
Oblivious Routing on Geometric Networks

Costas Busch∗ Malik Magdon-Ismail Jing Xi

Computer Science Department

Rensselaer Polytechnic Institute

Troy, NY 12180, USA

{buschc,magdon,xij2}@cs.rpi.edu

Abstract

We study oblivious routing algorithms in which packet paths are constructed independently.
We give a very simple oblivious routing algorithm for geometric networks (networks which are
embedded in the Euclidean plane): choose a random intermediate node in the space between
the source and destination, and then send the packet to its destination through the intermediate
node. We analyze this simple algorithm in terms of stretch and congestion. We show that the
stretch is constant, and the congestion is near optimal when the network paths can be chosen
to be close to the geodesics. We give applications of our general result to the mesh topology
and uniform disc graphs. Previous oblivious routing algorithms with near optimal congestion
use many intermediate nodes and do not control the stretch.

Regular Submission

∗

Contact Author

1 Introduction

A routing algorithm specifies the paths to be followed by packets in a network. The routing
algorithm is oblivious if the path of every packet is specified independently of the paths of the
other packets. Oblivious algorithms are by their nature distributed and capable of solving online
routing problems, where packets continuously arrive in the network. We give an oblivious routing
algorithm for geometric networks. In these networks, the nodes are placed on the 2-dimensional
Euclidian plane (Figure 1(a)), and the edges of the network are un-weighted. We assume that all
the nodes are contained in some geographic area A.

Suppose that a packet wants to go from a node s to a node t in the network. Our algorithm first
chooses a random intermediate node w in the space between s and t, sends the packet to w, and
then sends the packet from w to its destination (see Figure 1(b)). In order to implement this idea,
we assume that between every pair of nodes there is a dedicated path which we call the default
path. For example, the default path between two nodes u and v could be a shortest path that
connects them. We denote the set of all default paths by Q. The choice of the default paths affects
the performance of our algorithm, and the closer the default paths are to the geodesics, the better
the performance of the algorithm. The detailed algorithm is as follows (see also Figure 1(b)):

Routing Algorithm: The algorithm computes a path p(s, t) from s to t as follows.
Let ` be the geodesic line segment that connects s and t, and let `⊥ be the perpendicular
bisector of ` which has the same length as ` and is also bisected by `. We choose a
random point y on `⊥. Then we find a node w close to y (within some distance R).
The path p(s, t) from s to t is formed by concatenating the default paths q(s,w) and
q(w, t). If the line `⊥ extends outside the area A, then y is chosen in `⊥A, that part of
`⊥ inside A.

We analyze the algorithm in terms of stretch and congestion. Consider some set of paths P
produced by our algorithm. Denote by stretch(P) the maximum ratio of a path length to the
length of the respective shortest path (the length is measured in number of node hops). The node
congestion Cnode is the maximum number of paths that use any node in the network. The edge
congestion Cedge is the maximum number of paths that use any edge in the network. Let C∗

node

and C∗
edge denote the optimal node and edge congestions, which could be obtained by a brute force

search through all possible paths from the sources to the destinations in P .
The stretch and congestion of the paths P produced by our algorithm depend on the quality

of the default paths Q. In particular, provided that the geometric embedding is “faithful” to the
topology of the network (i.e. nodes far apart are connected with more hops than nodes closer to
each other) we obtain:

stretch(P) = O
(

stretch(Q)
)

,

Cnode = O
(

C∗
node · (1 + deviation

3(Q)) · log(n + deviation(Q))
)

,

where n is the number of nodes, and deviation(Q) measures the extent of deviation of the default
paths from geodesics (see Figure 1). We also obtain a corresponding result for the edge congestion.
The congestion results hold with high probability, while the stretch result is deterministic.

We apply our general result to two particular geometric networks, the Mesh and uniform disc
networks, which have geometric embeddings that are faithful to the network topologies. The
Mesh is a 2-dimensional grid of nodes. In disc networks, each node is connected to any node
within a specific disc radius. In uniform disc graphs, each unit square area contains at most a
constant number of nodes. In these networks, we can choose default paths with constant stretch

1

u

v

default
path q

Area A

geodesicdeviation(q)

s

t

`

`⊥

`⊥A

Rw

q(s, w)

q(w, t)

y

Boundary of A

(a) (b)

Figure 1: (a) A geometric network. (b) The algorithm.

and deviation. Therefore, our algorithm gives paths with constant stretch. We obtain node and edge
congestions which are within logarithmic factors of optimal, Cnode = O(C∗

node log n) and Cedge =
O(C∗

edge log n), with high probability. Maggs et al. [12] give a worst case edge congestion lower
bound of Ω(C∗

edge log n) for any oblivious routing algorithm in the 2-dimensional mesh. Therefore,
in addition to constant stretch, the congestion we obtain is optimal (within constant factors) for
oblivious algorithms.

