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ABSTRACT 

The Internet infrastructure, which has become so critical in our everyday lives, needs automated 
protection from worm attacks.  We propose a system that uses the ideas of reputation and 
recommendation to effectively quarantine random scanning worms on the Internet.  A trust model, based 
on the passing of recommendations among participating autonomous systems, is used to modulate a 
localized reputation value that indicates the notoriety, or disrepute, of the attacker.  This allows us to 
enact localized blocking of worm traffic commensurate with the notoriety of the attacker, eventually 
leading to a global blocking strategy for globally notorious attackers.  Unlike previous attempts at 
collaborative worm containment, our approach’s reliance on a trust model provides resilience to 
Byzantine failures and allows it to be used within the Internet at-large, rather than restricting it to 
enterprise networks within a single administrative domain.  Using simulations, we demonstrate that our 
reputation-based system is capable of quickly quarantining worms that are many orders of magnitude 
more virulent than worms released into the Internet thus far.  We also discuss the possible uses of the 
system in quarantining other types of malicious behavior, such as spam and viruses, which have wide-
reaching global effects. 
 

1. INTRODUCTION  

One of the key shortcomings of today’s Internet architecture is the implicit trust placed in hosts.  This 
implicit trust means that there are no consequences built into the architecture of the Internet for malicious 
or abusive behavior.  The consequences that may exist are strictly enacted by human administrators of the 
various networks and systems connected to the Internet.  However, with the ever increasing occurrence of 
automated attacks, especially random scanning worms, human mitigated responses are simply too slow to 
effectively protect the Internet at-large from these abuses [10].  There are, of course, best practices that 
service providers can follow to prevent such attacks, such as ingress filtering to prevent the spoofing of IP 
addresses from their customer autonomous systems, and ‘black holing’ abusive prefixes to drop their 
malicious data as it enters the autonomous system. Unfortunately, the continued occurrence of random 
scanning worms in the Internet suggests that these measures are either sporadically adopted, or wholly 
ineffective in a localized setting.  What is needed is a collaborative, autonomic, and Internet-wide system 
for quarantining this malicious behavior quickly, and fairly.  We propose a system based on the same 
principles that humans use to determine good behavior from bad behavior – recommendations and 
reputation.  The general idea of this quarantining system is to utilize existing intrusion and worm 
detection technologies available in the autonomous systems and stub networks of the Internet to detect 
worm traffic and issue recommendations to near-by autonomous systems about the malicious behavior of 
the attacking host.  The recommendations of near-by autonomous systems, also referred to as nodes in 
this paper, are then used to block traffic from offending hosts without having to directly witness a worm 
attack.  Significant corroboration of the malicious behavior must be received from several sources before 
blocking the traffic to ensure the fair use of the system.  This blocking would then have the effect of 
cutting off Internet usage to the host, or hosts, that are causing the attacks, thereby forcing the user or 
administrator of those hosts to check their computers for signs of worm infection, while preventing the 
continued spread of the worm to other vulnerable hosts. 



The novelty of our system stems from the fact that we borrow heavily from our daily interactions as 
humans, and use that experience to create a trust model based on reputation that has not yet been 
attempted in worm containment research.  To make educated decisions, humans typically seek out the 
advice of others whom they trust the most, namely the friends and family with whom they have close 
associations.  They then use this advice, along with their own experiences, to make intelligent and 
informed decisions about situations with which they have no direct experience.  We can use such a trust 
model to decide when a host is performing malicious acts without having to directly witness these acts.  
Of course, because this system is meant to be implemented in the un-trusted Internet, security is of utmost 
concern. Therefore, we leverage the trust provided in the Border Gateway Protocol (BGP) peering 
relationships as a basis for our trust model – if a neighboring autonomous system can be trusted to 
properly route your data then it can also be trusted to provide reliable recommendations about worm 
traffic.  This is a good base, but of course it would be foolish to create a Byzantine situation in which only 
one node can provoke another node to block any host at will, therefore we require a level of corroboration 
from multiple sources.  This trust model allows us to provide an extremely flexible and responsive system 
for quarantining random scanning worm traffic while allowing participating nodes to make autonomous 
decisions based on the recommendations of others.  Other systems designed to quarantine worms suffer 
from possible Byzantine failures where false alarms and malicious nodes could be disastrous to the 
network environment.  This reputation system suffers from no such Byzantine failures, and is therefore an 
important advancement to previous collaborative worm containment systems. 

The paper begins by providing a background into relevant work done in the areas of trust modeling, 
worm quarantine systems, and collaborative approaches to network security.  It then continues by 
describing the trust model that we developed for use in this system, the simulator created to test the 
reputation system, and the experiments that we conducted to determine the reputation system’s 
effectiveness in the face of extremely virulent scanning worms.  The paper concludes by providing the 
results of the simulations, as well as a discussion of the results and directions of future work. 

