Dean, D. Grove, and C. Chambers, “Optimization ofobpriented
programs using static class hierarchy,”Rmoceedings of 9th European
Conference on Object-oriented Programming (ECOOP'9B)95, pp.
77-101.

D. Bacon and P. Sweeney, “Fast static analysis of C+uafifunctions
calls,” in Proceedings of ACM SIGPLAN Conference on Object-oriented
Programing Systems, Languages and Applications (OOP$®)AQKct.
1996, pp. 324-341.

D. Grove and C. Chambers, “A framework for call graph stonction al-
gorithms,” ACM Transactions on Programming Languages and Systems
(TOPLAS) vol. 23, no. 6, 2001.

framework,” see

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO.?,NNJH 2004

[23] T. Ogasawara, H. Komatsu, and T. Nakatani, “A study ofeption [48]

handling and its dynamic optimization in java,” iRroceedings of
ACM SIGPLAN Conference on Object-oriented Programing edyst

Languages and Applications (OOPSLA'02D01, pp. 83—95. [Online]. [49]

Available: citeseer.nj.nec.com/ogasawara0lstudy.html
[24] A. V. Aho, R. Sethi, and J. D. UllmanCompilers — Principles,

Techniques and Tools Addison Wesley, 1988. [50]

[25] T. J. Marlowe and B. G. Ryder, “Properties of data flonnfeworks: A
unified model,” inActa Informatica, Vol. 281990, pp. 121-163.

[26] A. Milanova, A. Rountev, and B. G. Ryder, “Parametetizebject [51]

sensitivity for points-to and side-effect analysis,”Rmoceedings of the
International Symposium on Software Testing and AnghZi92, pp.

1-11. [52]

[27] A. Milanova, “Precise and practical flow analsis of ddtjeriented
software,” Ph.D. dissertation, Rutgers University, 208&0 available
as DCS-TR-539.

[28] M. L. Scott, Programming Language PragmaticsMorgan Kaufmann,
2000.

[29] M. Sharir and A. Pnueli, “Two approaches to interpraged data
flow analysis,” in Program Flow Analysis: Theory and Applicatigns
S. Muchnick and N. Jones, Eds. Prentice Hall, 1981, pp. 189-2

[30] O. Shivers, “Control-flow analysis of higher-order ¢arages,” Ph.D.
dissertation, Carnegie Mellon University, 1991.

[31] O. Lhotak and L. Hendren, “Scaling Java points-to gsialusing Spark,” [55]

in International Conference on Compiler Constructicer. LNCS 2622,
2003, pp. 153-169.
[32] C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott, “Testi of

java web services for robustness,” Roceedings of the International [5g)

Symposium on Software Testing and Analysis (ISSTAYy 2004, pp.
23-33.
[33] F. Tip and J. Palsberg, “Scalable propagation-basédy@ph construc-

tion algorithms,” inProceedings of the Conference on Object-oriented
Programming, Languages, Systems and Applicatiddst. 2000, pp. [58]

281-293.
[34] B. G. Ryder, “Dimensions of precision in reference gs@ of object-
oriented programming languages,” in Proceedings of the Ivitle

International Conference on Compiler Construction, A@@03, pp. [59]

126-137, invited paper.

[35] M. J. Radwin, “The java network file system,” see
http://ww. radw n. org/ m chael / projects/jnfs/. [60]
[36] “The Muffin world wide web filtering system,” see

http://muffin.doit.org/.

[37] M. Welsh, D. E. Culler, and E. A. Brewer, “SEDA: An arobiture
for well-conditioned, scalable internet services,” 8ymposium on
Operating Systems Principle2001, pp. 230-243. [Online]. Available:
citeseer.nj.nec.com/welsh0lseda.html

[38] A. S. Foundation, “Apache jarkarta project.” [OnlineJAvailable:
http://jakarta.apache.org/

[39] Specbench.org, “Spec jvm98 benchmarks.” [Online]. aifble:
http://www.spec.org/jvm98/
[40] V. LLC, “Volanomark.” [Online]. Available:

http://www.volano.com/benchmarks.html

[41] A. Milanova, A. Rountev, and B. G. Ryder, “Parametetizebject sen-
sitivity for points-to analysis for java,ACM Transactions on Software
Engineering Methodologyin press, 2004.

