
Exploring similarities across high-dimensional

datasets ∗

Karlton Sequeira and Mohammed Zaki
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York 12180

Abstract

Very often, related data may be collected by a number of sources,
which may be unable to share their entire datasets for reasons like con-
fidentiality agreements, dataset size, etc. However, these sources may be
willing to share a condensed model of their datasets. If some substruc-
ture of the condensed models of such datasets, from different sources are
found to be unusually similar, policies successfully applied to one may
be successfully applied to the others. In this paper, we propose a frame-
work for constructing condensed models of datasets and algorithms to
find similar substructure in these models. The algorithms are based on
the tensor product and Gibbs sampling. We test our framework on syn-
thetic datasets and compare our algorithms with an existing one. Finally,
we apply it to two time-course microarray datasets of different dimension-
ality. The results are statistically, more interesting than results obtained
from independent analysis of the datasets.

1 Introduction

Often, data may be collected by a number of sources. These sources may be
geographically far apart. There are a number of disadvantages in transferring
the datasets from their source to a central location for processing. These include
less reliability, security, higher computational and storage requirements, etc. It
may be preferable to share condensed models of the datasets. Similarly, for rea-
sons like confidentiality agreements, etc., it may be required to use condensed
models of datasets, which obfuscate individual details, while conveying struc-
tural information about the datasets. Lastly, the datasets may have slightly
different schema or transformations like rotations, with respect to each other.
This may preclude simply appending the datasets to each other and processing
them.

If unusually similar substructure can be detected from the condensed mod-
els of some of the datasets, then policies successfully applied to one, may be

∗This work was supported by NSF Grant EIA-0103708 under the KD-D program, NSF
CAREER Award IIS-0092978, and DOE Early Career PI Award DE-FG02-02ER25538.

successfully applied to the others. For example, two consumer markets (A and
B) differing in geography, economy, political orientation or some other way may
have some unusually similar consumer profiles. This may prompt sales man-
agers in B to use successful sales strategies employed by sales managers in A
for consumer profiles in which they are unusually similar. Also, profiles which
are unusually dissimilar to any of those in the other graph are particularly in-
teresting. The latter is analogous to the problem of finding contrast sets [2].
Additionally, determining similarities and dissimilarities between snapshots of
a dataset taken over multiple time intervals can help in identifying how the
dataset characteristics evolve over time [9].

A dataset may be a set of points drawn in possibly different proportions, from
a mixture of unknown, multivariate and perhaps, non-parametric distributions.
A significant number of the points may be noisy. There may be missing values
as well. We currently assume that the dataset may belong to non-identical
attribute spaces, which are mixtures of nominal and continuous variables. The
datasets may be subject to translational, rotational and scaling transformations
as well. High dimensional datasets are inherently sparse. It has been shown
that under certain reasonable assumptions on the data distribution, the ratio of
the distances of the nearest and farthest neighbors to a given target is almost 1
for a variety of distance functions and data distributions [3]. Hence, traditional
distance metrics which treat every dimension with equal importance have little
meaning. Algorithms using such dissimilarity measures as a building block for
application to high-dimensional datasets, may produce meaningless results due
to this lack of contrast.

In this paper, we explore similarities across datasets using a two step solu-
tion:

1. Constructing a condensed model of the dataset. This involves finding the
components of the model and relationships between these components. In
our case, the components are subspaces (see Definition 1). The condensed
model is a weighted graph where the vertices correspond to subspaces and
the weighted edges to relationships between the subspaces. A condensed
model allows

• sharing of dataset summaries.

• noise and outlier removal.

• normalization and dataset scaling.

2. Identifying similarities between the condensed models.

In previous work [19], we have shown algorithms to find components of the
model. In this paper, we make the following contributions:

• We propose two kinds of similarity measures for subspaces(components).
The first kind is projection-based, i.e., it uses the similarity of the projec-
tions of the subspaces. The other is support-based, i.e., it uses the number
of points shared by the subspaces.

• We provide algorithms for identifying unusually similar substructure from
the condensed models corresponding to datasets with possibly differing
schema.

• We test our framework with synthetic datasets and apply it to finding
similar substructure in models constructed from yeast cell cycle microarray
datasets. These datasets have different dimensionality and are generated
by employing differing experimental methods. Inferences from the similar
substructure are found to be biologically meaningful. Further, they reveal
information, which remains unknown under independent dataset analysis.

1.1 Preliminaries

Consider dataset DA having dA dimensions. If SA,i is the domain of the ith
dimension, then SA = SA,1×SA,2× . . .×SA,dA

is the high-dimensional space for
DA, where DA = {xi|i ∈ [1, m], xi ∈ SA}. Similarly, DB = {yi|i ∈ [1, n], yi ∈
SB}. If the range SA,i of each dimension is divided into ξ equi-width intervals,
then SA has a grid superimposed over it. Accordingly, we have the following
definition:

Definition 1 A subspace is a grid-aligned1 hyperrectangle [l1, h1] × [l2, h2] ×
. . . × [ld, hd], where ∀i ∈ [1, d], [li, hi] ⊆ SA,i.

If [li, hi] ⊂ SA,i, the subspace is said to be constrained in dimension i, i.e.,
the subspace does not span the entire domain of the dimension i. li = (aSA,i)/ξ,
and hi = (bSA,i)/ξ, where a, b are non-negative integers, and a < b ≤ ξ.
A subspace, which is constrained in all the dimensions to a single interval, i.e.,
b − a = 1, is referred to as a grid cell.
If there are |VA| subspaces internal to DA, the inter relationships between these
subspaces are expressed by a |VA| × |VA| matrix wA : SA × SA → <.

Definition 2 Let A = (ai,j)1≤i,j≤m,n, B = (bkl)1≤k,l≤p,q.
If m = n, Tr[A] =

∑

i∈[1,m] ai,i is the trace of A

AT refers to the transpose of A.

||A||F = (
∑m

i=1

∑n
j=1 |ai,j |2)1/2

is the Frobenius norm of A.

ones(m, n) returns a m × n matrix containing all ones.
The tensor product2 of A and B is a mp × nq matrix, and is defined as

A ⊗ B =

a1,1B a1,2B . . . a2,nB
a2,1B a2,2B . . . a2,nB
am,1B am,2B . . . am,nB

For normal n× n matrix X , on eigendecomposition, X = UXDXUT
X , where

UX is a unitary matrix containing the eigenvectors of X and DX is a diagonal
matrix containing the eigenvalues of X. λX,i denotes the ith eigenvalue, where
∀i ∈ [1, n − 1], λXi

≥ λX,i+1 and UX,i denotes the eigenvector corresponding
to λX,i. If λX,1 > λX,2, λX,1 and UX,1 are called the dominant eigenvalue and
dominant eigenvector respectively.

If S = [s1 s2 . . .] where s1, s2, . . . are column vectors, then vec(S) creates
a column vector by stacking its column vectors one below the other, so that
vec(S) = [sT

1
sT
2

. . .]T .

