
Network Sensitive Reconfiguration of Distributed Applications

Kaoutar El Maghraoui, Travis J. Desell, and Carlos A. Varela
Department of Computer Science

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY12180-3590, USA
{elmagk,deselt,cvarela}@cs.rpi.edu

Abstract

Large-scale, dynamic, and heterogeneous networks of
computational resources promise to provide high perfor-
mance and scalability to computationally intensive appli-
cations, but these environments also introduce the need for
complex resource management strategies. This paper in-
troduces actor-based programming abstractions and a mid-
dleware framework to relieve developers from considering
non-functional concerns while allowing middleware layers
to optimize application performance and global resource
utilization. The Internet Operating System (IOS) consistsof
a peer-to-peer virtual network of middleware agents that
trigger application component reconfiguration based on
changes in the underlying physical network and based on
the application communication patterns and resource con-
sumption. IOS middleware agents are highly customizable
to account for different resource profiling, load balancing,
and peer-to-peer interconnection policies.

Despite the lack of global coordination and informa-
tion management, IOS exhibited the ability to reconfigure
distributed applications effectively improving their perfor-
mance over highly dynamic networks. Diverse application
communication topologies were tested on Internet-like and
Grid-like environments using two middleware agent inter-
connection topologies: peer-to-peer (p2p) and cluster-to-
cluster (c2c). In most cases, p2p agent topologies out-
performed c2c agent topologies for Internet-like environ-
ments; while c2c agent topologies outperformed p2p agent
topologies for Grid-like environments. Our empirical re-
sults show also that using group migration of application
components to perform load balancing outperforms sin-
gle migration for the four studied application topologies.
These empirical results suggest that adaptive middleware
is needed to dynamically change the virtual network topol-
ogy based on application-level communication patterns and
network-level interconnectivity to improve distributed ap-
plications performance.

1 Introduction

Viewing millions of computers and devices connected
to the Internet as aWorld-Wide Computerenables compu-
tationally intensive applications to use otherwise idle dis-
tributed resources. One challenge in making thisworldwide
computingvision [27] a reality is to manage resources in a
coordinated and efficient way, given the dynamic, hetero-
geneous, and large scale nature of the network. Another
challenge is to provide high-level programming abstractions
that facilitate applications development [28].

We present a software framework that enables the devel-
opment of dynamically reconfigurable distributed applica-
tions that autonomously adapt to changes in their execution
environment. A middleware layer analyzes both the under-
lying physical network resources and the application com-
munication patterns to decide how applications should be
reconfigured to accomplish load balancing and other non-
functional concerns such as fault-tolerance. Resource pro-
filing and reconfiguration decisions are embodied into mid-
dleware agents whose behavior can be dynamically modi-
fied to implement different reconfiguration policies.

The middleware agents form avirtual network. When
new nodes join the network or existing nodes become idle,
their corresponding agents contact peers to steal work (fol-
lowing Cilk’s approach [5]). In previous work [7], the
authors showed that considering the application topology
in the load balancing decision procedures dramatically im-
proves throughput over purely random work stealing.

In this paper, it is shown that taking the physical net-
work topology into consideration enables the middleware to
perform even more effective load balancing over heteroge-
neous and dynamic networks. Furthermore, the topology of
the virtual network also has an impact on the performance
and effectiveness of different load balancing strategies.A
peer-to-peervirtual network topology considers every node
in the network the same as every other, while acluster-to-
clustervirtual network topology groups nodes according to
the perceived distance (as measured by latency) into clus-
ters and elects a manager to perform intra-cluster load bal-

ancing. These managers are then connected in a peer-to-
peer fashion to perform inter-cluster load balancing. We
also evaluate two representative distributed execution envi-
ronments: anInternet-likeenvironment contains nodes with
highly diverse processing power and interconnectivity char-
acteristics, while aGrid-like environment contains a set of
relatively homogeneous clusters with more uniform inter-
connectivity.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our model for autonomous worldwide com-
puting. Section 3 describes the architecture of the Internet
Operating System (IOS) including modular components for
information sharing and decision making by middleware
agents. Section 4 describes different load balancing and
component migration strategies. Our empirical tests and re-
sults are explained in Section 5. The paper concludes with
a survey of related work in Section 6 and a discussion in
Section 7.