The disc networks, as well as the mesh network, are popular models for wireless networks.
Wireless nodes usually have limited power, for example a battery with limited energy. To maximize
the lifetime of the nodes (and the network), it is important to minimize the utilization of individual
nodes, i.e. the node congestion. Our algorithm is easy to implement in wireless networks (on
account of its simplicity) and achieves optimal node congestion (up to a log n factor).

Related Work. The motivation for minimizing congestion and stretch simultaneously is because
there exist packet scheduling algorithms [10, 11, 13, 15] which deliver the packets along the given
paths in time very close to the optimal O(Cedge + D), where D is the maximum path length.

Maggs et al. [12] give an oblivious algorithm for the d-dimensional mesh with congestion
O(dC∗

edge log n). Following this work, there have been extensions to general networks [3, 4, 8,
16], where progressively better oblivious algorithms with near optimal (up to logarithmic factors)
congestion. However, in all these algorithms the stretch is unbounded. Further, all these algorithms
are based on a hierarchical decomposition of the network into clusters, which requires a logarithmic
number of intermediate nodes. Our algorithm on the other hand, uses only a single intermediate
node and doesn’t depend on any hierarichical clustering. Maggs et al. [12] also give a lower bound

of Ω(
C∗

edge

d
log n) on the congestion of any oblivious algorithm on the mesh (thus, for d = 2 our

algorithm has optimal congestion). A variety of other such lower bounds also exist [5, 9, 19].
In [6] we give the only other known oblivious algorithm which simultaneously minimizes the

congestion and has constant stretch. That algorithm is for the d-dimensional mesh, and is also based
on a hierarchical decomposition of the network. In the same paper we show that for achieving near
optimal congestion on the mesh, any oblivious routing algorithm requires an amount of random
bits which is proportional to the logarithm of the distance between the source and destination.

2

Thus, randomization is unavoidable for oblivious routing.
Non-oblivious routing algorithms with near optimal congestion and stretch are discussed in [1,

2, 17, 18]. These approaches require a priori knowledge of the traffic distribution. Trade offs
between stretch and congestion have been studied in wireless networks [7]. Our algorithm shows
that both can be controlled in special cases of wireless networks.

Paper Outline. We begin with some necessary definitions and preliminary results in Section 2.
We then continue with the analysis of our algorithm in Section 3. The applications of our algorithm
to the mesh and disc graphs appear in Section 4. We finish with a discussion in Section 5.

2 Preliminaries

2.1 Geometric Networks

Consider a geometric network G with n nodes which is embedded in the Euclidean plane, R
2. We

assume that G is un-weighted, undirected, connected and stationary. Further, its edges are un-
weighted, i.e. the communication cost of every link is 1 regardless of the link’s Euclidian length.
Every node vi has a position xi ∈ R

2. We will also use the notation x(v) to denote the position of
the node v. The network is defined over some area A. We will also refer to the network itself as A
when the context is clear. Thus, xi ∈ A for all i. For the area A, we define a coverage radius R(A)
as follows (we drop the A dependence when the context is clear). If, for every point x ∈ A, there is
at least one node v that is located at most a (Euclidean) distance R from x, then R is a coverage
radius, i.e., from any point in A, one needs to go a distance at most R to reach some node in the
network.

We define the pseudo-convexity γ(A) of area A as follows. Let x1,x2 ∈ A, and consider the line
` joining x1 to x2. Let `⊥ be a line of equal length to ` such that ` and `⊥ are mutual perpendicular
bisectors. Let `⊥A ⊆ `⊥ be the intersection of `⊥ with A. Denote by |`⊥A| the measure, or “length” of
`⊥A. We define the local pseudo-convexity at x1,x2 as γ(x1,x2) = |`⊥A|/|`⊥|. The pseudo-convexity
γ of A is the infimum over all pairs x1,x2 ∈ A of γ(x1,x1),

γ = inf
x1,x2∈A

γ(x1,x2).

In words, γ is a lower bound on the fraction of the perpendicular bisector `⊥ that is guaranteed
to be in A. Note that A is convex if γ ≥ 1

2 but that the converse is not true (consider a very thin
rectangle). For any regular convex polygon, or a circle, γ ≥ 1

2 . For a network embedded in a fixed
area A, γ is independent of n, which will have important consequences on the optimality of our
path selection algorithm (provided that γ > 0).