 

2. RELATED WORKS 

The most notable use of recommendation and reputation systems in online applications is the Internet 
auction site eBay.com, where users give publicly viewable recommendations about experiences they have 
had with sellers and buyers.  These recommendations are then used to gauge the seller or buyer’s ability 
to perform transactions, possibly saving users from initiating a transaction with an unsavory character. 

In addition to systems such as eBay, a number of more general frameworks have been developed.  
Abdul-Rahman and Hailes have created a number of systems for sharing and managing trust information 
in distributed environments [1][2][3].  Rather than directly adapting their systems, we chose to utilize the 
general ideas of trust mentioned in their work.  In particular, they use decentralized, asymmetric trust 
between two distributed entities to characterize their distributed trust model.  They also make a distinction 
between trust gained by first-hand experience and trust gained through the recommendation of others.  
These concepts have proved extremely useful in the development of our own distributed trust model. 

There are also a number of models that take a less general approach to the problem of distributed trust.  
Some of these models are created for use in eCommerce and eBusiness situations and use various types of 
context information, such as the size of the transaction or the type of business in question, to account for 
specific shortcomings in the trust model [13][23][24].  Others make an attempt at a general framework, 
but also require this idea of context to tune their systems to different situations that may arise [4][6][16].  
This use of context makes their system more adaptable to various special circumstances, but it also 
requires detailed management so that novel situations can be taken into account as the system develops 
and grows.  Such management makes these types of systems impractical for use in our trust model where 
new technologies are developed daily. 

With the ever increasing frequency of worm and virus attacks, it is no surprise that there have been a 
large number of research initiatives aimed at slowing or stopping the spread of this malware.  A number 
of publications have aimed at the analysis of real and theoretical viruses and worms.  The first of which 



was written by Spafford after the first known Internet worm in 1988 [18].  The analysis provides a 
historical perspective of the origins of worms, including the first theoretical use of worms in computer 
administration.  There have also been in-depth analyses of recent worms, such as Code Red and SQL 
Slammer [9][11].  Staniford, Paxson, and Weaver also posited a number of theoretical worms that could 
wreak havoc on the Internet at-large [19].  Finally, the same authors along with Cunningham, provided a 
detailed introduction to worms and their propagation mechanisms, scanning methods, and payload [20]. 

There have also been a number of different approaches to preventing worm infections.  A paper 
released by the United States’ National Security Agency advocates the use of various orthogonal 
defenses, including firewall technologies, sandboxing, and stack-guarding, to stop self-propagating 
worms [5].  Some other approaches include automatically generating patches to fix vulnerabilities that 
worms exploit [17], throttling connections to detect and limit the impact of infected hosts [22], and an 
interesting approach where managed local area networks are automatically reconfigured to quarantine 
infected computers and still maintain availability of services [15]. 

Furthermore, there have been some approaches to preventing malicious activity that utilize 
collaboration among nodes.  One such approach, named Pushback, aims at stopping denial of service and 
distributed denial of service attacks by throttling connections at high bandwidth upstream routers [8].  
Another system developed for the quarantine of worms in enterprise networks organizes hosts into groups 
called cells and aims at preventing inter-cell infection by blocking traffic out of a compromised cell [21].  
Worms are detected by counting the number of failed connections, and when the number of failed 
connections increases above a pre-set threshold, the cell is considered compromised and communications 
are blocked.  Collaboration among cells allows this threshold to be reduced for quicker detection and 
prevention of worm activity.  This threshold, however, can be reduced to such a point where false alarms 
cause a complete denial of service in the enterprise network.  Nojiri et. al. discussed several general 
models for worm containment and their inherent benefits and drawbacks [12].  One important conclusion 
of that work is that collaborating organizations greatly decrease the reaction time of containment systems 
against worms, but an increased number of collaborating organizations is also detrimental to the 
functionality of the system in the case of false alarms.  The authors of that paper suggest the use of a 
decay, or back-off, function to minimize the effects of these false alarms.  All of the collaborative worm 
containment systems mentioned above provide useful features that aid in the quarantine of random 
scanning worms, but they also suffer from the same Byzantine failure where malicious nodes or false 
alarms can cause the entire system to fail, sometimes catastrophically. 

 

3. TRUST MODEL 

3.1 Overview 
To create an Internet-scale system for the quarantining of random scanning worms, great care must be 
taken to protect against misuse and abuse.  The single defining characteristic of this system is its use of a 
trust model in its operation.  This use of the concept of trust among nodes in the network provides the 
system with the ability to utilize the recommendations of directly trusted and transitively trusted nodes 
while maintaining their autonomy. 