1grid-aligned subspaces are essential for interpretability
2Also called the matrix direct product or Kronecker product

Let P be the function, which takes as argument a mapping f : VA → VB ,
and returns a permutation matrix3, i.e., a |VA| × |VB | matrix, such that

Pf (u, v) =

{

1 if f(u) = v

0 otherwise
(1)

If f is a one-to-one mapping, then the rows and columns of P are orthogonal to
each other and PPT = I. If |VA| = |VB|, P is an orthogonal matrix. We want
f which minimizes the associated error function err, which we define as

err(f |wA, wB) = ||wA − PfwBPT
f ||F (2)

A mapping f from a subset of subspaces corresponding to wA to a subset cor-
responding to wB is unusually similar, if the probability of finding another
mapping f ′ between these subsets, by MonteCarlo sampling as described in Sec-
tion 4.4, such that err(f |wA, wB) > err(f ′|wA, wB), is very low.

1.2 Example

DA d1 d2 d3 d4 d5

p1 915 561 866 657 661
p2 965 575 534 860 365
p3 217 506 121 452 303
p4 758 512 357 423 289
p5 276 531 327 418 335
p6 268 520 351 348 454
p7 239 514 369 301 451
p8 237 510 377 650 472
p9 33 118 144 388 280

DB d′

1 d′

2 d′

3 d′

4 d′

5

p′

1 889 710 591 564 679
p′

2 854 189 641 564 666
p′

3 553 869 449 612 199
p′

4 779 690 203 598 872
p′

5 88 453 965 541 324
p′

6 391 436 193 578 301
p′

7 574 450 220 588 270
p′

8 805 60 803 525 152

Table 1: Original
datasets

D′

A d1 d2 d3 d4 d5

g1 9 5 8 6 6
g2 9 5 5 8 3
g3 2 5 1 4 3
g4 7 5 3 4 2
g5 2 5 3 4 3
g6 2 5 3 3 4
g7 2 5 3 3 4
g8 2 5 3 6 4
g9 3 1 1 3 2

D′

B d′

1 d′

2 d′

3 d′

4 d′

5

g′

1 8 7 5 5 6
g′

2 8 1 6 5 6
g′

3 5 8 4 6 1
g′

4 7 6 2 5 8
g′

5 8 4 9 5 3
g′

6 3 4 1 5 3
g′

7 5 4 2 5 2
g′

8 8 6 8 5 1

Table 2: Discretized
datasets

Let DA and DB be two datasets as shown in Table 1, with domains [0,1000)
for each dimension. DA(p1, d1) refers to row p1, column d1 of dataset DA. If we
discretize the domain of each dimension into 10 intervals, i.e., ξ = 10. Then the
grid cells surrounding the points in DA, DB yield the datasets D′

A, D′
B in Table

2. For example, DA(p1, d1) = 915. Therefore, D′
A(g1, d1) = b 915

1000 × ξc = 9.

3Typically, a permutation matrix is a square matrix

Thus, p1 is constrained to the last interval in dimension d1, i.e., [900,1000). We
then run a subspace mining algorithm (e.g., SCHISM[19], CLIQUE [1]) on each
of the discretized datasets independently and find two sets of subspaces S and S’
corresponding to DA and DB respectively, as shown in Table 3. -1 implies that
the dimension is unconstrained. S(c1, d2) = 5 means that the subspace c1 in the
set S of subspaces, is constrained to interval 5 in dimension d2, i.e. [500,600).
Subspaces may be constrained to more than one interval in a dimension.

S d1 d2 d3 d4 d5

c1 -1 5 -1 -1 -1
c2 -1 5 -1 4 3
c3 2 5 3 -1 4

S’ d′

1 d′

2 d′

3 d′

4 d′

5

c′1 -1 -1 -1 5 -1
c′2 -1 4 -1 5 2

Table 3: Two sets of subspaces
Typically, subspace mining algorithms also partition the dataset based on

the subspaces it finds. Let us assume that the subspace mining algorithm assigns
p1, p2 to c1, p3, p4, p5 to c2, p6, p7, p8 to c3 and labels p9 as noise. Similarly, it
assigns p′1, p

′
2, p

′
3, p

′
4 to c′1, p′5, p

′
6, p

′
7 to c′2 and labels p′8 as noise.

Given such subspaces and the points assigned to them, we wish to construct
condensed models of the datasets, which can be used to discover structurally
similar subspaces across the two datasets without having access to the datasets
or their schema. For example, in Table 3, if d2 corresponds to d′4 and d4 corre-
sponds to d′2, then c1 and c′1 are both constrained in the same dimension and
to the same interval, i.e., [500,600). Also, c2 and c′2 are constrained in the same
dimensions to similar intervals. Hence, c1 ∼ c′1 and c2 ∼ c′2. Thus, we wish to
recover the mapping between c1 and c′1, and c2 and c′2,

2 Related Work

Our two step solution to finding unusually similar substructure across datasets
involves:

1. Constructing a condensed model of the dataset. This involves

• Finding components in the dataset.

• Constructing a condensed model from the components.

2. Identifying similarities between the condensed models.

2.1 Finding components in the dataset

We find components in the dataset using a subspace mining algorithm called
SCHISM [19], which finds sets of possibly overlapping subspaces, e.g., set S from
dataset DA in the example in Section 1.2. It partitions the points in the datasets
using these subspaces. Note that any other hyperrectangular subspace mining
algorithm, e.g., MAFIA, CLIQUE[1], etc. may be used to find the subspaces and

partition the dataset. Hence, we do not delve into the details of the SCHISM
algorithm.

2.2 Constructing condensed models from the components

We condense the dataset using a weighted graph, where the vertices correspond
to subspaces and the weights on the edges to similarities between the subspaces.
While we are unaware of much related work on similarities between subspaces,
as defined in Definition 1, it is noteworthy that subspaces are also clusters. Ac-
cordingly, we review some of the existing similarity measures used for comparing
clusterings.

Clusterings may be compared based on the number of point pairs, in which
the two clusterings C, C′ agree or disagree. Each pair of dataset points is
assigned to one of four categories N00, N01, N10 and N11. Pairs of points in N00

are assigned to distinct clusters in both C and C′, those in N11 are assigned to
the same cluster in both C and C′, those in N01 are assigned to the same cluster
in C but to distinct clusters in C′, and so on. If the dataset has n points,
N00 + N01 + N10 + N11 = n(n − 1)/2.
Accordingly there exist the Rand index

Rand(C, C′) =
N11 + N00

N11 + N10 + N01 + N00

the Jaccard index

Jaccard(C, C′) =
N11

N11 + N10 + N01

Meila [14] proposes the VI (variance of information) metric to compare cluster-
ings.