Since the network is embedded in R
2, there are two notions of distance between two nodes u, v

that are useful. The first is the Euclidean distance, distE(u, v) which is the length of the straight
line (or geodesic) joining the positions x(u) and x(v). For two points x,y ∈ R

2, ||x − y || is the
Euclidean distance between them. Thus, distE(u, v) = ||x(u) − x(v) ||. The second useful distance
measure is the graph-theoretic or network distance distG(u, v) which is the length of the shortest
path in G from u to v. For any path p in G, we use |p| to denote the length of the path (number
of edges in the path), and we define the Euclidean path length |p|E to be the weighted path length,
where the weights on the edges are set to the Euclidean distance between the nodes they connect.

For two nodes u, v, we use the measure distG(u, v)/distE(u, v) to represent how well the Eu-
clidean distances in the network embedding represent the network distances. We introduce two

3

parameters α, β to denote lower and upper bounds for this measure. Thus, for every pair of nodes
u, v,

α ≤ distG(u, v)

distE(u, v)
≤ β

Thus, two nodes u, v that are connected by an edge (distG(u, v) = 1) cannot be separated by more
than a distance of 1

α
. Note also that distG(u, v) ≥ 1, so distE(u, v) ≥ 1

β
. We thus have the following

useful lemma,

Lemma 2.1 For any two nodes, u, v, distE(u, v) ≥ 1
β
. If u and v are adjacent then distE(u, v) ≤ 1

α
.

Lemma 2.1 allows us to derive an upper bound on the number of nodes that can be in a disc.

Lemma 2.2 Consider a disc of radius r ≥ 1
β

containing M nodes. Then M ≤ c(βr)2, where c is

a constant, c ≤ 1 + π/(2π
3 −

√
3

2).

Proof: The intuition is that every node accounts for an area of at least π/β2. Since the total
area is πr2, there can be at most πr2/(π/β2) = (βr)2 nodes. The only complication is that nodes
near the boundary do not take up the entire area π/β2, as part of this area could be outside the
disc. Taking this boundary phenomenon into account gives us the constant c.

To prove the lemma, consider the circle of radius r − 1
β

with M1 nodes, and the remaining ring

from r− 1
β

to r with M2 nodes. Since every one of the M1 nodes defines an area of radius 1
β

that is

completely enclosed in the disc, we have the M1 ≤ (βr)2. Now consider the ring. The smallest area
blocked off by a node occurs when the node is on the boundary, in which case the area is smallest

when r = 1
β
. Some geometric considerations show that this area blocked of is at least 1

β2 (2π
3 −

√
3

2),

and since the area of the ring is at most πr2, M2 ≤ (βr)2π/(2π
3 −

√
3

2). To conclude, note that
M ≤ M1 + M2.

2.2 Default Paths

For every pair of nodes u, v, we assume that a default path q(u, v) in G is provided. Denote the
set of all n(n − 1) default paths by the set Q. For a given default path q(u, v), we define the
stretch of the path, stretch(q), to be |q(u, v)|/distG(u, v) which is the factor by which q is longer
than the shortest path between u and v. Consider the infinite line ` drawn through the points x(u)
and x(v). Let w be any intermediate node in the path q(u, v). The displacement of w from ` is
the perpendicular (Euclidean) distance from x(w) to `. The deviation of q(u, v) from `, denoted
deviation(q), is the maximum displacement of any intermediate node w of q from `. deviation(q)
measures how closely the path q(u, v) stays to the straight line (geodesic) from x(u) to x(v).

The stretch factor for the entire set of paths Q is the maximum stretch of any path in Q, and
similarly with the deviation of Q. We use Σ to denote the stretch and ∆ to denote the deviation,

ΣQ = stretch(Q) = max
q∈Q

stretch(q), ∆Q = deviation(Q) = max
q∈Q

deviation(q).

As we will see later in the analysis of our path selection algorithm, if the default paths have small
stretch and small deviation, then the path selection performance is closer to optimal. Thus it is
beneficial to select default paths that make these parameters as small as possible. We will see later
that for a variety of networks they can be made constants.

4

2.3 The Routing Problem

The input for the routing problem is a set of N sources and destinations (i.e. packets), Π =
{si, ti}N

i=1 and a geometric network G. The output is a set of paths, P = {pi}, where each path
pi ∈ P is from the source node si to the destination node ti. We define the stretch for a path p ∈ P
as well as the stretch factor for the entire set P as we did with the default paths Q. The desired
goal of the path selection problem is to output a set of paths P whose congestion is near optimal,
while at the same time having small stretch. We also define D∗ as the maximum shortest path
length between any pair of sources and destinations in Π, namely, D∗ = maxi distG(si, ti).