To provide a fully automated, Internet-wide trust system, we borrowed heavily from our intuitions and 
experiences in various social situations, as well as concepts presented in previous trust management 
research.  The general concept of our system is to view the various nodes on the Internet as autonomous 
beings with their own opinions of other nodes, just as humans have their own opinions and reputations.  
This view is generally consistent with that of the BGP system, where each autonomous system makes its 
own decisions on routes based on individual policy elements.  We then include a system of 
recommendations where neighbors may provide their opinion of hosts based on events that have taken 
place in the past.  Just as humans use the experiences of their friends and family to form opinions of 
people they have not yet met, so do the nodes in our system form opinions of hosts based on their 
experiences and the experiences of other nodes near them.  Finally, just as humans trust people to a level 
defined by their degree of relation with them, so do the nodes in the reputation system.  For a node to 



communicate with other, more distant nodes it must trust near-by neighbors to properly route traffic; 
therefore, our system places more strength in the recommendations of closer nodes than in more distant 
nodes. 

In our system, we only consider malicious activity, worm traffic in specific, and therefore the 
reputation value in the system is a measure of how notorious an attacker is.  The system springs into 
action when a victim node detects the malicious activity from the attacking host.  This victim node then 
blocks the attacker and forwards a recommendation to all of its neighbors.  These neighbors, individually, 
consider the recommendation and make changes to the reputation value they have stored for the attacker, 
indicating the attacker’s disrepute.  If any of these neighbors’ reputation values rises above a certain 
threshold, the attacking host is blocked at that neighboring node, as well.  The neighbors then propagate 
an updated recommendation to their neighbors until the strength of the recommendation is significantly 
reduced due to the distance that the recommendation has propagated from the victim.  Over time, the 
reputation value for this attacker is decayed appropriately by each node individually, as long as the 
attacker’s malicious activity has stopped.  This process is repeated for every attack, and for every 
attacker, thereby creating localized reputation values at each node in the system for each attacker about 
which the nodes have received recommendations, or by which the nodes have been attacked directly. 

 
3.2 Requirements 
There are several requirements to ensure the fairness of this system.  The first, and most obvious, 
requirement is that the victim node that is being attacked must block the attacker’s traffic as soon as the 
attack is detected.  The motivation for this requirement is quite intuitive – the victim should trust its own 
experiences implicitly.  There are, of course, methods by which a determined attacker may spoof attacks 
from other hosts causing the victim node to erroneously block traffic from the spoofed host.  
Authentication mechanisms to prevent such misuse of the system, as well as combating spoofed 
recommendations are described in section 3.3. 

The second requirement is that no one node should cause any other node to implement a block based 
solely on its recommendation without corroboration from other nodes.  We must be careful to prevent 
recommendations from entering a loop and artificially increasing the reputation value at the nodes in that 
loop.  Therefore we add a path attribute, similar to the AS-PATH attribute in BGP, which lists the 
autonomous systems that have forwarded the current recommendation.  If the current node is in this path 
list, then the recommendation must be ignored as it has already been received and forwarded.  Not only 
does this prevent loops, but it provides a sense of connectivity between nodes.  For instance, if a 
particular node is highly connected to a victim node, then it is likely that the particular node will receive 
many recommendations from various paths, and therefore the reputation increase will be significantly 
greater than a single recommendation.  The key, of course, is that this increase in received 
recommendations is linked directly to the connectivity between the node and the victim which originates 
the recommendation.  Thus, the increased connectivity between the two nodes indicates increased 
probability of transiting each other’s traffic, which translates to a greater overall increase in the reputation 
value for the attacker.  This requirement of corroboration, along with the path attribute, prevents a 
Byzantine general scenario, where a small number of nodes can force an arbitrary node to block specific 
traffic without significant corroboration from additional sources. Yet, this requirement still allows for 
reputation increases that are intimately tied to the connectivity between the victim node and the nodes that 
receive the recommendations. 

The third requirement of our system is that the reputations that each node holds should decay over 
time when no malicious activity is reported or detected.  This allows a host to rejoin the network once the 
malicious activity has ceased, whether because of cleaning a worm from a computer, or because of an IP 
address change caused by the dynamic host configuration protocol (DHCP).  If, however, the malicious 
activity continues, we also require that nodes that detect this activity and have already blocked the 
attacking node update their own reputation accordingly to ensure that the block remains in place.  This 
requirement has the effect of creating a perimeter surrounding the offending node that it cannot penetrate. 
As a result, nodes outside of this perimeter may lower their reputation and stop blocking because the 



perimeter nodes take the responsibility of blocking.  The longer attacks last and the more widespread they 
are, the further from the victims this perimeter gets until eventually it reaches the attacker, thereby totally 
cutting off all access to the Internet for the attacking host. 