V I(C, C′) = H(C) + H(C′) − 2I(C, C′)

where H(C) =
∑|C|

i=1 −pilog(pi) and

I(C, C′) =
∑|C|

i=1

∑|C′|
j=1 pi,j log(

pi,j

pipj
), where pi = ni

n , pi,j =
|Ci∩C′

j|

n , ni being

the number of points in Ci, the ith cluster in C. This implies that pi and pi,j

are simply the support of clusters Ci and Ci ∩ Cj respectively, according to the
traditional definition of support in the data mining literature.

Thus, these clustering (dis)similarity measures use (dis)similarity in support
overlap to express cluster similarity.

2.3 Identifying similarities between condensed models

Ganti et al. [9] compare datasets by comparing their respective models. The
datasets share a common schema. A dataset may be typically modeled by
a decision tree or a set of clusters or a set of frequent itemsets. The model
consists of a set of pairs. Each pair consists of an “interesting region” in the
dataset (called the structural component) and the fraction of the dataset (called
the measure component) it accounts for. They then partition the attribute space
using hyperplanes, which (as per the type of model chosen) define the leaves,

clusters or frequent itemsets, induced by the models of the two datasets. Using
a single scan of each dataset, they can compute the fraction of each dataset in
each distinct hyperspace, resulting from the superposition of the two models
of the datasets. They then compare these fractions, corresponding to different
datasets but the same hyperspace, using a “difference” function and combine the
resulting “deviation” using an “aggregation” function which returns a measure
of the similarity of the datasets. This method does not leverage the structure
present in the data and hence is susceptible to translational transformations.

Parathasarathy et al. [18] propose a similarity measure for comparing datasets
having the same schema, based on the set of frequent itemsets in each dataset.
If FA, FB denote the set of frequent itemsets for datasets DA, DB respectively,
then similarity is defined as

∑

x∈FA∩FB
max{0, 1− α

∣

∣| freq(x,DA)
|DA| − freq(x,DB)

|DB |

∣

∣|
1
}

|FA ∪ FB |

where ||A||1 refers to sum of the magnitudes of the entries in A, the freq(x, DA), freq(x, DB)
are the number of occurrences of itemset x in DA and DB and 0 ≤ α ≤ 1 is a
parameter, which scales the difference in the supports of the itemsets, common
to both DA and DB.

Thus, much of the existing work in the database community [9, 18, 2] assume
the datasets have identical schema and that access to both datasets simultane-
ously is possible. By utilizing the underlying structure in the datasets, we avoid
making such assumptions.

Li et al. [16] use a variant of the mutual information between datasets DA

and DB, modeled by sets of maximal frequent itemsets(MFIs) FA and FB , which
is defined as I(FA, FB) =

∑

i∈FA,j∈FB

|i ∩ j|
|i ∪ j| log(1 +

|i ∩ j|
|i ∪ j|) ∗ min(|i|, |j|)

They assume an identical schema for two datasets and define the similarity
between the datasets as,

I(FA, FB) ∗ 2

I(FA, FA) + I(FB, FB)

To test for significance of similarity, they propose bootstrapping-based ap-
proaches in which disjoint pairs of subsets of the attributes are drawn at ran-
dom from samples of the given datasets. The similarity between the pairs of
samples are used to estimate the distribution of similarity between the two
datasets. They then generalize their approach to heterogeneous datasets, of
which matchings between some of the attributes of the two datasets are known.
These matchings are used to identify matchings of at least ξ attributes of one
dataset with those of the other.

There have been a number of graph matching algorithms, stemming from
work in the field of computer vision, regarding applications like image regis-
tration, object recognition, etc. Many of the past approaches involve matching

between labeled or discrete-attributed graphs [5, 6, 11, 21]. Like the solutions
to many other NP-hard problems, graph matching algorithms may be enumer-
ative [5, 20] or optimization-based [6, 21]. Most of these algorithms assume the
graphs lie in the same space, which is usually low-dimensional, i.e., two or three
dimensions.

The concept, “Two vertices are similar, if vertices they are related to are
similar” allows recursive definition of inter-vertex similarity. This idea is used
explicitly or implicitly by a number of propagation-based algorithms ([15]) for
a range of applications. The recursive definition causes similarity to flow from
one vertex to the other.

Blondel et al. [4] show that given wA and wB , a |VA| × |VB| similarity ma-
trix S, whose real entry si,j represents the similarity between vertex i of GA

and j of GB, can be obtained as the limit of the normalized even iterates of
Sk+1 = wBSkwA

T +wB
T SkwA. Note that this model does not assume that wA

and wB are symmetric. This algorithm has time complexity of matrix multipli-
cation, which is currently O(n2.376).We compare our algorithms with Blondel’s
algorithm.

3 Constructing a condensed model of the dataset

We represent each dataset DA by a graph GA(VA, EA, wA) where VA is the set
of subspaces found by the subspace mining algorithm and wA : SA ×SA → < is
the adjacency matrix, indicating similarity between components/subspaces in
the condensed model/graph, of GA. Depending on whether we use support or
similarity of projections as the basis for comparing subspaces, we prescribe the
following subspace similarity measures:

3.1 Support-based subspace similarity

Each subspace u ∈ VA partitions the space SA into a clustering containing two
clusters, i.e., u and SA\u. Accordingly, if Cu, Cv are the clusterings yielded
by subspaces u, v ∈ VA, we can define wA(u, v) using Jaccard(Cu, Cv) and
Rand(Cu, Cv) as described in Section 2.2. Additionally, we experiment with
using w(u, v) = exp(−V I(Cu, Cv)).

3.2 Projection-based subspace similarity

Consider the case where the datasets being modeled are sets of points sam-
pled in different proportions with respect to each other from the same mixture
of multivariate distributions. Then, correctly matching these distributions us-
ing support-based subspace similarity measures, as described in Section 3.1, is
unlikely. Accordingly, we seek similarity measures which use similarity of the
projections of the subspaces.

We define the similarity between subspace R ∈ VA and a grid cell Q sur-

rounding a point r ∈ DA using the Jaccard-coefficient as

ρ(r ∈ Q, R ∈ VA) =
1

dA

dA
∑

i=1

|Qi ∩ Ri|
|Qi ∪ Ri|

(3)

Here, Xi refers to the set of intervals spanned by subspace X in dimension i. If
dimension i is unconstrained, |Xi| = ξ. Using our running example from Section

1.2, ρ(p1 ∈ g1, c1) = 1
dA

(

1
ξ + 1

1 + 1
ξ + 1

ξ + 1
ξ

)

= 0.28

Based on the subspaces found by the subspace mining algorithm, it is pos-
sible, for example using nearest neighbors, to assign points in the dataset to
subspaces. Using the assignment of points to subspaces, we have devised two
similarity measures:
AVERAGE SIMILARITY: Each subspace may be thought to be more ac-
curately approximated by the points assigned to it. As we know the similarity
between the grid cell around each point and every subspace found by the sub-
space mining algorithm using ρ() from Equation 3, the similarity between two
subspaces u ∈ VA, v ∈ EA can be defined as

wA(u, v) =

∑

r∈u ρ(r, v)

|u| +

∑

r∈v ρ(r, u)

|v| (4)