3 Analysis

Here, we give the analysis of our algorithm. We first analyze the stretch and then we continue
with the node-congestion and edge-congestion. In the discussion that follows, we will refer to the
Algorithm described in Section 1 and illustrated in Figure 1(b).

3.1 Stretch

We now give a bound on stretch(P), the stretch factor of the paths selected.

Theorem 3.1 stretch(P) ≤
√

2β
α

· ΣQ · (1 +
√

2Rα).

Proof: We will refer to Figure 1(b) in our proof. By construction,
√

2||x(s) − y || ≤ ||x(s) − x(t) ||,
and ||x(s) − y || = ||x(t) − y ||. Since ||x(w) − y || ≤ R, by the triangle inequality, we have that

||x(s) − x(w) || ≤ ||x(s) − y || + ||x(w) − y || ≤ 1√
2
||x(s) − x(t) || + R.

Similarily, ||x(t) − x(w) || ≤ 1√
2
||x(s) − x(t) || + R. From the definition of ΣQ, the stretch factor of

the default paths, we have that

|q(s,w)| ≤ ΣQ · distG(s,w) ≤ β · ΣQ · distE(s,w),

and similarily |q(w, t)| ≤ β · ΣQ · distE(w, t). We thus conclude that

|p(s, t)| = |q(s,w)| + |q(w, t)|,
≤ β · ΣQ · (||x(s) − x(w) || + ||x(t) − x(w) ||),
≤ β · ΣQ · (

√
2||x(s) − x(t) || + 2R).

Since ||x(s) − x(t) || ≤ 1
α
distG(s, t), and distG(s, t) ≥ 1, we obtain the theorem.

Typically R,α, β are constants, in which case stretch(P) = O(stretch(Q)), i.e., the stretch factor
of the algorithm is determined by the quality of the default paths.

3.2 Node Congestion

We now turn to the node congestion. We will get a bound on the expected congestion for any
particular node. We will then use a Chernoff bounding argument to obtain a high probability
result.

To bound the expected node congestion for a particular node v, we need to understand the
probability that a particular packet might use the node. Thus consider a particular packet π, with

5

`

r

φ

θ

`⊥

s

v

∆Q

R

R

ε A1

v

Ai−1

Ai

SI
i

s

w

t

`

...

A0

(a) (b)

Figure 2: (a) Probability of using a node v. (b) Expected congestion at a node v.

source s and destination t. Phase I of the path p(s, t) corresponds to the first part q(s,w), while
phase II to the second part q(w, t). Suppose that the packet uses v in phase I of its path (we will
bound the probability that π uses v in phase I of its path, a similar argument applies to phase II
of the path). Let r denote ||x(v) − x(s) ||.

The situation is illustrated in Figure 2(a). A circle of radius ∆Q is drawn around v. We give
an upper bound on the probability that π uses node v in the following lemma,

Lemma 3.2 Suppose that packet π has source and destination s and t respectively. Let PI be the
probability that π uses node v in phase I of its path and PII be the probability that π uses node v
in phase II of its path. Then,

PI ≤ 5

γ

(

R

||x(s) − x(t) || +
∆Q

||x(s) − x(v) ||

)

, PII ≤ 5

γ

(

R

||x(s) − x(t) || +
∆Q

||x(t) − x(v) ||

)

.

Proof: Consider the shaded cone subtended by the source s, tangent to the circle of radius ∆Q

centered on v. Since the deviation of the default paths is ∆Q, The intermediate node must lie
within the shaded cone if the path q(s,w) is to pass through v. If the intermediate node is in the
cone, the random intermediate point y must lie either in the cone or in one of the two shaded
strips of thickness R around the cone. Since y must also be on `⊥, y must lie on the line segment
illustrated by the thick line of length ε illustrated in Figure 2(a). The probability to use v is then
bounded by ε/|`⊥A|. We use the definitions of θ, φ as shown in Figure 2(a). Using some elementary
geometry, we find that ε = R · (1/ cos(θ) + 1/ cos(θ + φ)) + 1

2 |`| · (tan(θ + φ) − tan(θ)). ε is largest
when θ ≤ π

4 and θ + φ ≤ π
4 , so using some trignometric identities, we have that

ε ≤ 2
√

2R +
|`|
2

· tan φ(1 + tan2 θ)

1 − tan θ tan φ
,

≤ 2
√

2R + |`| · tan φ

1 − tan φ
,

where the last line follows because tan θ < 1. Since |`⊥A| ≥ γ|`⊥| = γ|`|, we have that the probability

6

to use v is at most

Prob ≤ 2
√

2
R

γ|`| +
1

γ

tan φ

1 − tan φ
,

(a)

≤ 2
√

2
R

γ|`| +
2 tan φ

γ
,

(b)
= 2

√
2

R

γ|`| +
4

γ

tan φ
2

1 − tan2 φ
2

,

(c)

≤ 2
√

2
R

γ|`| +
64 tan φ

2

15γ
,

(d)
= 2

√
2

R

γ|`| +
64

15γ

∆Q/r
√

1 − ∆2
Q/r2

,

(e)

≤ 5

γ

(

R

|`| +
∆Q

r

)

.