The final requirement is that the strength of the recommendation must diminish as the 
recommendation propagates further from the originating victim.  Additionally, this propagation 
mechanism must cease when the strength of the recommendation becomes significantly lessened when 
compared to the benefit gained by continuing to propagate the recommendation.  Essentially, we require 
that highly connected nodes continue propagating the recommendation even if it has lost significant 
strength, but lesser connected nodes should stop doing so when the strength is so low that the propagated 
recommendation would not have a significant impact on its neighbors.  We diminish the strength of the 
recommendations with respect to the approximate amount of trust placed in a node to route data.  Direct 
neighbors are more intimately tied with the task of routing data and therefore their recommendations 
should be given more weight than those who are less intimately involved, such as the nodes farther from 
the victim.  This produces a hierarchy of trust loosely based on the proportion of data, on average, that a 
given near-by node will route. Hence, direct neighbors are most trusted because all data must flow 
through at least one of them, whereas more distant nodes may have a much smaller portion of the total 
data from a source node flowing through it.  In the case of BGP autonomous systems, peering 
relationships provide a level of trust implied by the requirements placed on the routing of traffic by transit 
and customer autonomous systems.  Therefore, we can use these peering relationships as our basis for 
transitive trust for other, indirect BGP autonomous systems.  This transitive trust, as previously stated, is 
then modulated by the number of nodes involved in the trust, i.e. the number of nodes between the two 
endpoints of the transitive trust.  This notion provides an accurate depiction of the level of trust placed on 
a given node with respect to routing data.  Combining this decrease in strength with the path attribute that 
we previously described, provides an excellent indicator of the trust between two autonomous systems 
based on the rough percentage of data that they transit for each other, as described by their connectivity 
and distance.  

 
3.3 Description 
The reputation system’s trust model is described by a set of rules and an equation that helps to fulfill the 
requirements previously discussed.  The details of this model are given in Figure 1.  The most important 
part of the model is the formula for determining how to adjust the reputation score of an attacker when 
recommendations are received.  This formula is given as Equation 1 in the figure below.  There is also a 
rule that determines when a node should block a particular attacker’s traffic, given as Rule 1 below.  
Clearly, these two elements satisfy the first of our requirements that the victim node that is being attacked 
must block the attacker immediately.  The distance from the victim to the current node in Equation 1 is 
zero since the victim and current node are the same.  Therefore, a value of one is immediately added to 
the reputation for the attacker, hence blocking it based on Rule 1. 

This equation and rule combination also satisfies our second requirement that no small number of 
nodes should cause any other node to block another node without corroboration, thereby preventing 
Byzantine general vulnerabilities.  If we consider recommendations from direct neighbors, where the 
distance from the victim to the current node is one, then the combination of Equation 1 and Rule 1 will 
require a simple majority of the current node’s direct neighbors to also provide recommendations about 
the same attacker for a block to be imposed.  Even in the situation where a node has only one direct 
neighbor, a single recommendation from that neighbor can not cause the node to block; corroboration is 
required either in the form of a direct attack or recommendations propagated from more distant nodes.  
Therefore, this system does not suffer from the ill effects of false alarms or malicious communications 
like previous attempts at collaborative worm containment systems.   

It is also possible for some combination of recommendations from more distant nodes to be received 
by the current node and to cause a block without any recommendations from direct neighbors.  Thus, the 
system allows recommendations from both directly trusted and transitively trusted nodes to be counted 



towards the reputation of an attacker, but certainly more than a single report of the misbehavior of the 
attacker is required for blocking. 

To provide a mechanism for the decay of reputation over time, we define discrete time periods at 
which the reputation is decayed, known as the λ  periods.  We use Rule 2, given in the Figure 1, to decay 
the reputation for the attackers stored at the current node by a percentage of the total reputation.  This 
decay is based on the number of neighbors for that node.  Furthermore, we differentiate the discrete λ  
periods from the time at which the decay is actually evaluated, known as the management period.  This 
management period allows the administrators of the autonomous systems to better control the minimum 
time that a block will be in place.  For instance, an administrator might want blocks on his autonomous 
system to last at least ten minutes, but would like the actual effective length of the reputation to be much 
less, perhaps only a minute.  This reduces the computational requirements of the evaluation of the decay 
to a minimum time period, as defined by the management period, but also allows for quick turnover of 
reputation information.  Moreover, this decay allows nodes previously marked as malicious to rejoin the 
network after they have stopped their attacks for a number of λ  periods commensurate with their 
reputation rating.  Additionally, when a node blocks traffic from an attacker due to the attacker’s 
reputation by Rule 1, that node should inspect the contents of the traffic that has been dropped to see if 
the attacker is continuing the malicious behavior.  If the traffic is found to be malicious, then that node 
should add one to the reputation value every management period.  This ensures that not only will the 
attacker remain blocked, but that the attacker’s block at that node will actually last longer due to 
continued worm attacks.  In effect, this ensures that only the foremost blocking node must deal with 
maintaining reputation for the attacker, thereby creating a quarantine perimeter, while other nodes behind 
the foremost blocking node can safely decay the attacker’s reputation without having to worry about 
maintaining the block. 