From our running example in Section 1.2, ρ(p1 ∈ g1, c2) = 0.24, ρ(p2 ∈ g2, c2) =
0.44, ρ(p3 ∈ g3, c1) = ρ(p4 ∈ g4, c1) = ρ(p5 ∈ g5, c1) = 0.28. Then, wA(c1, c2) =
0.24+0.44

2 + 0.28+0.28+0.28
3 = 0.62. To ensure that ∀u ∈ VA, wA(u, u) = 1, we

normalize by setting wA(u, v) = wA(u,v)√
wA(u,u)×wA(v,v)

HISTOGRAM: Based on the coordinates of points assigned to each subspace
in VA, we estimate discrete p.d.f.s for each dimension for each subspace. If
each dimension of the dA-dimensional dataset is discretized into ξ equi-width
intervals, then u(i, j) corresponds to the fraction of points assigned to ver-
tex/subspace u discretized to the jth interval in the ith dimension. Using our
running example from Section 1.2, there are two points p1, p2 assigned to sub-
space c1. Both of them are discretized to the interval 5 in the dimension d2,
i.e., [500,600). Therefore, c1(2, 5) = 2

2 = 1. Accordingly,

wA(u, v) =
1

dAξ

dA
∑

i=1

ξ
∑

j=1

sim(u(i, j), v(i, j)) (5)

where sim : [0, 1] × [0, 1] → [0, 1] is a similarity function. Note that this wA()
requires no normalization if we use the Gaussian or increasing weighted sim()
function shown below. Otherwise normalization is required. We have tested a
number of symmetric similarity functions:

1. Dot product: sim(a, b) = a × b

2. Gaussian weighted: sim(a, b) = exp(−(a−b)2

2s2)

3. Increasing weighted: sim(a, b) = 1

1+ |a−b|
s

where s is a user-defined parameter controlling the spread of sim. Note the
following important properties of our similarity measures:

1. They are both symmetric

2. They are independent of the number of points assigned to each subspace

4 Identifying similarities between condensed mod-

els

To find similarities between the graphs, we test four algorithms. One (OLGA)
uses the tensor product, the next (EigenMatch) uses ideas from the first and
Blondel’s algorithm, another uses Gibbs sampling and the last uses MonteCarlo
sampling (see Section 4.4).

4.1 OLGA

We combine the graphs GA and GB, into a single bipartite graph G = (VA ∪
VB, E ⊆ VA × VB , Π). Π is a |VA| × |VB| matrix of pairwise vertex similarities.

To find Π, we construct the product graph (see function ProductGraph in
Figure 1), G′ = (VA×VB , E′ ⊂ (VA×VB)×(VA×VB), wA,B), where wA,B : E′ →
< is the adjacency matrix, indicating similarity between vertices corresponding
to pairs of subspaces from underlying graphs, of G′. wA,B((u, v), (u′, v′)) =

(

sim(w(u, u′), w(v, v′)) if sim(w(u, u′), w(v, v′)) > τ

0 otherwise
(6)

where τ is a user-specified threshold, used to minimize noise and limit space
complexity of the algorithm. As w(u, u′), w(v, v′) depend on the specific graphs
they are a part of, the weight of an edge in the product graph is high, if the
weights on the corresponding edges in the underlying graphs are similar. Thus,
we do not explicitly compare dimensions of vertices in the two graphs, thereby
making no assumptions on identical schema. Let S = vec(Π) (as defined in
Section 1.1). Using the concept “Two vertices are similar, if vertices they are
related to, are similar”, then similarity between u ∈ VA and v ∈ VB is a function
of all the vertices in VA and VB and the relationships that u and v have with
them, respectively. We can write this recursively as

Si(u, v) =
∑

u′∈VA,v′∈VB

wA,B((u, u′), (v, v′))Si−1(u, v)

i.e., Si(u, v) = wA,B((u, v))·Si−1(u, v)

Then, Si = wA,B·Si+1

where Si denotes S at iteration i. As shown in Figure 1, we set the initial
similarities, i.e., all entries in S0 to 1.0 (line 6). We then iterate using Equation
7 (line 8). We determine convergence by checking to see if the Frobenius norm
of the residual at the end of each iteration is less than a user-specified threshold
ε (line 9).

ProductGraph(G, GA, GB):
1. ∀(u, v) ∈ (VA × VB) create node (u, v)
2. ∀(u, u′) ∈ (VA × VA)
3. ∀(v, v′) ∈ (VB × VB)
4. add edge ((u, v), (u′, v′)) using Eq. 6

OLGA(GA, GB, τ, k):
5. ProductGraph(G, GA, GB)
6. S0 = ones(|VA|, |VB |)
7. for i=1:k
8. Si =

wA,B ·Si−1

||wA,B ·Si−1||F

9. if ||Si − Si−1||F < ε break
10. return Match(Sk)

FastOLGA(GA, GB):
11. Find UA,1, λA,1, λA,2

12. Find UB,1, λB,1, λB,2

13. if λA,1 6= λA,2 and λB,1 6= λB,2

14. S = UA,1 ⊗ UB,1

15. return Match(S)

Figure 1: Matching two graphs

As we are looking for a matching between vertices from GA to GB , we may
unstack the vector S and use the resulting |VA| × |VB | matrix as the adjacency
matrix of the bipartite graph G, i.e., Π.

Ideally, Π is a permutation matrix which minimizes err(f |wA, wB) (Equa-
tion 2). Typically however, Π is a real matrix. Hence, we need to round Π to
a permutation matrix. We use the Match function to do the same. Match

returns f : VA → VB . There are a number of matching algorithms, e.g., stable
matching, the Kuhn-Munkres algorithm [13], perfectionist egalitarian polygamy
[15], etc. We can formulate the rounding as finding a matching which maximizes
the sum of the weights on the edges of the matching. Finding such a match-
ing (also called an alignment) is called bipartite weighted matching, which has
earlier been optimally solved by the Hungarian algorithm [13]. This algorithm
has complexity O(max{|VA|, |VB |})3). This is equivalent to partitioning G into
a number of clusters such that no cluster contains two vertices from the same
graph and the total of the similarity among the vertices within each cluster is
maximized. Match, unless otherwise mentioned, refers to the Hungarian algo-
rithm. There are other approximate matching algorithms of lower complexity.
We do not take into account the complexity of Match while stating complexity
of the algorithms, as it is a parameter.

This idea is similar to that of Melnik et al. in [15]. However, they use di-
rected, labeled graphs.