(a) follows because when tan φ ≤ 1
2 , tan φ/(1−tan φ) ≤ 2 tan φ, and when tan φ > 1

2 , 2 tan φ > 1, in
which case it is a trivially valid upper bound for the probability. (b) follows by using a double angle
identity. (c) follows by a similar argument that lead to (a) by considering separately tan φ

2 ≤ 1
4 and

tan φ
2 > 1

4 . (d) follows because from Figure 2(a), we see that tan φ
2 = ∆Q/

√

r2 − ∆2
Q. Finally, (e)

follows using 2
√

2 < 5 and by considering separately the cases ∆Q/r ≤ 1
5 and ∆Q/r > 1

5 (similar
with (a) and (c)).

To conclude, note that by symmetry, the situation is exactly reversed if the packet uses v in
phase II of its path, except that now r will be the distance from v to the destination t.

We will use Lemma 3.2 to obtain a bound on the expected node congestion. Consider an
arbitrary node v in the network. Let XI denote the packets that could possibly use v during phase
I of their path, and similarly XII . Consider only the packets in XI . Let SI = {sk} denote the
sources of all the packets in XI . Let rmax be the maximum (Euclidean) distance from the positions
of these sources to x(v), thus, rmax = maxs∈SI ||x(s) − x(v) ||.

Lemma 3.3 rmax ≤ D∗√
2α

+ R + ∆Q.

Proof: Let s be a source that could possibly use v in phase I and let t be the corresponding
destination. Let w be a possible intermediate node. Then ||x(s) − x(w) || ≤ 1√

2
||x(s) − x(t) || + R.

Since the path cannot deviate by more than ∆Q from the line joining x(s) to x(w), and the path
passes through v, it follows that

||x(v) − x(s) || ≤ ||x(s) − x(w) || + ∆Q ≤ 1√
2
||x(s) − x(t) || + R + ∆Q.

To conclude, note that ||x(s) − x(t) || ≤ 1
α
distG(s, t) and distG(s, t) ≤ D∗.

We now consider concentric rings A0, A1, A2, . . . of exponentially increasing radius, centered at
x(v). Ring Ai has radius ri = 2i/β, for i ≥ 0. Let imax = d log(rmaxβ) e (logarithms are base 2).
Note that all the sources in SI are contained in Aimax . For i > 0, we collect in set SI

i all the sources
which are in ring Ai, but not in Ai−1 (that is, they are in area between Ai−1 and Ai). Figure 2(b)
illustrates the situation.

7

Consider a particular i and the packets XI
i with sources in SI

i . Let Ni = |XI
i | be the number

of packets with sources in SI
i . In order to obtain an upper bound for the expected congestion at v,

we will need to bound Ni in terms of the optimal node congestion C∗
node.

Lemma 3.4 For any i ≥ 0 :

C∗
node ≥

αhiNi

4c(βri)2
, where hi = max

{

1

β
,
√

2(ri−1 − R − ∆Q)

}

.

Proof: As in the proof of Lemma 3.3, ||x(s) − x(v) || ≤ |`|√
2

+ R + ∆Q, and since ||x(s) − x(v) || ≥
ri−1, we get |`| ≥

√
2(ri−1 − R − ∆Q). From Lemma 2.1, |`| ≥ 1

β
, therefore |`| ≥ hi. Furthermore,

from Lemma 2.1 we have that the minimum number of hops from s to t is at least α|`|, and each
of these hops moves a distance at most 1

α
. So, any path selection algorithm for these packets will

have to make at least α|`| hops per packet, within a disc of radius

r = ri + hi ≤ ri + 2ri−1 ≤ 2ri.

By Lemma 2.2, there are at most 4c(βri)
2 nodes within this disc of radius r. The minimum total

number of times these nodes are used by any path selection algorithm is
∑

j∈XI
i
α|`j | ≥ αhiNi.

Thus, the average number of times a node is used in radius r is at least αhiNi/(4c(βri)
2), where c

is the constant defined in Lemma 2.2. Since one of these nodes has to be used at least this average
number of times, we obtain a lower bound on the congestion for any path selection algorithm, and
hence for the optimal congestion.