Finally, to fulfill the fourth requirement, we must use the third rule in Figure 1 to limit the distance 
that the recommendation can travel.  Since the distance affects the strength of the recommendation, as 
given in Equation 1, we do not want the strength to be reduced so much that it takes 2N  distant 
recommendations to be equivalent to one recommendation from a neighbor, where N is the neighborhood 
of the node as defined in Figure 1.  Recommendations with such a small strength are essentially 
meaningless in our model.  Furthermore, we want to make sure that highly connected nodes continue to 
forward the recommendation to other lesser connected nodes, so we use the neighborhood size to 
determine if the recommendation propagation should continue.  It is also clear by examining Equation 1 
that as the distance increases, the strength of the recommendation is reduced multiplicatively. 

Practically, the equation and rules given in Figure 1 are not easy to implement exactly as they are 
shown.  Equation 1 can be implemented by initializing an array of reputations to zero and assigning new 
attackers to empty spots in this array, possibly with a collision resistant hashing function.  At the receipt 
of additional recommendations, the previous value of the attacker’s array entry is used and the new 
recommendation’s value is added to it and stored in the same array location.  Blocking of the attacker is 
simply implemented by checking the value of the new reputation after a recommendation value is added 
to see if it is greater than one.  We implement decay of the reputation by iterating through the array of 
reputations and reducing each reputation multiplicatively by a factor of 
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at the expiration of the management period; where m is the length of the management period, N is the 
neighborhood size, and λ  is the length of the decay period.  The attacker is unblocked when the decayed 
reputation value becomes less than one, and the attacker is removed from the array when their reputation 
value is considerably smaller than one.  The propagation limit is trivially implemented by checking for 
the number of hops traveled up to the current node and comparing the value with Rule 3 above.  A truly 



efficient implementation of this system is of utmost importance and should be investigated in detail, but 
defining such an implementation is beyond the scope of this paper. 
 

 
Figure 1:  Trust model equation and rules 

 
Thus far we have shown that the trust model itself is fair with regard to the requirements that we 

described in section 3.2, but we have not yet addressed the security of the system against spoofed attacks, 
faked recommendations, or alteration of the attributes contained in the recommendation messages.  The 
first problem that needs to be dealt with is the use of spoofed addresses in attacks.  If the actual attacker 
were to use a spoofed IP address, rather than its own, it would cause the system to inadvertently distribute 
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Rule 1: 
[Evaluated after Equation 1] 
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Rule 2: 
[Evaluated at the expiration of the management period] 
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Rule 3: 
[Evaluated after Rule 1] 
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a – Attacker, t – Current time, λ  – Length of the decay period 
m – Length of the management period 
N – Size of the current node’s neighborhood (# neighbors + 1) 
rep(x,y) – Reputation value for attacker x at time y 
dist(z) – Distance from the current node to victim z 
v(x,y) –  Latest victim to send a recommendation for attacker x before time y 
prev(x,y) – Time of the recommendation about attacker x before time y 



a recommendation about the spoofed address, perhaps even causing this spoofed address to be unduly 
blocked at a number of autonomous systems.  This particular problem is quite vexing.  A solution to such 
a problem can not simply be built into our reputation system alone, as it is a much wider problem with the 
Internet architecture in general.  The typical solution to this problem is the use of ingress filtering at the 
border router of service providers to ensure that only properly allocated IP addresses are used by their 
customers.  However, evidence of continued spoofing throughout the Internet indicates that there are a 
large number of service providers that do not follow this practice.  One interesting solution to this 
problem is the use of IP Traceback schemes which validate the path that packets take to determine the 
actual sender of the packets, rather than simply relying on the address given in the packet’s header [14]. 

Another attack, targeted specifically to our reputation system, could fake recommendation messages.  
With such an attack, an attacker that has taken control of a node’s reputation system can send any number 
of faked recommendations about any address, and make it seem like it has originated from just about any 
other participating node.  Clearly, if an attacker is able to do this, then they have free reign on 
implementing blocks for any arbitrary address simply by issuing a suitable number of faked 
recommendations.  Our trust model builds some defense against this by limiting the distance that a given 
recommendation can propagate, so even if the subverted node sends out fake recommendations that it has 
been attacked, these recommendations only traverse a finite number of links.  This ensures that the effects 
of these faked recommendations are limited to a localized subset of the total nodes participating in the 
reputation system.  Additionally, if a fixed λ  period is chosen, then we can safely assume that a 
participating node that is following the rules laid out in section 3.2 will not be able to send more than one 
recommendation for a given attacker per λ  period because they should be blocking that attacker.  
Furthermore, if only one, or a small number, of near-by subverted nodes are sending recommendations 
once per λ  period, then the decay of the reputation added by these recommendations will make it 
extremely difficult to cause wide-spread blocking of an arbitrary address.  We can also consider the use of 
digital signatures or cryptographic hash functions to verify the originator of a given recommendation.  
Moreover, we may even validate the attribute information for the recommendation with the digital 
signature and ensure that these attributes have not changed.  These digital signature schemes require 
significant public-key infrastructure, however, which is a substantial hurdle to their use in the Internet at-
large.  We may also consider using the previously mentioned IP Traceback mechanisms for verification of 
the recommendation origin.  These security concerns are quite serious, but investigation of specific 
methods for their implementation in this system is not the primary focus of this paper and so we will 
leave in-depth review of these possible mechanisms to future research. 

