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Abstract

This paper describes algorithms for a mobile robot with sparse,
short-range sensing to create a topological map of an unknown
environment. While a limited array of sensors is appealing from
the standpoint of having simpler and cheaper hardware, map-
ping is more difficult because the robot cannot guarantee it will
detect obstacles as soon as they enter its sensing range. Thus,
the robot’s mapping strategy must ensure that all relevant parts
of the environment are observed. Our approach constructs topo-
logical maps based on the SGVD∞, a version of the saturated
generalized Voronoi diagram defined under theL∞ distance
metric, which is well-suited to robots with sparse sensing. We
first describe behaviors that allow a robot with an omnidirec-
tional short-range sensor to trace the SGVD∞, and then extend
these behaviors to the sparse sensing case by introducing a “vir-
tual sensor” that tracks unseen obstacles and emulates the out-
put of the omnidirectional sensor. We show that our behaviors
are complete for the problem of mapping an arbitrary rectilin-
ear environment. We have implemented the mapping behaviors
and report the results of simulated experiments.

Keywords: topological mapping, saturated generalized
voronoi diagram, sensing limitations, sparse sensing

1 Introduction

Mapping is a fundamental capability for mobile robots, allow-
ing them to communicate spatial information about an envi-
ronment and navigate through that environment using efficient
paths. While often done using powerful sensors such as scan-
ning laser rangefinders, it is possible to map and navigate in an
environment using a more limited array of sensors. Robots with
limited sensing can be made very inexpensively, which qualifies
them for applications where a large number of potentially dis-
posable robots would be required, e.g. hazard assessment of a
contaminated building, urban reconnaissance, security patrols,
rescue operations, etc.

Another reason for our interest in sensing-limited robots is to
ultimately address fundamental questions about mapping: what
sensing is required for mapping; how limitations on sensing af-
fect the ability to map, the quality of the resulting maps, the

efficiency of subsequent navigation; and so on.

In this paper, we consider two types of sensing limitations:
limited-range sensing and (additionally) sparse range sensing.
We consider sensors such as the popular SharpIR rangefind-
ers, which have a maximum range of approximately 80 cm. In
many office buildings, such a robot would not even be able to
simultaneously sense both sides of a hallway! By “sparse sens-
ing,” we mean that the range to the closest obstacle is provided
only along a small number of directions from the robot. Our
robot model has eight range sensors at orientations ofnπ

4 for
n = 0, 1, . . . , 7.

Our focus is on mapping indoor spaces such as office build-
ings. We make the assumption that the environment consists
of a (possibly nonconvex) rectilinear polygonal boundary and
obstacles. Since most buildings are rectilinear in their basic
structure, this is a reasonable assumption that enables us to for-
mulate complete algorithms.

We create topological maps that are defined in terms of be-
haviors: the nodes in the map correspond to points in the en-
vironment where the behaviors terminate, and the edges corre-
spond to a behavior (or sequence of behaviors) that moves the
robot from one node to another. We have designed our behav-
iors so that the paths taken by the robot lie on the saturated
generalized Voronoi diagram (Acar, Choset, and Atkar, 2001)
under theL∞ distance metric. This construct, which we refer
to as the SGVD∞, contains paths that are either equidistant to
two obstacles or are at the “saturation distance” from one ob-
stacle. For this reason, it is well suited for robots using sensory
feedback to follow paths. TheL∞ norm results in paths that are
easier for a robot with sparse sensing to track and follow than
those for theL2 (Euclidean) norm. We describe the Voronoi
diagram, generalized Voronoi diagrams, the SGVD∞, and the
L∞ norm in Section 3.

We first present mapping behaviors for a robot with a limited-
range omnidirectional sensor in Section 4, and then for a robot
with sparse limited-range sensing in Section 6. Our behaviors
for sparse sensing are very similar to those for omnidirectional
sensing. This is possible because of a “virtual sensor,” de-
scribed in Section 5, that monitors the inputs from the sparse
sensors and maintains state, enabling it to compute an output
that emulates that of the omnidirectional sensor.

Our behaviors are designed for an arbitrary rectilinear en-
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vironment, even though real rectilinear environments would be
far less complex. We show that these algorithms are complete in
a sense analogous to graph search, where a complete algorithm
visits every node in a connected component. Our algorithms
are guaranteed to trace a connected component of the SGVD∞.
However, the robot is not guaranteed to map every area of the
environment — this would be completeness in the “coverage”
sense. In fact, no algorithm for coverage of an arbitrary envi-
ronment by a robot with sparse sensing yet exists.

We have implemented our virtual sensor and sparse sensing
behaviors in simulation, and we show several examples. We
conclude in Section 7 with some observations on the tradeoffs
for sensing limitations on mapping.

1.1 Assumptions

We consider a differential drive robot with a small number of
short-range sensors. These sensors return the distance to the
nearest obstacle along a straight line; they are “short-range” in
that their maximum range is small compared to the dimensions
of the environment.