Note that inverting this bound, we get an upper bound for Ni, when i ≥ 1:

Ni ≤
4c(βri)

2C∗
node

αhi
(1)

Note that for i = 0 it holds trivially that N0 ≤ 0, since no node except for v can be in ring A0

(a consequence of Lemma 2.1). This upper bound for Ni together with the upper bound for the
probability that any of these packets uses node v (Lemma 3.2) allows us to bound the expected
congestion,

Theorem 3.5 E[C(v)] ≤ f(γ, α, β,R,∆Q,D∗) · C∗
node, where

f(γ, α, β,R,∆Q,D∗) =
40cβ2(R + 2∆Q)

γα
·
(

(3 + 4β(R + ∆Q))2 + 4 log

(

βD∗
√

2α
+ β(R + ∆Q)

)

+ 1

)

.

Proof: Let Probv(π) be the probability that packet π ∈ XI
i uses node v. Then packet π’s

contribution to the expected node congestion at v is Probv(π). Using Lemma 3.2, we can bound
Probv(π) by PI . Then, NiPI is an upper bound for the contribution to the expected node congestion
at v due to the packets in XI

i . Since every source in SI
i is distance at least ri−1 from node v, from

Lemma 3.2 and using (1), and the fact that ri ≥ hi, we obtain for i ≥ 1:

∑

π∈XI
i

Probv(π) ≤ NiPI ≤ 20c(βri)
2C∗

node

γαhi

(

R

hi

+
∆Q

ri−1

)

≤ 20cβ2(R + 2∆Q)C∗
node

γα
· r2

i

h2
i

.

The expected node congestion at v, denoted E[C(v)] is obtained by summing the contributions due
to each set XI

i for i = 1, . . . , imax. Thus,

E[C(v)] ≤ 20cβ2(R + 2∆Q)C∗
node

γα

imax
∑

i=1

r2
i

h2
i

.

8

Consider now the ratio hi/ri. We have

hi

ri
=

max
{

1
β
,
√

2(ri−1 − R − ∆Q)
}

ri
= max

{

1

2i
,
√

2

(

1

2
− β(R + ∆Q)

2i

)}

.

Let i∗ =
⌈

log(
√

2 + 4β(R + ∆Q))
⌉

. Then for i ≥ i∗, hi

ri
≥

√
2

2 , or equivalently ri

hi
≤

√
2 < 2. For

1 ≤ i < i∗, we have that hi

ri
≥ 1

2i , or in other words, ri

hi
≤ 2i. Since imax = d log(rmaxβ) e, using the

bound in Lemma 3.3, we get:

imax
∑

i=1

r2
i

h2
i

=
i∗−1
∑

i=1

r2
i

h2
i

+

imax
∑

i=i∗

r2
i

h2
i

≤
i∗−1
∑

i=1

4i +

imax
∑

i=i∗

4 ≤ (2i∗)2 + 4imax,

≤ (3 + 4β(R + ∆Q))2 + 4 log

(

βD∗
√

2α
+ β(R + ∆Q)

)

+ 1.

A symmetrical argument applies to the second phase of the paths, which contributes an additional
factor of 2, concluding the proof.

Note that without increasing the expected congestion, we can always remove any cycles in a
path, so without loss of generality, we will assume that the paths are acyclic. We now obtain a
concentration result on the congestion using a straightforward Chernoff bounding argument and
the fact that every packet selects its path independently of every other packet. To simplify the
presentation, we give the result for constant γ, α, β,R in which case E[C(v)] = O(C∗

node · (∆3
Q +

(1 + ∆Q) log(D∗ + ∆Q))) (see Theorem 3.5). The general case can be handled similarly.

Theorem 3.6 When γ, α, β,R are constants, the node congestion is O(C∗
node·(1+∆3

Q)·log(n+∆Q))
w.h.p..

Proof: Let Xi = 1 if path p(si, ti) uses node v, and 0 otherwise. Then, by Theorem 3.5, there is
a constant A such that

E[C(v)] = E[
∑

i

Xi] ≤ A · C∗
node · (∆3

Q log n + (1 + ∆Q) · log(n(D∗ + ∆Q))) = B.

Let κ > 2e. Since
∑

i Xi is a sum of independent Bernoulli trials, by applying a Chernoff bound
[14] we obtain

P [C(v) > κB] < 2−κB ≤ 1/nκA,

where we used the facts that C∗
node,D

∗ ≥ 1 and ∆Q ≥ 0. Taking a union bound over the n nodes
multiplies by an additional n, reducing the exponent on the right to κA − 1. Choosing κ large
enough, and noting that D∗ = O(n), we obtain the theorem.