 

4. WORM CONTAINMENT SIMULATION 

4.1 Simulator Description 
To properly simulate the unique response of our reputation system to random scanning worms, we created 
a custom network simulator to allow for maximum control over the implementation of our trust model.  
The simulator is a typical discrete event simulator utilizing an event queue.  Messages, or packets, 
carrying pertinent information pass between events.  Each event represents a specific network event in our 
system, such as routing, receiving an attack, or propagating a recommendation.  The simulator begins by 
reading an input file and creating a number of node entities.  After the configuration information is read, 
the simulator creates a routing table for each node, and chooses a number of nodes, at random, that are 
vulnerable to the worm.  These vulnerable nodes are equivalent to having all hosts in an autonomous 
system vulnerable to worm attack.  The simulator then begins propagation of our worm, described below, 
from an originating node.  The initially infected node will choose, at random, a number of nodes 
corresponding to the worm’s scanning rate and send worm attacks that will be routed according to the 
routing table and ultimately received by the victim.  If the victim has been determined to be vulnerable, 
then the victim will also begin spreading the worm to randomly chosen nodes at the worm’s scanning 
rate.  When a node becomes compromised by worm attack, we assume all hosts in the representative 



autonomous system are compromised.  Furthermore, these attacks may be blocked at intermediate routing 
nodes according to the trust model simply by dropping the traffic from the attacker.  When a node gets 
attacked, we assume that the detection mechanism, whatever that might be, is one hundred percent 
accurate and begins the recommendation propagation process outlined above.  This may seem onerous, 
but the purpose of this initial work is to determine the best possible performance of the system against 
various types of very virulent worms and to better understand its unique ability to utilize trust in 
quarantining Internet worms.  Additionally, all nodes have the reputation system running, so at preset 
periods the reputation management process will be run on the routers based on the management period 
length, which is defined globally in this simulator.  These events will continue until a specified length of 
time is completed when the simulator will gather statistics about the simulation. 
 
4.2 Experiment Description 
A number of parameters were used to test the effectiveness of our system in halting the spread of a 
malicious Internet worm.  These parameters included the percentage of nodes in the network that are 
vulnerable to attack, the scanning rate of the worm, and the λ  period of the system.  By altering these 
parameters we can test the system’s reaction to extremely virulent worms and understand the effects of 
the various parameters on the worm’s propagation.  We ran twenty trials for each specific scenario to 
minimize the effects of randomization on the results gathered.  Each of these trials lasted for one hour of 
simulated time.  At the end of these trials, the simulation provides the number of vulnerable nodes that 
were compromised by the worm and the last time an attack reached its intended destination. 

The network which was used in this experiment consisted of ten identical sub-networks of one 
hundred nodes each that are connected together by three backbone nodes.  These nodes represent BGP 
autonomous systems, connected to one another similarly to the way autonomous systems are connected in 
the Internet per the Internet Mapping Project [7].  The percent of vulnerable nodes was set to one, five, or 
ten percent of the total network size, plus the original infected node.  The number of nodes this percentage 
represented was rounded down to the nearest integer in cases where the percentage was not a whole 
number.  We also tested different scanning rates of ten and one hundred nodes scanned per second to 
determine the reputation system’s reaction to increased scanning rates. 

It is also very important to connect our results to real worms, as well as other research efforts that 
attempt to place a maximum bound on the effectiveness of worm containment systems.  As a means of 
comparison, both versions of the Code Red worm had a vulnerable population of only approximately 
0.0084% of the entire Internet address space [9], while the Slammer worm had an even smaller population 
of only 0.0018% [11].  Additionally, Moore et. al. [10] provided a rating for how well a worm 
containment system performs by using the percentage of the vulnerable population that becomes 
compromised as an indicator of effectiveness.  Their work suggests that if less than ten percent of the 
vulnerable population becomes compromised, then the worm has been well contained, ten to ninety 
percent indicates partial containment, and greater than ninety percent indicates an uncontained worm.  
Finally, with use of the epidemiological model popularized by Moore et. al. [10], and Scandariato and 
Knight [15], Figure 2 shows that after ten seconds our least virulent simulated worm is many orders of 
magnitude more virulent than Code Red v2 due to the increase in the vulnerable population.  With our 
worm having the same scanning rate as Code Red v2 and a vulnerable population of one percent, after 
only ten seconds our worm has compromised 23% of the vulnerable hosts when unimpeded compared to 
only 0.00028% of the population for Code Red v2. 