2 A Model for Autonomous Worldwide Com-
puting

The development of distributed applications which are
efficient, secure, fault tolerant and scalable is a challenging
task. Advanced programming models and abstractions are
required to alleviate application developers from the bur-
den of resource management and application reconfigura-
tion by delegating these issues to middleware. Middleware
can reconfigure applications dynamically as the network
and application needs change [4]. The World-Wide Com-
puter (WWC) framework uses high-level programming ab-
stractions that simplify development of applications and en-
able the middleware to dynamically reconfigure application
components to improve performance.

2.1 Programming Abstractions

The WWC uses programming abstractions based on
the actor model of computation [1, 9].Actors encap-
sulate memory and communicate via asynchronous mes-
sage passing.Universal actorsextend actors by assign-
ing them universal names which enable mobility.Au-
tonomous actorsextend universal actors to support au-
tonomous (middleware-triggered) reconfiguration.

2.1.1 Actors

The Actor model of computation encapsulates state and pro-
cess into a single reactive unit of concurrency. Each ac-
tor has a unique name, which can be used as a reference
by other actors. Communication between actors is purely
asynchronous. The actor model guarantees message de-
livery and fair scheduling of computation. Actors process

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message

� � �� � �� � �� � �

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message � � �� � �
� � �� � �

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message

 standardOutput<−print("World");

 standardOutput<−print("Hello ") @

behavior HelloWorld {

 void act(){

 }

}

Figure 1. Actors are reactive entities. In response to a
message, an actor can (1) change its internal state, (2) create
new actors, and/or (3) send messages to peer actors.

information in reaction to messages. While processing a
message, an actor can carry out any of three basic opera-
tions: alter its state, create new actors, or send messages to
peer actors (see Figure 1). Actors are therefore inherently
independent, concurrent and autonomous which enables ef-
ficiency in parallel execution [12] and facilitates mobility
[3].

The actor model and languages provide a very use-
ful framework for understanding and developing open dis-
tributed systems. Among other applications, actor systems
have been used for enterprise integration [25], real-time
programming [19], fault-tolerance [2], and distributed ar-
tificial intelligence [8].

The distributed memory and asynchronous communica-
tion model makes actors ideal for autonomous system re-
configuration. Without any shared memory or blocking
communication behavior, actors can migrate in a distributed
system without changing the applications semantics.

2.1.2 Universal Actors

In considering mobile computation, it becomes useful to not
only model the interactions of actors with each other, but
also to model the interactions of actors with their environ-
ments. In the actor model, locations are not explicitly repre-
sented, therefore semantically there is no difference if two
actors are in the same memory space, or on two computers
on opposite ends of the earth. However, when consider-
ing the problems associated with worldwide computing, it
becomes important to represent the actor’s environment; to
account for different latencies, unreliable environmentsor
heterogeneous resources.

Universal actors are an extension to the actor model pro-

2

viding translucent knowledge of locations (also known as
theaters), mobility, and the concept of universal names and
universal locators. Names represent actor references thatdo
not change with actor migration. Locators represent refer-
ences that enable communication with universal actors at a
specific location. Each location represents an actor’s run-
time environment and serves as an encapsulation unit for
local resources. Ubiquitous resources, such as processing
power, have a generic representation—actor references to
ubiquitous resources get updated to the local resources upon
migration to new locations.

2.1.3 Autonomous Actors

When a system is composed of mobile actors, it can be re-
configured arbitrarily, as long as all its utilized resources
are ubiquitous [21]. Autonomous actors extend universal
actors by: 1) profiling resource consumption, 2) migrating
autonomously, 3) splitting and merging to improve scalabil-
ity, and 4) replicating for fault tolerance.1

Resource Profiling In determining how much informa-
tion is profiled, there is a tradeoff between how accurate
reconfigurations are and how much overhead is incurred
by profiling. Autonomous actors can adopt different pro-
filing strategies to reduce run-time overhead or to collect
more information on resource usage. Generally, actors pro-
file processing power, memory, storage, latency and band-
width. Each actor keeps a record of the number of messages
received, messages sent, and messages processed. Au-
tonomous actors can also profile where messages are sent
to and received from, as well as the time taken to process or
send a message. Based on the profiled information, the mid-
dleware’sdecision component(described in Section 3.2) de-
cides how the autonomous actors are to be distributed.