If wA,B is normal, it is diagonalizable. If it has a dominant eigenvalue,

Si =
wA,B ·Si−1

||wA,B·Si−1||F
Then, S′ = lim

i→∞
Si =

wA,B·S′

||wA,B·S′||F
(7)

Rearranging, (wA,B−||wA,B ·S′||F · I)S′ = 0, where I is the l×l identity matrix.
Note, this is the characteristic equation for wA,B. Then, wA,B has a dominant
eigenvalue λ1 = ||wA,B·S′||F and dominating eigenvector S′. The rate of con-

vergence is determined by the ratio λ2

λ1

.
If sim returns the scalar product of its inputs and τ = 0, then

wA,B((u, v), (u′, v′)) = w(u, u′)w(v, v′) and
wA,B = wA ⊗ wB , as defined in Section 1.1. If wA,B corresponds to the tensor
product, further improvements in the time and space complexity of the algo-
rithm are possible. Accordingly, we have the algorithm FastOLGA in Figure
1.

It is known[8] that the set of eigenvalues of the tensor product of two matrices
is the set of values in the tensor product of the eigenvalues of these matrices, i.e.,
wA,B = wA ⊗ wB ⇒ 1 ≤ i, j ≤ |VA|, |VB |, λwA,iλwB ,j is an eigenvalue of wA,B.
Hence, the dominant eigenvalue of the tensor product of wA,B (if it exists) is
the product of the dominant eigenvalues of the wA and wB . This implies that
convergence is achieved if both wA and wB have dominant eigenvalues (line 13).
Similarly, the set of eigenvectors of the tensor product of two matrices is the set
of values in the tensor product of the eigenvectors of these matrices. This implies
that S′ = uA,1⊗uB,1. Finding a maximal matching in the tensor product of the
dominant eigenvectors corresponds to projecting the longer eigenvector onto the
space of the smaller eigenvector and permuting the dimensions of the former,
such that their cosine similarity is maximized, i.e., aligning them.

The dominant eigenvector of an n × n matrix can be determined in O(n2)
time (lines 11,12) using QR factorization [10] and the tensor product of |VA|
and |VB | length vectors is computed in |VA||VB | steps (line 14). This allows
computation of S′ in O(max(|VA|2, |VB |2)) time, i.e., faster than the Blondel
algorithm.

4.2 EigenMatch

The main result of the OLGA algorithm is that it approximately reduces graph
matching to the problem of aligning the dominant eigenvectors of the two graphs
to be matched. This raises the question: why not try to align more than just
the dominant eigenvectors? Accordingly, we analyze the optimization function
err (Equation 2).

Note that Tr[wwT] = ||w||2F . Then,

min
P

||wA − PwBPT ||2F
= min

P
Tr[(wA − PwBPT)(wA − PwBPT)T]

= min
P

Tr[wAwT
A + wBwT

B − wAPwBPT − PwBPT wA]

= Tr[wAwT
A] + Tr[wBwT

B] − min
P

Tr[wAPwBPT + PwBPT wA]

= ||wA||2F + ||wB ||2F + max
P

Tr[wAPwBPT + PwBPT wA]

As the trace of the product of two square matrices is independent of the order
of multiplication, Tr[wA(PwBPT)] = Tr[(PwBPT)wA]. Also, ||wA||2F , ||wB ||2F
are constants. Hence the problem reduces to maxP Tr[wAPwBPT]. If wA, wB

are normal matrices. Then, using eigendecomposition,

max
P

Tr[wAPwBPT]

= max
P

Tr[UADAUT
APUBDBUT

BPT]

= max
P

Tr[(DAUT
APUBDBUT

BPT)UA]

= max
P

Tr[DA(UT
APUB)DB(UT

B PT UA)]

= max
W

Tr[DAWDBWT] where W = UT
APUB

Blondel et al. use normalized even iterates of Sk+1 = wASkwB to find
similarities between normal matrices wA, wB . We adopt this idea, so that
Wk+1 = DAWkDB. We drop the normalization as it is a constant for a single
iteration. However, instead of an iterative algorithm, we choose a good seed
and utilize just one iteration, i.e., W1 = DAW0DB. For the seed, we use the
FastOLGA algorithm (line 2), which aligns the dominant eigenvectors. Sub-
stituting in W , we get DAW0DB = UT

APUB. Rearranging, we get

P = UADAW0DBUT
B , where W0 = FastOLGA(wA, wB) (8)

UXDX = [UX,1λX,1 UX,2λX,2 . . .]. Thus, each eigenvector of wA and wB will
then be weighted by its eigenvalue . Then during rounding of P , the matching
algorithm will be fully cognizant of the smaller eigenvalues as well. Accordingly,
we have the algorithm EigenMatch as shown in Figure 2.
This algorithm has the same time complexity as eigendecomposition i.e. O(n3)

EigenMatch(GA, GB):
1. wA = UADAUT

A , wB = UBDBUT
B

2. W0 =FastOLGA(wA, wB)
3. P = UADAW0DBUT

B
4. return Match(P)

Figure 2: Matching all eigenvectors

[10].

4.3 Mapping via Gibbs sampling

Often, while matching graphs, some nodes may ideally not have any node
matched with them, e.g., occlusions in computer vision. Stochastic algorithms
like Gibbs sampling, as opposed to OLGA, allows keeping vertices in VA un-
mapped.

We use Gibbs sampling [17] to minimize the function err (Equation 2).
We generate 1000 matchings (line 2), using MonteCarlo sampling as described
in the Section 4.4, and estimate the background distribution of this objective
function. For each such matching f , we iterate over every vertex u ∈ GA (line
3). We create a new mapping f ′

u,v for every vertex v in the larger graph GB

(line 4) by mapping u to v, i.e., f ′
u,v = f(VA\u) ∪ f ′(u) = v. We define the

probability of mapping u to v to be proportional to the error incurred, i.e.,
p(f ′

u,v|wA, wB) ∝ err(f ′
u,v)

Then, p(f ′
u,v|wA, wB) =

err(f ′
u,v|wA, wB)

∑

x∈VB
err(f ′

u,x|wA, wB)
(9)

We average out these probabilities over all f ′
u,v generated in the background

estimation phase, so that,

p(u, v) =

∑

f ′
u,v

p(f ′
u,v)

∑

f ′
u,v

1

Having estimated the background distribution p(), we generate seed mappings
(line 7). For each seed, as in the background estimation stage, we estimate the
probability of mapping u to v, i.e., q(f ′

u,v) using RHS of Equation 9. Then we
sample from v ∈ VB, using the ratio of the seed and background distributions,

a(f ′
u,v) ∝

q(f ′
u,v)

p(u, v)
Then, a(f ′

u,v) =

q(f ′
u,v)

p(u,v)
∑

∀x∈VB

q(f ′
u,x)

p(u,x)

(10)

Thus, we try to improve the seed matching in a way that minimizes the error
w.r.t. the background distribution. As we sample only one parameter at a time
(the vertex u is fixed, while the vertex in VB it is matched with is sampled), it
is a Gibbs sampling algorithm.