3.3 Edge Congestion

For the edge congestion, the proof is similar as in the node congestion In order to carry through
the same analysis, we need an upper bound on the number of edges in the area, so we can get
a lower bound on the average edge congestion. If the maximum degree in the network is δ, then
the maximum number of edges is at most a factor δ times the maximum number of nodes, and so
the result is that the optimal edge congestion is at most a factor δ smaller than the optimal node
congestion, giving the following theorem for the expected edge congestion,

9

r

v

u

`

(a) (b)

Figure 3: (a) The Mesh. (b) Connectivity of a disc graph, and default path construction.

Theorem 3.7 Let δ be the maximum node degree. Then, E[C(e)] ≤ δ ·f(γ, α, β,R,∆Q,D∗) ·C∗
edge.

A concentration result can be also obtained for the edge congestion.

Theorem 3.8 When γ, α, β,R are constants, the edge congestion is O(δ ·C∗
edge · (1+ ∆3

Q) · log(n +
∆Q)) w.h.p..

4 Applications

4.1 Mesh

The 2-dimensional mesh is an
√

n ×√
n grid of nodes, where each node is connected with at most

4 adjacent neighbors (see Figure 3). The nodes are placed at a unit distance from each other,
and thus R = 1/

√
2. The area A is a square defined by the border nodes of the mesh so the

pseudo-convexity γ = 1/2. For the default path between a pair of nodes, we choose the shortest
path that connects the nodes which is closest to the geodesic and therefore deviation(Q) ≤ 1/

√
2.

Since the default paths are shortest paths, stretch(Q) = 1. Since adjacent nodes cannot be further
than a unit distance, we have that α = 1. Moreover, the number of nodes used per unit distance
in the shortest path is maximized when the geodesic between the nodes is 45 degrees, which gives
β =

√
2. Since the maximum node degree is 4, using Theorems 3.1, 3.6 and 3.8, we obtain:

Theorem 4.1 The oblivious algorithm on the mesh has stretch(P) < 2
√

2, node-congestion
O(C∗

node · log n) w.h.p., and edge-congestion O(C∗
edge · log n) w.h.p..

4.2 Uniform Disc Networks

We consider uniform disc networks with n nodes distributed in an s1 × s2 rectangle area A, with
constant pseudo-convexity γ = min{s1, s2}/2max{s1, s2} (i.e., the sides are proportional to each
other). In a disc graph, each node has a constant radius r and is connected to any node within this
radius (see figure 3). We set the radius r = 2

√
2, and assume that no two nodes are placed within

a constant distance l of each other. We consider a uniform distribution for the nodes in the area,
i.e., the area is divided into non-overlapping unit squares, and every unit square area contains a
number of nodes between 1 and k = O(1

l2
) nodes, where k is a constant. By the choice of r, two

10

nodes within the same square or in adjacent squares will be connected. Thus, R ≤
√

2, and since
there are at most 32 squares containing nodes which could possibly be adjacent to a particular
node, the maximum node degree is bounded by δ ≤ 32k.

We now explain how to construct the default paths (see Figure 3). Consider two nodes u
and v in area A and construct the line ` that connects x(u) to x(v). This line passes through
a collection of unit squares, forming a path with adjacent unit squares. We pick one node from
each square and construct the default path by connecting these nodes (remember that every pair
of nodes in two adjacent squares is connected). Since for every node in the path, the line passes
through the corresponding unit square containing the node, deviation(Q) ≤

√
2. The number of

unit squares in the formation of the default path is no more than 2|`|, so the longest default
path consists of at most 2|`| nodes. The shortest path has to use at least |`|/r nodes; therefore,
stretch(Q) ≤ 2r. Since distG(u, v) ≥ distE(u, v)/r, α ≥ 1/r. If distG(u, v) = 1, distE(u, v) ≥ l, so
distG(u, v)/distE(u, v) ≤ 1

l
. More generally, we know that distG(u, v) ≤ 2|`| since the default path

has 2|`| hops, so the shortest path cannot have more. Thus, distG(u, v)/distE(u, v) ≤ max{2, 1/l},
so β ≤ max{2, 1/l}, Applying Theorems 3.1, 3.6 and 3.8, we obtain:

Theorem 4.2 On uniform disc graphs, the oblivious routing algorithm has stretch(P) = O(1),
node-congestion O(C∗

node · log n) w.h.p., and edge-congestion O(C∗
edge · log n) w.h.p..