There can be known error in the robot’s movement, odome-
try, and sensing. The main problem that arises because of this
error is that of “closing loops” in the map — the robot must rec-
ognize when it has returned to a place it has already been. We
do not address the loop-closing problem in this paper. How-
ever, in previous work (Beevers and Huang, 2005), we have
presented an evidential approach for solving the loop-closing
problem that can be applied to robots with limited sensing.

We assume an enclosed, static, rectilinear environment. Rec-
tilinearity is a strong assumption, but it removes uncertainty in
the robot’s orientation, and it allows us to focus on the funda-
mental problem of mapping with limited sensing information.

2 Related work

There are two traditional paradigms for robotic mapping: met-
ric maps and topological maps. In metric maps, e.g. (Pagac,
Nebot, and Durrant-Whyte, 1998; Thrun, 2002), the geome-
try of the world is explicitly represented, either through exact
or approximate representations. In topological maps (Kuipers,
1978), “places” in the world (typically hallway junctions) are
represented by vertices in a graph, and paths between places
are represented by edges. Metric maps provide a detailed world
representation but require more storage and are sensitive to
measurement errors. Topological maps offer a more concise
representation of the environment that is easy to use for pur-
poses of navigation.

Some researchers have devised methods for extracting topo-
logical maps from occupancy grid data (Chatila and Laumond,
1985; Thrun and B̈ucken, 1996). Others have combined the
topological and metric approaches by using “local” metric maps
at nodes in topological maps (Duckett and Saffiotti, 2000;
Thrun et al., 1998). For example, Tomatis, Nourbakhsh, and
Siegwart (2002) use a topological map to represent a network

of hallways and use metric maps to represent rooms. We focus
primarily on topological mapping with limited-range sensors,
which are well-suited to mapping in narrow corridors. How-
ever, we also map the perimeters of open spaces in the en-
vironment. Our use of the saturated generalized Voronoi dia-
gram (Acar, Choset, and Atkar, 2001) to generate a map of the
perimeter of an open area is related to the idea of “coastal navi-
gation” (Roy and Thrun, 1999) which recognizes that areas near
walls and obstacles have “high information content” due to the
features they produce.

Once the robot has built a map of the boundaries of open
areas, it can safely explore their interiors. Though we do not
address that problem in this work, we have discussed methods
elsewhere (Beevers, 2004; Huang and Beevers, 2004) that allow
a robot with short-range sensing to improve the connectivity of
its topological map in open spaces by “foraying” through the
interiors of open areas.

Most research on topological mapping has focused on the
online construction of topological maps (Kuipers and Byun,
1991; Rybski et al., 2003; Shatkay and Kaelbling, 1997; To-
var, LaValle, and Murrieta, 2003). Many researchers base their
maps on the idea of “behaviors,” simple control strategies that
enable a robot to travel between “distinctive places” in an en-
vironment (Kuipers and Byun, 1991). In our approach, these
distinctive places are meet points in the SGVD∞ of an envi-
ronment, which the robot is able to recognize based on several
simple conditions. Topological maps constructed using behav-
iors generally consist of edges representing the execution of be-
haviors and nodes representing the distinctive places where the
behaviors terminate.

Sensing capabilities affect a robot’s ability to map an envi-
ronment, and the mapping and exploration problems have been
examined over a wide range of sensing modalities and limi-
tations. Deng, Kameda, and Papadimitriou (1998) discuss an
algorithm for observing all visible points in a rectilinear en-
vironment with an infinite-range omnidirectional sensor, and
Rao (1989) and Rao and Iyengar (1990) have built topological
maps based on the Voronoi diagram and the visibility graph us-
ing an infinite-range omnidirectional sensor. Grabowski et al.
(1999) use “millibots” with short-rangeSONARsensors to build
metric maps. Choset (1997) and Choset and Nagatani (2001)
have built topological maps by tracing Voronoi diagrams using
a short-range omnidirectional sensor.

We instead build our maps by tracing the SGVD∞ us-
ing sparse short-range sensing, constructing the correspond-
ing graph as we go. Though Acar, Choset, and Atkar (2001)
solve the coverage problem using the SGVD, they do so under
theL2 distance metric and with omnidirectional limited-range
sensing. Other researchers have used different techniques to
address mapping and exploration with sparse sensing. Butler,
Rizzi, and Hollis (2001) describe coverage (equivalent to metric
mapping) using robots with only contact sensors but with near-
perfect odometry. Doty and Seed (1994) have shown prelim-
inary results in creating a “landmark map” using a robot with
four short-range infrared sensors and one long-range (and non-
sparse)SONAR sensor, but it is not clear that their algorithm is
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suitable for arbitrary environments.
Erdmann (1995) has examined the question of what sens-

ing is required to perform certain tasks. Toward that end, he
proposed a “top-down” design method for constructing sensors
that provide exactly the information required to perform a task.
Though Erdmann’s work focuses mainly on manipulation tasks,
the questions he asks are relevant to mapping. In this work, we
show that mapping can be performed even with significant lim-
itations on the robot’s sensing capabilities.