4.4 Matching using MonteCarlo sampling

If |VA| >= |VB|, we generate a random permutation of the numbers [1,|VA|] and
map the first |VB | numbers of this permutation to the vertices numbered [1,|VB|]
of GB. Otherwise, we swap the graphs and get the mapping in the same way.
We call this MonteCarlo sampling.

We repeat this sampling a number of times, evaluate them using the Zscore
described in Section 5 and keep the one with the best Zscore. The number
of such samples generated is controlled by the time taken to run OLGA. This
ensures that OLGA and MonteCarlo sampling have the same amount of time
to find the matching.

GibbsSampling(GA, GB):
1. for i=1:1000
2. generate MonteCarlo matching f
3. ∀u ∈ VA

4. ∀v ∈ VB

5. estimate p(f ′
u,v|wA, wB) using Eq. 9

6. BestGlobalErr = ∞
7. for i=1:100
8. generate MonteCarlo matching f and compute err(f)
9. BestLocalErr = ∞
10. for i=1:1000
11. ∀u ∈ VA

12. ∀v ∈ VB

13. estimate q(f ′
u,v|wA, wB) using Eq. 9

14. sample from a() using Eq. 10 and update f to f ′

15. BestLocalErr = min(err(f ′),BestLocalErr)
16. BestGlobalErr = min(BestGlobalErr,BestLocalErr)

Figure 3: Gibbs sampling

5 Experiments

In evaluating the performance of the algorithms, we pay attention to the fol-
lowing measures:

1. Execution time

2. Matches: It is the number of DB’s matchable components that are cor-
rectly matched. A component in DB is matchable if there exists a known,
unusually similar component in DA.

3. Zscore:We estimate the distribution of err(f |wA, wB) (Equation 2) by
generating a number of matchings using MonteCarlo sampling and com-
puting the err. Using this distribution, the mean and variance can be
determined and the scores corresponding to the mapping found by an al-
gorithm is normalized to get the Zscore. Thus, the Zscore is the number
of deviations from the mean. Very negative Zscores imply the correspond-
ing matching is very unlikely to have happened by MonteCarlo sampling
(Section 4.4) and such a matching is said to have found unusually similar
substructure.

Experiments on OLGA, Blondel’s algorithm, MonteCarlo sampling and
GibbsSampling were carried out on a SUN Sparc 650 MHz machine running
on Solaris O/S with 256 MB RAM in C++. Blondel’s algorithm, EigenMatch,

FastOLGA and MonteCarlo sampling were also implemented on a Pentium 2
GHz machine running on Windows XP with 256MB RAM in Matlab.

5.1 Synthetic datasets

We use synthetic datasets to test the performance of our algorithms and simi-
larity measures as dataset and algorithm parameters are varied. By generating
the datasets ourselves, we can verify the correctness. Our program for generat-
ing synthetic datasets is based on that previously described in [19]. It has the
following set of parameters:
1. Average number of dimensions (d)
2. Average number of points in a dataset (n)
3. Average number of embedded subspaces (k)
4. Average probability that a subspace is constrained in a dimension (c)
5. Average probability that a subspace is constrained in the same dimension as
the previous subspace (o)
6. Amount of perturbation (p)
7. Type of transformation
First, 1.5k subspaces are generated one after the other. They are by default
multivariate normal with means in each dimension µ(j ∈ [1, d]), chosen from
U[0,1000), where U[l,h) implies a uniform distribution over the interval [l,h).
The standard deviation in each dimension σ(j ∈ [1, d]), is by default set to 20.
A dimension is constrained with probability c. Two serially generated subspaces
are constrained in the same dimension with probability o. Their means are con-
strained to be within 2 standard deviations of each other, to allow overlapping
of subspaces. Unconstrained dimensions have means chosen from U[0,1000).

For i ∈ {1, 2}, for dataset Di, ni, ki are chosen uniformly from U(.5n, 1.5n)
and U(.5k, 1.5k) respectively. The first ki subspaces are embedded in Di after
perturbing their parameters using a transformation. There are three types of
transformations:

1. Noisy: ∀j ∈ [1, d], µ(j) = µ(j) + U(−p, p) ∗ 1000
σ(j) = σ(j) ∗ (1 + U(−p, p))

2. Translation: µ(j) = µ(j) + i ∗ p ∗ 1000

3. Scaling: σ(j) = σ(j) ∗ (1 + ip/5)

where p is the perturbation parameter. Each embedded subspace accounts for
at least 1% of the total number of points. The actual number of points cor-
responding to a subspace is a function of the imbalance factor a, a = maxl αl

minl αl

where αl is the fraction of Di generated using parameters of the lth subspace
embedded in Di. Noisy points, which account for 5% of the points in Di, are
multivariate uniform, i.e., each coordinate is chosen from U[0,1000).

In experiments shown below, we assume that the subspace mining algorithm
finds the embedded subspaces correctly, so as to isolate the contributions of this
paper. Thus, we test only the graph creation and matching algorithms described
in this paper. We tested the algorithms by matching synthetic datasets having
embedded subspaces. As we serially insert subspaces, for every pair of datasets,
the dataset with the larger number of embedded subspaces, includes all sub-
spaces embedded in the other dataset. The datasets have, on average n = 1000
points and d = 50 dimensions and k = 25 embedded subspaces, except those
with k > 40 subspaces, which have n = 10000 points. Unless otherwise stated,

c = o = 0.5, p = 0.03, a = 4.0, we use the noisy transformation and Gaus-
sian weighted sim() function. By default, we try to map a 27-vertex graph to
a 34-vertex one using OLGA and the HISTOGRAM similarity measure. For
OLGA, we set τ = .925, k = 30. We evaluate the algorithms based on the
number of matches and its Zscore, as some parameter in the dataset is varied
or the subspace similarity function is varied.

5.2 Comparison of similarity functions

We first tested the similarity functions by attempting to match each graph to
itself. As expected, we found that while all the linear algebra based algorithm
succeed in doing so, the MonteCarlo sampling often does not. We have not
shown these results, due to space constraints.

In Figures 4,6,8 we compare OLGA’s performance in terms of the number
of matches as some parameter, viz., p, o and c, used in generating the embedded
subspaces is varied. Note that the number of matches is virtually the same for
both measures, except parameter p, where HISTOGRAM performs better at
p > 0.05. It also outperforms AVERAGE SIMILARITY in terms of Zscore
as seen in Figures 5,7 and 9. This suggests that HISTOGRAM favors a more
global solution as compared to AVERAGE SIMILARITY. This occurs because
it develops a profile for the entire subspace, including dimensions for which
the subspace is not constrained, whereas AVERAGE SIMILARITY takes more
of a discretized approach. Also, there exist some values of these parameters,
for which HISTOGRAM’s Zscore drops below that of the optimal matching,
inspite of having a significantly lower number of matches. This happens for
extreme settings of the parameters. It suggests that Zscore and hence err
quality measures are best suited to matching datasets having low amount of
perturbation.