5 Discussion

We have given the first oblivious routing algorithms which controls both stretch and congestion for
arbitrary networks using geometric embeddings: the stretch and congestion are bounded in terms
of the embedding parameters which reflect how faithfully the embedding represents the network
topology and how good the default paths are. The stretch of the resulting paths depend on the
stretch of the default paths along which packets are sent in the network. When the default paths
are close to the geodesics, then the algorithm achieves small congestion. We gave applications
of our general result to the mesh network and uniform disc graphs, where we obtained constant
stretch, and congestion within a logarithmic factor from optimal.

In general, the congestion and stretch cannot be minimized simultaneously, as we show below
with an example. Thus, stretch and congestion can be simultaneously minimized only on particular
network topologies and we give a general parameterization of network topologies in terms of embed-
ding properties for which near optimal results can be obtained. To see that in general stretch and
congestion cannot be simultaneously near optimal, consider a network in which there are two main
nodes and N disjoint paths that connect the two main nodes, where the first path has length 1 (an
edge connects directly the main nodes), while the remaining paths have length Ω(

√
N). Consider

now N packets which all wish to go from one main node to the other. If all the packets use the
first path then the stretch is optimal, and the congestion is Ω(N) from optimal. Any other path
assignment leads to stretch Ω(

√
N), and since n = O(N

√
N), the stretch is a polynomial factor

from optimal.
An interesting open issue is to explore optimal algorithms using other parameterizations of

the network topology. It is also interesting to develop oblivious algorithms that minimize C + D
for general networks, since this does not necessarily imply the independent minimization of the
congestion and stretch.

11

References

[1] J. Aspens, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. Online load balancing with applications
to machine scheduling and virtual circuit routing. In Proceedings of the 25th ACM Symposium
on Theory of Computing, pages 623–631, 1993.

[2] B. Awerbuch and Y. Azar. Local optimization of global objectives: competitive distributed
deadlock resolution and resource allocation. In Proceedings of 35th Annual Symposium on
Foundations of Computer Science, pages 240–249, Santa Fe, New Mexico, 1994.

[3] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing in polynomial
time. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC),
pages 383–388, San Diego, CA, June 2003. ACM Press.

[4] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algrorithm for
constructing oblivious routing schemes. In Proceedings of the 15th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, pages 24–33, Jun. 2003.

[5] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models of compu-
tation. Journal of Computer and System Science, 30:130–145, 1985.

[6] Costas Busch, Malik Magdon-Ismail, , and Jing Xi. Optimal oblivious path selection on
the mesh. In Proceedings of the 19th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2005), page to appear, Denver, Colorado, April 2005.

[7] Jie Gao and Li Zhang. Tradeoff between stretch factor and load balancing ratio in wireless
network routing. In Proceedings of th Symposium on Principles of Distributed Computing
(PODC), page to appear, 2004.

[8] Chris Harrelson, Kristen Hildrum, and Satish Rao. A polynomial-time tree decomposition
to minize congestion. In Proceedings of the 15th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 34–43, Jun. 2003.

[9] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for oblivious
routing in the hypercube. In Proceedings of 2nd IEEE Symposium on Parallel and Distributed
Processing (2nd SPAA 90), pages 31–36, Crete, Greece, July 1990.

[10] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-scheduling in
O(congestion + dilation) steps. Combinatorica, 14:167–186, 1994.

[11] Tom Leighton, Bruce Maggs, and Andrea W. Richa. Fast algorithms for finding O(congestion
+ dilation) packet routing schedules. Combinatorica, 19:375–401, 1999.

[12] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westerman. Exploiting locality
in data management in systems of limited bandwidth. In Proceedings of the 38th Annual
Symposium on the Foundations of Computer Science, pages 284–293, 1997.

[13] Friedhelm Meyer auf der Heide and Berthold Vöcking. Shortest-path routing in arbitrary
networks. Journal of Algorithms, 31(1):105–131, April 1999.

[14] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, Cambridge, UK, 2000.

12

[15] Rafail Ostrovsky and Yuval Rabani. Universal O(congestion+dilation+log1+ε N) local control
packet switching algorithms. In Proceedings of the 29th Annual ACM Symposium on the Theory
of Computing, pages 644–653, New York, May 1997.

[16] Harald Räcke. Minimizing congestion in general networks. In Proceedings of the 43rd Annual
Symposium on the Foundations of Computer Science, pages 43–52, Nov. 2002.

[17] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

[18] A. Srinivasan and C-P. Teo. A constant factor approximation algorithm for packet routing,
and balancing local vs. global criteria. In Proceedings of the ACM Symposium on the Theory
of Computing (STOC), pages 636–643, 1997.

[19] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, pages 263–277, May 1981.

13