Autonomous Migration System reconfiguration via ac-
tor migration is triggered when one of these events occur:
an actor processes an application or middleware level mi-
gration message, or a soft failure occurs.

2.2 The World-Wide Computer (WWC)

The World-Wide Computer (WWC) consists of three
layers (see Figure 2):

• An application layer, consisting of actors which form
a graph according to their references to other actors
and the corresponding communication frequency.

1Split and merge behavior requires application-dependent methods
for decomposing and recomposing actors. Replication requires stateless
(purely functional) behaviors or immutable state. We only report here on
the first two of these extensions.

Figure 2. A Model for Worldwide Computing. Applica-
tions run on a virtual network (the Internet Operating Sys-
tem) which maps actors to locations in the physical layer
(the hardware).

• A physical layer, consisting of nodes providing com-
putational resources, such as memory, processing
power and storage; and connected by physical links
providing different latencies and bandwidths.

• A virtual network layerbetween the application and
physical layers, consisting of the Internet Operating
System (IOS) middleware. It profiles information
from the application layer regarding actor connectivity
and communication frequency, and from the underly-
ing physical layer regarding node resource usage and
availability, and link status, latency and bandwidth.
The middleware autonomously reconfigures the appli-
cation layer components providing non-functional ser-
vices such as load balancing, fault-tolerance and re-
source management.

3 The Internet Operating System (IOS)

The IOS architecture is decentralized for robustness,
scalability and efficiency. Each node at the physical layer
contains amiddleware agent. Based on customizable proto-
cols, agents arrange themselves in various virtual network
topologies to trigger application reconfiguration as needed.

3.1 Virtual Network Topologies

Virtual network topologies which adjust themselves ac-
cording to the underlying physical layer are said to benet-
work sensitive. We present two types of representative
topologies: apeer-to-peer(p2p) topology and acluster-to-
cluster(c2c) topology. The p2p topology consists of several

3

Figure 3. The peer-to-peer virtual network topology.
Middleware agents represent heterogeneous nodes, and
communicates with groups or peer agents. Information is
propagated through the virtual network via these communi-
cation links.

heterogeneous nodes inter-connected in a peer-to-peer fash-
ion while the c2c topology imposes more structure on the
virtual network by grouping homogeneous nodes with low
inter-network latencies into clusters.

A Network Sensitive Peer-to-Peer Topology (NSp2p)
Agents initially connect to the IOS virtual network either
through other known agents or through apeer server. Peer
servers act as registries for agent discovery. Upon con-
tacting a peer server, an agent registers itself and receives
a list of other agents (peers) in the virtual network. Peer
servers simply aid in discovering peers in a virtual network
and are not a single point of failure. They operate sim-
ilarly to gnutella-hosts in Gnutella peer-to-peer networks
[6]. After an agent has connected to the virtual network,
it can discover new peers as information gets passed across
peers. Agents can also dynamically leave the virtual net-
work. Previous work discusses dynamic addition and re-
moval of nodes in the IOS middleware [7].

A Network Sensitive Cluster-to-Cluster Topology
(NSc2c) In NSc2c, agents are organized into groups
of virtual clusters (VCs), as shown in Figure 4). Each
VC elects one agent to act as the cluster manager. VCs
may reconfigure themselves as necessary by splitting or
merging depending on the overall performance of the
running applications. Cluster managers view each other as
peers and organize themselves as a NSp2p virtual network
topology.

Figure 4. The cluster-to-cluster virtual network topology.
Homogeneous agents elect a cluster manager to perform in-
tra and inter cluster load balancing. Clusters are dynam-
ically created and readjusted as agents join and leave the
virtual network.

Figure 5. Architecture of a node in the Internet operating
system middleware. An agent collects profiling information
and makes decisions on how to reconfigure the application
based on its decision, protocol and profiling components.

3.2 Agent Software Architecture

Each node has a middleware agent consisting of three
pluggable components (see Figure 5). These components
perform the tasks of application and physical layer profil-
ing, inter-agent communication, and virtual network cre-
ation. They are also responsible for application reconfig-
uration decisions. These pluggable components make the
middleware highly customizable, and not restricted to any
specific method of application reconfiguration or to any par-
ticular virtual topology. As such it provides a testbed for

4

comparing multiple methodologies for distributed load bal-
ancing, fault-tolerance and other types of reconfiguration.