 



 
Figure 2:  Epidemiological model comparison of simulated worm to Code Red v2 

 

5. RESULTS 

We begin the discussion of our results by comparing the epidemiological model provided in section 4.2 
with the actual propagation of the worm in our network simulator.  This comparison will allow us to 
assess how faithful our worm simulation is to the mathematical model for random scanning worms 
provided in the previous section.  As seen in Figure 3, the simulated worm propagation is almost an exact 
match for the graph of the worm propagation based on the epidemiological model.  There is a slight shift 
in the graph of the simulated worm when compared to the epidemiological model that is caused by the 
link delay that is present in our simulator.  This link delay is applied on traversal of each link in the 
simulation and therefore the routing of attacks and recommendations is subject to it.  The epidemiological 
model, however, assumes instantaneous infection and therefore this accumulated delay in our simulation 
causes the shift shown. 
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For Code Red v2: 
N=360,000, H=1, T= 322 -1, s=10, x(10)=0.00028% 
 
For simulated worm, large (1,003 node) network: 
N=11, H=1, T=1,003, s=10, x(10)=23.0% 

 
x(t) - Percentage of vulnerable population at time t 
N - Number of vulnerable nodes (including initially infected) 
H - Number of initially infected nodes 
T - Number of nodes in the network 
s - Number of nodes scanned per second 
t - Current time 
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Figure 3:  Comparison of epidemiological model to simulated worm propagation 

 
Now that we have established that the simulator propagates worm attacks realistically in our test 

network, we can investigate the effects of the λ  period on the number of vulnerable nodes compromised 
and on the last time at which an attack was received by its intended victim.  For the purposes of clarity, 
we remove the node that is initially infected with the worm from the vulnerable population, and therefore 
only depict the number of new infections the worm produces.  Intuitively, the length of the λ  period 
determines how long the reputation lasts at a particular node, so as the λ  period value increases so does 
the length of the block.  This should decrease the number of compromised nodes as well as the time the 
last attack was received.  Because the management period parameter is solely defined by the administrator 
of the autonomous system based on the needs of their site, we fix this parameter to sixty seconds.  
Additionally, we fix the percentage of vulnerable nodes to one percent and the scanning rate of the worm 
to ten scans per second.  To truly understand the usage of this parameter, we must examine the minimum 
boundary where the λ  period is set low enough so as to make the system totally ineffective, and then 
examine how increasing this value affects the propagation of the worm.  We begin our evaluation with a 
λ  period value of 2, which, as Figures 4 and 5 show, makes the system completely ineffective because 
the reputation that the various recommendations provided is decayed almost immediately.  As we increase 
the λ  period value, however, we see that both the time of last attack and the percentage of compromised 
nodes drop until they reach a plateau at six seconds.  The slight variation between results from six to ten 
seconds is clearly caused by the random nature of the scanning worm and the simulation.  Upon closer 
investigation, this plateau indicates a boundary for the effectiveness of the system.  This boundary 
indicates that these vulnerable nodes were compromised before the reputation system could spread 
enough recommendations to completely quarantine the worm.  Existence of such a boundary is to be 
expected as the reputation system acts as a sort of ‘anti-worm’ that reacts locally to the worm attack and 
only has global effect after widespread attacks have occurred. 
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Figure 4:  Comparison of λ  period effects on average time of last attack 
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Figure 5:  Comparison of λ  period effects on percentage of vulnerable nodes compromised 

 
We can now utilize our understanding of the λ  period to study the reputation system’s ability to 

quarantine worms of differing virulence.  Since we have shown that any λ  period value above six 
seconds yields similar system performance, we choose to fix the value at sixty seconds to match the 
management period value.  This indicates that every time the management period expires, a full decay is 
performed on the reputations.  As before, we fix the scanning rate of the worm to ten scans per second.  
We can now measure the performance of our system on worms with one, five, and ten percent vulnerable 
population sizes as described in section 4.2.  It is quite clear that increased vulnerable populations should 
increase the chances of a given worm scan successfully finding and compromising a node, and thus the 
percentage of compromised nodes should increase accordingly.  Additionally, we should also see that the 
time that the last attack was received should increase as there are more compromised hosts for which the 
system needs to issue recommendations before blocking.  Figures 6 and 7 show that increased virulence 
leads to an increase in compromised nodes as well as an inability of the system to completely stop worm 
traffic.  It is interesting to note, however, that the system is able to effectively quarantine even the five 
percent vulnerable worm in a reasonable amount of time. 
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Figure 6:  Comparison of worm virulence effects on average time of last attack 
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Figure 7:  Comparison of worm virulence effects on percentage of vulnerable nodes compromised 