[42] A. S. Foundation, “Apache jakarta tomcat.” [Online].valable:
http://jakarta.apache.org/tomcat/

[43] W. G. Bouricius, W. C. Carter, and P. Schneider, “Reéligbmodeling
techniques for self repairing computer systems,1rinProceedings of
the 24th National Conference of the ACMarch 1969, pp. 295-309.

[44] T. Tsai, M. Hsueh, H. Zhao, Z. Kalbarczyk, and R. lyer,tréSs-
based and path-based fault injectiolEE Transactions on Computers
vol. 48, no. 11, pp. 1183-1201, Nov. 1999.

[45] J. Bieman, D. Dreilinger, and L. Lin, “Using fault injéen to increase
software test coverage,” iRroc. 7th Int. Symp. on Software Reliability
Engineering (ISSRE'96) IEEE Computer Society Press, 1996, pp.
166—74.

[46] D. Hamlet, “Foundations of software testing: deperlitstbtheory,” in

Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations

of software engineering ACM Press, 1994, pp. 128-139. [Online].
Available: http://doi.acm.org/10.1145/193173.19540

[47] D. Tang and H. Hecht, “An approach to measuring and ag8sgs
dependability for critical software systems,” In Proceedings of the
Eighth International Symposium on Software Reliabilitygieering
Albuquerque, NM, Nov. 1997, pp. 192-202.

(53]

[54]

21

P. Frankl and E. Weyuker, “An applicable family of datawil testing
criteria,” IEEE Transactions on Software Engineeringl. 14, no. 10,
pp. 1483-1498, Oct. 1988.

S. Sinha and M. J. Harrold, “Criteria for testing exdepthandling con-
structs in Java programs,” in Proceedings of the Internati€onference
on Software Maintenance, 1999.

N. Heintze, “Set-based analysis of ml programs,Pimceedings of the
ACM Conference on Lisp and Functional Programpii§94, pp. 306—
317.

S. Sinha and M. J. Harrold, “Analysis and testing of peogs with
exception-handling constructslEEE Transactions on Software Engi-
neering vol. 26, no. 9, pp. 849-871, September 2000.

J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficienhd precise
modeling of exceptions for analysis of Java programs,” iocBedings
of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, September 1999, pp. 21-31.

S. Lee, B.-S. Yang, S. Kim, S. Park, S.-M. Moon, K. Ebdipgand
E. Altman, “Efficient Java exception handling in just-img& compila-
tion,” in Proceedings of the ACM SIGPLAN Java Grande Confes
2000.

M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth, “Practigi judo: Java
under dynamic optimzations,” in Proceeedings of the ACM RGN
Conference on Programming Language Design and Implenmmtat
2000, pp. 13-26.

J. D. David Grove, Greg DeFouw and C. Chambers, “Callpgra
construction in object-oriented languages, Hroceedings of ACM SIG-
PLAN Conference on Object-oriented Programing Systemsgliages
and Applications (OOPSLA'97Pct. 1997, pp. 108-124.

R. O’Callahan, “The generalized aliasing as a basisstiftware tools,”
Ph.D. dissertation, Carnegie Mellon University, 2000.

R. Chatterjee, B. G. Ryder, and W. A. Landi, “Relevanhtext infer-
ence,” in Proceedings of the ACM SIGACT/SIGPLAN Symposium on
Principles of Programming Languagedan. 1999.

R. Bodik, R. Gupta, and M. L. Soffa, “Refining data flow dnfnation
using infeasible paths,” ifProceedings of the Sixth European Software
Engineering Conference (ESEC/FSE 9F). Jazayeri and H. Schauer,
Eds. Springer-Verlag, 1997, pp. 361-377.

A. L. Souter and L. L. Pollock, “Type infeasible call dha,” in Pro-
ceedings of the IEEE International Workshop on Source CausyAis
and Manipulation 2001.

——, “Characterization and automatic identification tgpe infeasible
call chains,”Information and Software Technolaggyol. 44, no. 13, pp.
721-732, October 2002.