The agent’s components are:

• A protocol componentto allow for inter-agent commu-
nication and virtual network creation.

• A profiling componentconsisting of an application
monitor which receives profiled information from ac-
tors and different physical resource monitors for pro-
filing processing power, memory and network usage.
The architecture modularity affords using different
monitoring services, such as the Network Weather Ser-
vice [30].

• A decision componentproviding models to decide
when to migrate, split, merge or replicate actors, given
remote profiling information received from the proto-
col component and local profiling information received
from the profiling component. Different models are
described in detail in Section 4.

4 Autonomous Load Balancing

The implementation of the IOS decision component used
in evaluating the different virtual network topologies uses
a resource sensitive model (RSM) to balance the resource
consumption of actors on the physical layer. RSM provides
a normalized measure of the improvement in resource avail-
ability an actor would receive by migrating between theaters
(see Figure 6 for details). Both the NSp2p and NSc2c pro-
tocols use the RSM to decide which actors are the most ben-
eficial to migrate. The following sections describe how this
information is used to decide how load balancing is accom-
plished.

4.1 Peer-to-peer Load Balancing

Peer-to-peer load balancing is based on a simple but ef-
fective work stealing algorithm described by [5]. Agents
configuring themselves in the NSp2p topology keep a list
of peers and arrange these peers into four groups based on
communication latency [14]: 1) local (0 to 10 ms), 2) re-
gional (11 to 100 ms), 3) national (101 to 250 ms), and 4)
global (251 ms and higher).

Agents on nodes which arelightly loaded(have more re-
sources available than are currently being utilized) will pe-
riodically send reconfiguration request packets (RRPs) con-
taining locally profiled information to a random peer in the
local group. The decision component will then decide if it is
beneficial to migrate actors to the source of the RRP (the de-
cision making process is described in detail in Section 4. If
it decides not to migrate any actors, the RRP is propagated

to a local peer of the current agent. This progresses until
the RRP’s time to live has elapsed, or actors have been mi-
grated. If no actor is migrated, the source of the RRP will
send another RRP to a regional peer, and if no migration
occurs again, an RRP is sent nationally, then globally. As
reconfiguration is only triggered by lightly loaded nodes, no
overhead is incurred when the network is fully loaded, and
thus this approach is stable[22].

4.2 Cluster-to-cluster Load Balancing

The cluster-to-cluster strategy attempts to utilize central
coordination within VCs in order to obtain an overall pic-
ture of the applications’ communication patterns and re-
source consumption as well as the physical network of the
VC. A cluster manager acts as the central coordinator for a
VC and utilizes this relatively global information to provide
both intra- and inter-VC reconfiguration.

4.2.1 Intra-Cluster Load Balancing

Every cluster manager sends periodic profiling requests to
the agents in its respective VC. Every agent responds with
information from its profiling component about the local ac-
tors and their resource consumption. The cluster manager
uses this information to determine which actors should be
migrated from the node with the least available resources to
the node with the most available resources. Letn1 andn2 be
the number of actors running on two nodes, andri,j be the
availability of resourcei on nodej with a resource weight
wi. The intra-cluster load balancing continuously attempts
to achieve the relative equality of actors on nodes according

to their relative resource availability:n1

n2

=

∑
wiri,1∑
wiri,2

.

4.2.2 Inter-Cluster Load Balancing

For inter-cluster load balancing, NSc2c uses the same strat-
egy as peer-to-peer load balancing, except that each clus-
ter manager is seen as a peer in the network. The clus-
ter managers decision component compares the heaviest
loaded node to the lightest loaded node at the source of the
RRP to determine which actors) to migrate.

4.3 Migration Granularity

RSM supports both single migration and group migra-
tion of actors. In single migration, the model is applied to
determine an estimation of the gain that would be achieved
from migrating an actor from one theater to another. In sin-
gle migration, one actor is migrated at a time in order to let
the application and profiling information readjust to the re-
configuration to prevent incorrect profiling information be-
ing used. Group migration tries to speed load balancing by

5

Notation Explanation

A A group of actors.
Ar,f The amount of available resourcer at nodef .
Ur,l,A The amount of resourcer used byA at nodel.
R The set of all resources to be considered by the resource sensitive model.
wr A weight for a given resourcer, where

∑
wr = 1

Cl,f,A The cost of migrating the set of actorsA from l to f

EA The average life expectancy of the set of actorsA, where0 ≤ C

E
≤ −1.