 
Finally, we compare the reaction of our reputation system to different scanning speeds.  We again fix 

our management and λ  periods to sixty seconds, and the percentage of vulnerable nodes is again set to 
one percent.  We now test the reaction of our system to a ten scan per second worm and a one hundred 
scan per second worm.  Since our system is completely reactionary to the attacks, the quicker the attacks 
occur, the quicker our system should send out recommendations in response to those attacks.  Figures 8 
and 9 show that our system does indeed react more quickly to the increased scanning speeds and, in fact, 
quarantines it much faster.  We also see that the percentage of compromised nodes increases slightly as 
the scanning rate increases.  This is consistent with our previous assertion that these nodes are scanned 
and compromised before the system forces global blocking of the compromised nodes.  In Figure 10 we 
can see the drastic effect that the reputation system has on the spread of these two worms when compared 
to their propagation in the unprotected network. 

 



408.5

6.5
0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

Scans Per Second

A
ve

ra
ge

 T
im

e 
of

 L
as

t A
tta

ck
 (s

ec
on

ds
)

10 100

 
Figure 8:  Comparison of scanning rate effects on average time of last attack 
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Figure 9:  Comparison of scanning rate effects on percentage of vulnerable nodes compromised 
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Figure 10:  Comparison of worm propagation in unprotected network versus protected network 



6. CONCLUSION 

In developing this paper, we wanted to focus on gaining a basic understanding of the dynamics of our 
reputation system in the face of various worms, as well as setting a bound for the best possible 
performance of the system.  The results given in the previous section demonstrate that our system is able 
to effectively quarantine worms with varying scanning rates, and with extremely large vulnerable 
populations – up to five percent.  We also noted that previous worms released into the Internet did not 
have a vulnerable population nearly the size of the worms against which we tested our system   This gives 
us extremely encouraging results that lead us to believe that even with less than ideal conditions, like 
reduced detection rates and less participation, the system could be extremely effective in quarantining 
worms in the Internet at-large.  Furthermore, our results show that the ten and one hundred scan per 
second worms with a one percent vulnerable population are considered well-contained by Moore et. al., 
while the ten scan per second worm with a five percent vulnerable population is partially contained [10].  
Given the results, we can also infer that if a scanning rate greater than one hundred scans per second were 
used, the system would react even faster and only allow a slightly larger number of vulnerable nodes to 
become compromised. 

While we have shown that this system is more than capable of quarantining the malicious behavior of 
a scanning worm, it can also be used to quarantine other types of malicious behavior that is widespread 
throughout the Internet, due to the unique localized reactive nature of the system and its total 
independence from malware detection technology.  Such malicious behaviors may include, but are not 
limited to, spam and human-propagated computer viruses.  These malicious behaviors would simply need 
a suitable, customized λ  period value that is commensurate with the speed at which they propagate.  As a 
byproduct of the blocking of this widespread misbehavior, our system also limits the amount of total 
bandwidth used in propagating the virus, worm, or spam.  This can be especially useful in situations 
where ongoing, high volume worm traffic effectively shuts down major links in the Internet infrastructure 
as Slammer did [11].  However, because this system relies on the widespread detection and reporting of 
malicious behavior, it will do little to stop many-to-one or one-to-one attacks.  The system is based on the 
contention that a single host may attack many nodes, and that sharing the attack information in a way 
humans share recommendations allows for quicker and more effective responses where needed.  In the 
case of the many-to-one or one-to-one attacks such as distributed denial of service or denial of service 
attacks, this principle is reversed.  This also means that our system would be ineffective at stopping the 
so-called flash and hit-list worms that propagate by using a previously created list of vulnerable hosts 
because there is no ongoing, widespread malicious activity on which recommendations could be based 
[19].  The most distinctive feature of our system is its resilience to Byzantine failures that are detrimental 
to other collaborative worm containment systems. 

The novelty of this system leads to many avenues of future research which will be instrumental in 
establishing its viability as a method for securing the Internet from such widespread abuse as viruses, 
worms, and spam.  An investigation of the specific implementation requirements and an efficient design 
for the system are required.  Along with this, continued research needs to be done to pinpoint security 
mechanisms, such as digital signature schemes, which will satisfy the security requirements discussed in 
section 3.2.  Study of the interaction between our reputation system and the BGP routing protocol should 
also be conducted to determine the effects of the blocks on the routing topology, as well as to determine 
the possibility of combining the two protocols to complement one another.  Finally, detailed studies of the 
dynamics of the propagation, as well as the effects of detection and participation rates on containment, are 
necessary to derive a complete model of this system’s implementation. 
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