In Figures 10,11 we compare the effect that different transformations on the
dataset have on similarity measures. We notice that AVERAGE SIMILARITY
is consistently outperformed by HISTOGRAM in the Zscore category, em-
phasizing the robustness of the latter. In terms of the number of matches,
HISTOGRAM is outperformed for the noisy transformation because again it
tries to optimize globally. Thus, in general HISTOGRAM outperforms AVER-
AGE SIMILARITY.

5.3 Comparison of support-based similarity functions

We discussed three functions used to compare clusterings in Section 2.2. In Sec-
tion 3.1, we showed how to use them to find support-based subspace similarity.
From Figure 12, Jaccard Index outperforms Rand Index and VI Metric.

5.4 Comparison of mapping algorithms

Firstly, we found experimentally that FastOLGA and Blondel’s algorithm al-
ways arrive at the identical matching, suggesting that the similarity transfor-
mation found by Blondel’s algorithm is basically the tensor product of the dom-
inant eigenvectors. Note however that our algorithm is theoretically faster than

Blondel’s. In view of this result, we show their results combined except for the
timing results.

In Figures 13,14 and 15 we compare the performance of OLGA, Eigen-

Match and GibbsSampling with that of Blondel’s algorithm [4] and the best
matching produced in terms of Zscore by MonteCarlo sampling. Note that for
Figure 13 the log scale is used for the y-axis. Although OLGA, is the most
consistent performer. The best matching produced by MonteCarlo sampling
(denoted in the figures as “best MonteCarlo”) performs well for matching small
graphs, as it has a smaller state space to search. In Figure 14, EigenMatch

outperforms the others in minimizing the Zscore more often than not. However,
EigenMatch is unreliable in terms of the number of matches it produces. It
sometimes produces no matches, while for k = 75, it perfectly matches 13 ver-
tices. This is because it attempts global optimization, in trying to align all the
eigenvectors. OLGA by virtue of using the sim function, prunes the graph and
hence tries to find unusually similar matches. Hence, it typically outperforms
Blondel’s algorithm. Also, note that while Blondel’s algorithm converges faster
than the other algorithms, it is provably slower than FastOLGA and produces
the same results. We have verified this using our Matlab simulation, but have
not shown it in the graph as they were computed on different machines and
platforms.

All the algorithms have running time independent of n and d. Hence, results
for these are not shown.GibbsSampling performs the worst of the lot in all
the evaluation measures.

6 Application

With a large number of high-dimensional gene expression datasets becoming
available, there is a growing need to integrate information from heterogeneous
sources. For example, different clustering algorithms, designed to serve the
same purpose, may be run on a dataset and we may wish to integrate output
from the two algorithms. Alternatively, the same algorithm may be run on two
datasets differing only slightly in experimental conditions. In the first example,
the algorithm provides heterogeneity, while in the latter, it is the experimental
conditions.

In our specific application, we look at two microarray datasets pertaining to
the Saccharomyces cerevisiae (yeast) cell cycle4. The culture are synchronized
by different mechanisms, viz., alpha factor block-release(A) and centrifugal elu-
triation (E). They are time series data and A has 16 samples/columns taken at 7
minute intervals, while E has 14 samples/columns taken at 30 minute intervals.
Each dataset has 7680 genes/rows. The entry in the ith row and jth column
of the dataset corresponds to the gene expression value for the jth time sample
of gene i during the cell cycle of yeast. Microarray datasets are known to very
noisy. Also, these datasets have a large number of missing values as well.

It is hypothesized that genes, which exhibit similar expression patterns may
be co-regulated, i.e., having similar regulation mechanisms. Hence, we are look-
ing for subspaces having similar expression patterns. We use SCHISM[19] to

4see http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds browse.cgi

 0

 5

 10

 15

 20

 25

 30

 0 0.02 0.04 0.06 0.08 0.1 0.12

N
um

be
r

of
 m

at
ch

es

Amount of perturbation(p)

optimal
HISTOGRAM

AVERAGE SIMILARITY

Figure 4: #(matches) v/s p

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.02 0.04 0.06 0.08 0.1 0.12

Z
sc

or
e

Amount of perturbation(p)

optimal
HISTOGRAM

AVERAGE SIMILARITY

Figure 5: Zscore v/s p

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 m

at
ch

es

P(same dimension in adjacent subspaces are constrained)=o

optimal
HISTOGRAM

AVERAGE SIMILARITY

Figure 6: #(matches) v/s o

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Z
sc

or
e

P(same dimension in adjacent subspaces are constrained)=o

optimal
HISTOGRAM

AVERAGE SIMILARITY

Figure 7: Zscore v/s o

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 m

at
ch

es

P(dimension in subspace is constrained)=c

optimal
HISTOGRAM

AVERAGE SIMILARITY

Figure 8: #(matches) v/s c

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Z
sc

or
e

P(dimension in subspace is constrained)=c

optimal
HISTOGRAM

AVERAGE SIMILARITY

Figure 9: Zscore v/s c

 0

 5

 10

 15

 20

 25

 30

 35

Noisy Translation Scaling

N
um

be
r

of
 m

at
ch

es

Type of transformation

optimal
HISTOGRAM

AVERAGE SIMILARITY

Figure 10: #(matches) v/s transforma-
tion

-14

-12

-10

-8

-6

-4

-2

 0

Noisy Translation Scaling

Z
sc

or
e

Type of transformation

optimal
HISTOGRAM

AVERAGE SIMILARITY

Figure 11: Zscore v/s transformation

-5

 0

 5

 10

 15

 20

 25

 30

Rand Index Jaccard Index VI Metric

S
co

re

Clustering comparison functions

#matches(optimal)
#matches(OLGA)

Zscore(optimal)
Zscore(OLGA)

Figure 12: Clustering comparison func-
tions

 1

 10

 100

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 m

at
ch

es

Number of clusters(k)

optimal
OLGA

EigenMatch
best MonteCarlo

FastOLGA/Blondel
Gibbs

Figure 13: #(matches) v/s k

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0 10 20 30 40 50 60 70 80

Z
sc

or
e

Number of clusters(k)

optimal
OLGA

EigenMatch
best MonteCarlo

FastOLGA/Blondel
Gibbs

Figure 14: Zscore v/s k

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 10 20 30 40 50 60 70 80

lo
g(

tim
e)

Number of clusters(k)

OLGA/best MonteCarlo
EigenMatch

Blondel
Gibbs

Figure 15: time v/s k

find these subspaces. We use ξ = 3. This discretizes gene expression values
into three categories: under expressed(1st interval), normal(2nd interval) and
overexpressed (3rd interval). Thus, the subspaces correspond to a subset of the
genes/rows which are simultaneously either underexpressed or normal or overex-
pressed for some subset of the time samples/columns. SCHISM returns 87 and
94 subspaces for datasets A and E respectively. We then construct the graphs
for each dataset and match the underlying subspaces/vertices using OLGA and
HISTOGRAM. We examined the genes in the intersection of the matched sub-
spaces to verify the efficacy of our algorithms. We submitted the list of genes
in the intersection of the matched subspaces to the SGD Gene Ontology(GO)
Term Finder5 tool. This tool searches for significant shared GO terms, or par-
ents of the GO terms, used to describe the genes in the submitted list of genes
to help discover what the genes may have in common. A sample of their results
are shown in Table 4.