∆r,l,f,A The overall improvement in performance the system of actorswould receive in terms of resourcer by
migrating the set of actorsA from nodel to nodef , where∆r,l,f,A is normalized between -1 and 1.
∆r,l,f,A =

Ar,f−Ur,l,A

Ar,f +Ur,l,A

gain(l, f, A) A normalized measure of the overall improvement gained by migrating a set of actorsA from local
nodel to foreign nodef .
gain(l, f, A) = (

∑
r wr ∗ ∆r,l,f,A) − (

Cl,f,A

EA
)

Figure 6. The resource sensitive model (RSM) used to by the IOS decision component to determine which actors to migrate
between nodes.

migrating multiple actors if resources at the destination the-
ater can feasibly support more than a single actor. Single
and group migration with NSp2p and NSc2c are both ex-
amined in Section 5.

5 Performance Results

This section describes the tests used in the evaluation of
the NSc2c and NSp2p virtual networks for load balancing,
and the results of this evaluation.

5.1 Evaluation Testbed

IOS has been prototyped using SALSA and Java lan-
guage with high-level constructs for remote messaging, uni-
versal naming, migration, and coordination. SALSA pro-
grams are compiled into Java code, leveraging the existence
of virtual machine implementations in multiple heteroge-
neous platforms and operating systems.

Our performance results were evaluated using two differ-
ent physical environments to model Internet-like networks
and Grid-like networks. The first physical network consists
of 20 machines running Solaris and Windows operating sys-
tems with different processing power and different latencies
to model the heterogeneity of Internet computing environ-
ments. The second physical network consists of 5 clusters
with different inter-cluster network latencies. Each clus-
ter consists of 5 homogeneous SUN Solaris machines. Ma-
chines in different clusters have different processing power.

Four different application topologies were compared,
each pertaining to a level of inter-actor communication and
representing different connectivity levels. The unconnected

application topology models massively parallel applications
where actors continuously perform computations without
exchanging any messages. The sparse application topology
models applications that have a moderate level of commu-
nication but have a higher communication to computation
ratio. The tree application topology links actors in a tree
structure to model a much higher degree of inter-actor com-
munication. Finally, the hypercube application topology
provides the highest amount of inter-actor communication
modeling a very high communication to computation ratio.

The unconnected, sparse, and tree application topologies
consist of 85 actors performing a set of extensive floating-
point operations, while the hypercube application topology
consists of 16 actors. The resources that have been moni-
tored by the IOS prototype are CPU performance and net-
work communication. The weights of the communications
and CPU resources have been statically assigned for each
application. The CPU resource weights were assigned the
values of 0.2, 0.5, 0.8, and 1.0, while the communication
resource weights were assigned the values of 0.8, 0.5, 0.2,
and 0.0 for the hypercube, tree, sparse, and unconnected
application topologies respectively.

5.2 Virtual Network Evaluation

For most application topologies, NSc2c performed bet-
ter than NSp2p on grid-like environments (see Figures
7, 8, and 9). The results show the central coordination and
knowledge of NSc2c allows more accurate reconfiguration
with less overhead due to the homogeneous nature of the
clusters in the physical layer. NSp2p lacks this central co-
ordination which explains the decreased performance.

6

Figure 7. The hypercube application topology on
Internet- and Grid-like environments.

In Internet-like environments, NSp2p outperformed
NSc2c (see Figures 7, 8, and 10). Due to the lack of ho-
mogeneous resources which could be centrally coordinated,
NSc2c required additional overhead and performed less ac-
curate reconfiguration. NSp2p did not require the extra
overhead of central management and thus proved to be the
better strategy on this type of physical network.

However, in both cases NSp2p outperformed NSc2c in
the unconnected application topology, as NSc2c outper-
formed NSp2p in the sparse application topology. This is
due to the way the strategies interact with the application
topologies. For the unconnected application topology, sim-
ply dispersing the actors as much as possible across the
network achieves the best load balancing; however with
the sparse application topology, more tightly coupled ac-
tors should be kept closer together. NSp2p more quickly
disperses actors across the physical network, while NSc2c
tries to keep actors within the same cluster only migrating
actors out when necessary.

5.3 Single vs. Group Migration

In the NSc2c strategy, intra-cluster load balancing can
possibly migrate multiple actors at the same time given the
centralized knowledge at the cluster manager. We have
evaluated these two strategies over a testbed with two clus-
ters. Each cluster consists of 4 machines. Results show that
for the 4 application topologies, group migration performs
better than individual migration (see Figures 11 and 12).
While individual migration is more conservative and results
in a more stable behavior of the application throughput as

Figure 8. The tree application topology on Internet- and
Grid-like environments.

Figure 9. The sparse application topology on Internet-
and Grid-like environments.

the experiments show, migrating multiple actors simultane-
ously can balance the load much quicker.

6 Related Work

A significant amount of research has been done on load
balancing at various system levels. Network-level load bal-
ancing tries to optimize the utilization of existing network
resources by controlling traffic flow and minimizing the

7

Figure 10. The unconnected application topology on
Internet- and Grid-like environments.

Figure 11. Single vs. group migration for the uncon-
nected and sparse application topologies.

number of over-utilized links and under-utilized links [20].
Middleware-based load balancing provides the most flexi-
bility in terms of balancing the load to different types of
applications [15]. It is not constrained to the OS or network
level but it spans different system levels. Different load bal-
ancing strategies exist that range from static to dynamic,
centralized to distributed, and sender-initiated to receiver-
initiated strategies.

Figure 12. Single vs. group migration for the tree and
hypercube application topologies.

This work focuses on middleware-level based load bal-
ancing strategies across large scale, highly dynamic peer-
to-peer networks. Several load balancing strategies have
been studied for structured and unstructured P2P systems.
Some of them distribute objects across structured P2P sys-
tems [18, 24, 10]. They are all based on the concept of dis-
tributed hash tables. However they assume that all objects
are homogenous and have the same size. Rao et al. [11]
have accounted for heterogeneity by using the concept of
virtual servers that move from heavy nodes to light nodes
which is similar in concept to migration of actors. However
they assume that the load on virtual servers is stable. They
also assume that there is only one bottleneck resource that
needs to be optimized at a time.

Triantafillou et al. [26] have suggested load balancing
algorithms to distribute contents over unstructured P2P sys-
tems. They aggregate global meta-data over a two-level hi-
erarchy and they use it to re-assign objects. Our load bal-
ancing decision functions are not restricted to optimizing
a specific bottleneck resource. Our middleware is not re-
stricted to one load balancing strategy. It has been designed
and implemented with the intention of plugging in differ-
ent load balancing strategies depending on the nature of the
running applications. This allows us to create concepts and
decision functions based on the actor model, where place-
ment of actors can be modified dynamically. We have used
this middleware as a testbed to evaluate different strategies
with several application communication topologies simulat-
ing diverse applications.

The issue of adaptive middleware in distributed systems

8

has been studied by several researchers. Gul Agha et al.
have introduced meta-actors to implement different interac-
tion services such as fault tolerance, security, and synchro-
nization [2, 4, 29]. Fabio Kon et al. have presented a model
of reflective middleware that allows dynamic inspection and
modification of the execution semantics of running applica-
tions as a response to changing resources in a distributed
environment in order to improve performance [13]. A dy-
namically adaptable middleware (Comet) for distributed de-
bugging and communication flow synchronization has been
proposed by Peschanski et al [16].

Ranganathan et al. have developed a middleware allow-
ing software agents to learn about their context for ubiq-
uitous computing environments [17]. While context-aware
agents can learn about their environment to make accurate
decisions and take actions based on this information, IOS
middleware agents consolidate information at the middle-
ware level and take decisions on behalf of application com-
ponents.

7 Discussion and Future Work

This paper introduced a modular software framework for
distributed computing over the Internet. The Internet Op-
erating System (IOS) middleware consists of agents con-
nected in a peer-to-peer topology. These agents trigger dy-
namic program reconfiguration based on profiled resource
usage and availability.