Gene Ontology(GO) term p-value Genes

cellular carbohydrate metabolism 0.00072 SMI1 SUC2
carbohydrate metabolism 0.00089

cellular macromolecule metabolism 0.04449
ribonucleoprotein complex 0.00386 RPL32 RRP5

negative regulation of transcription 0.00567 FOB1 TFB2
negative regulation of physiological process 0.00866

negative regulation of biological process 0.00877
regulation of transcription, DNA-dependent 0.0315

regulation of transcription 0.03427
regulation of metabolism 0.01676 ACT1 SKI2

regulation of physiological process 0.01867
regulation of biological process 0.02049

protein modification 0.00844 HOS3 UBR1
RNA metabolism 0.01422 GLN4 YJL010C

biopolymer metabolism 0.07487
malate metabolism 9.33E-06 MDH3 MDH2

glyoxylate metabolism 2.58E-05
glyoxylate cycle 2.58E-05

aldehyde metabolism 0.00033
response to heat 0.00029 BCY1 LSP1

response to temperature 0.0004
response to abiotic stimulus 0.03823
response to external stimulus 0.04338

response to stress 0.00145 TSL1 TPS1 BCY1 LSP1
response to stimulus 0.00473

vesicle-mediated transport 0.05673 CDC48 YSC84
cellular catabolism 0.09268

Table 4: GO-based interpretation of similar substructure
The first row of Table 4 is interpreted as follows: Genes SMI1 and SUC2 are

associated with the process of cellular carbohydrate metabolism. These genes
actually belong to a cluster of 7 genes but out of 7272 genes in yeast there are 196
involved in this process. Hence the p-value(measure of statistical significance)

5see http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

is 0.00072. Further, they are also associated with carbohydrate metabolism and
the p-value is 0.00089. SMI1 and SUC2 belong to a subspace of 193 genes when
SCHISM is applied to A. This results in a much lower p-value and are hence
not reported as statistically significant. This is true for other clusters reported
too. Thus, the condensed model technique yields smaller, more statistically
interesting clusters, by leveraging information from multiple sources.

A cursory examination of the GO terms associated with matchings produced
by OLGA shows that they find genes involved in biological processes such as
regulation and metabolism. The molecular functions for a number of these genes
are unknown and hence there is potential for discovery.

7 Conclusions

From the Zscore values obtained by the algorithms, it is obvious that the algo-
rithms find unusually similar matchings with respect to MonteCarlo sampling.
The p-values of the inferences from the application to the microarray datasets
confirms this. It is evident that OLGA and EigenMatch succeed in finding
similar subspaces based on the structure of the dataset alone, without sharing
the datasets.

As part of future work, we hope to extend our algorithms to finding common
substructure across multiple datasets. Also, currently our similarity measures
are best suited to finding similarities between hyperrectangular subspaces. Pat-
terns in datasets may require less restrictive descriptions, for example, coherent
patterns in microarray datasets, curves, etc. We hope to develop similarity
measures for such patterns as well.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic sub-
space clustering of high dimensional data for data mining applications. In
SIGMOD Conf, 1998.

[2] S. Bay, M. Pazzani. Detecting Group Differences: Mining Contrast Sets.
Data Mining and Knowledge Discovery. 2001.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft. When is nearest neigh-
bors meaningful? ICDT Conf, 1999.

[4] V. Blondel, A. Gajardo, M. Heymans, P. Senellart, P. Van Dooren. A
Measure of Similarity between Graph Vertices: Applications to Synonym
Extraction and Web Searching. In SIAM Review, Volume 46, Number 4,
pp. 647-666, 2004.

[5] H. Bunke, Error Correcting Graph Matching: On the Influence of the Un-
derlying Cost Function. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 21:9, pp. 917-922, Sept. 1999.

[6] M. Carcassoni, E. Hancock. Alignment using Spectral Clusters. Proceedings
of the 13th British Machine Vision Conference. pages 213-222. 2002.

[7] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Annals of Math. Statistics, 23:493–509,
1952.

[8] H. Eves, Elementary Matrix Theory, Dover publications, 1980.

[9] V. Ganti, J. Gehrke, R. Ramakrishnan, and W. Loh. A framework for
measuring changes in data characteristics. In PODS, 1999.

[10] G. Golub, C. Van Loan. Matrix Computations Johns Hopkins University
Press; 3rd edition, 1996.

[11] H. Kalviainen, E. Oja. Comparisons of Attributed Graph Matching Al-
gorithms for Computer Vision. In STeP-90 Finnish Artificial Intelligence
Symposium, University of Oulu. pp 354-368, 1990.

[12] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, CA, 2001.

[13] H. Kuhn. The hungarian method for the assignment problem. Naval Re-
search Logistics Quarterly. 2:83-97, 1955

[14] M. Meila. Comparing clusterings by the variation of information. In Con-
ference on Learning Theory, 2003.

[15] S. Melnik, H. Garcia-Molina, E. Rahm. Similarity flooding: A versatile
graph-matching algorithm. In IEEE-ICDE Conference Proceedings. Febru-
ary 2002.

[16] T. Li, M. Ogihara, S. Zhu. Similarity testing between heterogeneous
datasets. UR-CS-TR781, 2002.

[17] A. Neuwald, J. Liu, C. Lawrence. Gibbs motif sampling: Detection of bac-
terial outer membrane repeats. Protein Science, 4:1618-1632, Cambridge
University Press, 1995.

[18] S. Parthasarathy, M.Ogihara. Clustering Homogeneous Distributed
Datasets, in International Conference on Practical Applications of Knowl-
edge Discovery and Data Mining. 2000.

[19] K. Sequeira, M. Zaki. SCHISM: A New Approach to Interesting Subspace
Mining. In IEEE ICDM Conference Proceedings, 2004.

[20] L. Shapiro, M. Haralick. A Metric for Comparing Relational Descriptions.
IEEE Trans. Pattern Analysis and Machine Intelligence, 7:1, pp. 90-94,
Jan. 1985.

[21] B. Van Wyk, M. Van Wyk. Orthonormal Kronecker Product Graph Match-
ing. Lecture Notes In Computer Science. Vol 2726, pp 107-117, 2003.

[22] S. White, P. Smyth. Algorithms for estimating relative importance in net-
works. In Proceedings of the ACM SIGKDD Conference, pages 266-275,
2003.