Our preliminary version of IOS2 has shown that pro-
gressively more informed load balancing schemes improve
the performance of distributed applications on dynamic net-
works. It has also empirically enabled us to evaluate differ-
ent decentralized coordination strategies on diverse appli-
cation and physical network topologies. The implemented
strategies have focused mainly on (1) profiling CPU pro-
cessing power in distributed physical machines, (2) be-
ing sensitive to application actor topologies to attempt co-
location of actors with high frequencies of communica-
tion [7], and (3) being sensitive to the physical network
topologies to attempt minimization of communications over
links with high latency and low bandwidth. Since applica-
tions have different resource requirements, the ideal level
of profiling is highly dependent on the nature of compu-
tation that is being performed. For this reason, a modular
architecture that enables plugging-in components for differ-
ent decision, profiling, and coordination strategies has been
developed.

Applications with diverse communication patterns were
evaluated on two representative physical networks: first,
an Internet/Web computingenvironment with highly di-

2We have used IOS v0.3 for these experiments. The source code is
freely available for download at http://www.cs.rpi.edu/wwc/ios/.

verse computation and communication capabilities across
its nodes; and second, aGrid computingenvironment with
more structured topology: a set of tightly-coupled and ho-
mogeneous clusters. Our results show that with applica-
tions exhibiting high communication to computation ra-
tios (e.g., hypercube and tree application topologies), the
p2p agent topology performs better on Internet-like envi-
ronments while the c2c agent topology performs better on
Grid-like environments. On sparse application communi-
cation topologies, c2c outperforms p2p on both Internet-
and Grid-like environments, while on unconnected appli-
cation topologies (representing massively parallel applica-
tions), p2p outperforms c2c in both Internet- and Grid-like
environments. Using group migration to balance the distri-
bution of load across several nodes performed empirically
better than using single migration of actors.

The development of the World-Wide Computer is an
ongoing process. Results have shown that different mid-
dleware profiling, decision and communication strategies
perform better for different applications and physical net-
work types. In addition to reconfiguring applications due
to changes in application resource consumption and com-
munication patters and the dynamic physical network, the
IOS middleware should reconfigure itself—autonomously
selecting different profiling and decision strategies depend-
ing on its environment. Likewise, the middleware agent
topology should adapt to minimize the overhead of inter
agent communication and improve the application recon-
figuration decision process.

Future work includes: (1) profiling more resources, such
as bandwidth, memory, and storage; (2) devising strate-
gies and analytical models for splitting, merging, and repli-
cating components; (3) interoperating with existing high-
performance messaging implementations (such as MPI)
and evolving standardization efforts in the grid comput-
ing community (such as the Open Grid Services Archi-
tecture); (4) creating application-independent strategies for
fault-tolerance at the middleware level; (5) scaling compu-
tations up to thousands of nodes; and (6) providing security
mechanisms such as human and software agents authentica-
tion and fine-grained resources access control.

Our long term goal is to define, develop, and deploy a
platform for worldwide computing that enables resource-
intensive applications to locate and allocate resources and
adapt to highly dynamic, potentially unreliable, distributed
computing environments.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986.

[2] G. Agha, S. Frølund, R. Panwar, and D. Sturman. A lin-
guistic framework for dynamic composition of dependabil-

9

ity protocols. InDependable Computing for Critical Ap-
plications III, pages 345–363. International Federation of
Information Processing Societies (IFIP), Elsevier Science
Publisher, 1993.

[3] G. Agha, N. Jamali, and C. Varela. Agent Naming and
Coordination: Actor Based Models and Infrastructures. In
A. Ominici, F. Zambonelli, M. Klusch, and R. Tolksdorf,
editors,Coordination of Internet Agents, chapter 9, pages
225–248. Springer-Verlag, 2001.

[4] G. A. Agha and C. A. Varela. Worldwide computing mid-
dleware. In[23] . 2004.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling Multi-
threaded Computations by Work Stealing. InProceedings
of the 35th Annual Symposium on Foundations of Computer
Science (FOCS ’94), pages 356–368, Santa Fe, New Mex-
ico, November 1994.

[6] Clip2.com. The gnutella protocol specification v0.4, 2000.
[7] T. Desell, K. ElMaghraoui, and C. Varela. Load balancing

of autonomous actors over dynamic networks. InHawaii In-
ternational Conference on System Sciences, HICSS-37 Soft-
ware Technology Track, Hawaii, January 2004.

[8] J. Ferber and J. Briot. Design of a concurrent language for
distributed artificial intelligence. InProceedings of the In-
ternational Conference on Fifth Generation Computer Sys-
tems, volume 2, pages 755–762. Institute for New Genera-
tion Computer Technology, 1988.

[9] C. Hewitt. Viewing control structures as patterns of passing
messages.Journal of Artificial Intelligence, 8-3:323–364,
June 1977.

[10] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Dis-
tributed object location in a dynamic network. InProceed-
ings of the Fourteenth ACM Symposium on Parallel Algo-
rithms and Architectures, pages 41–52, Aug. 2002.

[11] A. R. Karthik. Load balancing in structured p2p systems.
In 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), Berkeley, CA, 2003.

[12] W. Kim and G. Agha. Efficient Support of Location Trans-
parency in Concurrent Object-Oriented Programming Lan-
guages. InProceedings of Supercomputing’95, 1995.

[13] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case of
reflective middleware.Commun. ACM, 45(6):33–38, 2002.

[14] T. T. Kwan and D. A. Reed. Performance of an infras-
tructure for worldwide parallel computing. In13th Interna-
tional Parallel Processing Symposium and 10th Symposium
on Parallel and Distributed Processing, page 379, San Juan,
Puerto Rico, 1999.

[15] O. Othman and D. C. Schmidt. Issues in the Design of
Adaptive Middleware Load Balancing. InProceedings of the
2001 ACM SIGPLAN workshop on Optimization of middle-
ware and distributed systems, pages 205–213, Snow Bird,
Utah, USA, 2001.

[16] F. Peschanski, J.-P. Briot, and A. Yonezawa. Fine-grained
dynamic adaptation of distributed components. InMiddle-
ware 2003, pages 123–142, Rio de Janeiro, Brazil, June
2003. Springer.

[17] A. Ranganathan and R. H. Campbell. A middleware
for context-aware agents in ubiquitous computing environ-
ments. InMiddleware 2003, pages 143–161, Rio de Janeiro,
Brazil, June 2003. Springer.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. InPro-
ceedings of ACM SIGCOMM 2001, pages 161–172, 2001.

[19] S. Ren, G. A. Agha, and M. Saito. A modular approach
for programming distributed real-time systems.Journal of
Parallel and Distributed Computing, 36:4–12, 1996.

[20] H. Saito, Y. Miyao, and M. Yoshida. Traffic engineering
using multiple multipoint-to-point LSPs. InINFOCOM (2),
pages 894–901, 2000.

[21] T. Sekiguchi and A. Yonezawa. A calculus with code mobil-
ity. In H. Bowman and J. Derrick, editors,Formal Methods
for Open Object-based Distributed Systems, Volume 2, pages
21–36. Chapman & Hall, 1997.

[22] N. G. Shivratri, P. Kreuger, and M. Ginghal. Load distribut-
ing for locally distributed systems.IEEE Computer, 25:33–
34, December 92.

[23] M. P. Singh, editor.Practical Handbook of Internet Com-
puting. Chapman Hall & CRC Press, Baton Rouge, 2004.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. InProceedings of the ACM SIG-
COMM ’01 Conference, pages 149–160, San Diego, Cali-
fornia, August 2001.

[25] C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk. The
extensible services switch in Carnot.IEEE Parallel and Dis-
tributed Technology, 1(2):16–20, May 1993.

[26] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntar-
mos. Towards high performance peer-to-peer content and
resource sharing systems. InFirst Biennial Conference on
Innovative Data Systems Research (CIDR 2003), pages 341–
355, Pacific Grove, California, USA, 2003.

[27] C. Varela. Worldwide Computing with Universal Actors:
Linguistic Abstractions for Naming, Migration, and Coor-
dination. PhD thesis, U. of Illinois at Urbana-Champaign,
April 2001.

[28] C. Varela and G. Agha. Programming dynamically
reconfigurable open systems with SALSA. ACM
SIGPLAN Notices. OOPSLA’2001 Intriguing Tech-
nology Track Proceedings, 36(12):20–34, Dec. 2001.
http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[29] N. Venkatasubramanian. Safe composibility of middleware
services.Commun. ACM, 45(6):49–52, 2002.

[30] R. Wolski, N. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing. Journal of Future Generation
Computing Systems, 15:757–768, October 1999.

10