3 Properties of the L∞ norm and the
SGVD∞

The basic mapping strategy followed by our robots is to trace
the saturated generalized Voronoi diagram of the environment
using theL∞ distance metric (the SGVD∞). Meet points in
the diagram constitute vertices in the topological map, and seg-
ments in the diagram are edges in the map. In this section, we
define the SGVD∞ and introduce properties of the SGVD∞
and theL∞ metric that are important to tracing the SGVD∞
with sparse, short-range sensing.

3.1 The Voronoi diagram, GVD, and GVD∞
The Voronoi diagram(Aurenhammer, 1991) is a fundamental
structure in computational geometry. Given a set of points
(calledsites) in the plane, the Voronoi diagram can be defined
as the locus of points equidistant to the two closest sites. Al-
ternatively, the Voronoi diagram can be defined as the union of
the boundaries of theVoronoi regionsof the sites; the Voronoi
region of a site is the set of points closer to that site than to
any other. The Voronoi diagram can also be defined in higher
dimensions, under different topologies, and with different dis-
tance metrics (Lee, 1980). When the sites are not points, the
result is ageneralized Voronoi diagram(GVD) (Kirkpatrick,
1979; Lee and Drysdale, 1981).

We will define a version of the GVD under theL∞ metric
that we refer to as the GVD∞. The GVD∞ will be defined for
axis-aligned rectilinear polygons that are represented by sites
that are open line segments. Our GVD∞ is slightly different
than the usual GVD under theL∞ metric in the way we define
bisectors and half planes.

The L∞ distance metric defines the distance between two
pointsp andq as:

d(p,q) = max
i
|pi − qi| (1)

Note that under theL∞ norm, the locus of points equidistant
from a given point (a circle underL2) is an axis-aligned square
underL∞. Bisectors between two points underL∞ may consist
of multiple segments or even include unbounded regions. Our
definition of a bisector differs from the usual approach taken in
defining a Voronoi diagram underL∞ because we include all
equidistant points, even though this results in a bisector that is
not always one dimensional; the usual approach is to choose

Figure 1: Bisectors of two open-ended line segments under the
L∞ metric.

GVD∞ SGVD∞

Figure 2: Examples of the GVD∞ and SGVD∞. Shaded areas
are regions of points equidistant to two or more walls.

a one dimensional curve, typically one of the boundary curves.
The bisector between two line segment sites underL∞ has sim-
ilar properties to that between two points; Figure 1 shows sev-
eral examples.

Following (Aurenhammer, 1991), we define a “half plane”
for a pair of sitessi, sj ∈ S, whereS is the set of all sites. Our
half plane is theopenset of points on one side of a bisector, i.e.:

h(si, sj) = {r ∈ R2 | d∞(r, si) < d∞(r, sj)} (2)

This is not a half plane in the traditional sense because it is not
necessarily bounded by a straight line. Also, the boundary of a
half-plane may be a proper subset of a bisector; this only occurs
when the bisector is not one-dimensional.

The Voronoi region of a site is the locus of points closer to
that site than to any other site:V (si) =

⋂
j 6=i h(si, sj). We

define the GVD∞ to be the union of all Voronoi region bound-
aries: GVD∞(S) =

⋃
i ∂V (si). The GVD∞ in R2 is a one-

dimensional construct that partitions the plane into the Voronoi
regions and regions of equidistant points. It is composed en-
tirely of straight line segments; each edge is on the boundary of
a bisector. “Meet points” are junctions of two or more edges;
these points are equidistant from the closest three or more sites.
Figure 2 shows an example.
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3.2 The SGVD∞
The saturated generalized Voronoi diagram(SGVD) (Acar,
Choset, and Atkar, 2001) is a modification of the GVD that
can be constructed by robots with limited-range sensors. In re-
gions where the distance to the two closest sites is less than the
“saturation distance”rsat, the SGVD is identical to the GVD. At
points on the GVD that are equidistant to two sites, and where
the distance to the sites is equal torsat, the SGVD “diverges,”
maintaining the saturation distance to one site. We define the
SGVD∞ in the same manner with respect to the GVD∞.

More formally, letM be the Minkowski sum of the sites with
a “disk” with a radius equal to the saturation distance. (Under
the L∞ metric, this disk is an axis-aligned square.) Then we
can define:

SGVD∞ = (GVD∞ ∩M) ∪ ∂M (3)

The SGVD∞ consists of a collection of line segments; each
segment is either asaturated segmentfrom the boundary ofM,
or anunsaturated segment, a part of a bisector. In addition to the
type of meet points found in the GVD∞, the SGVD∞ contains
meet points where the GVD∞ meets the boundary ofM; these
are junctions of two or more segments that are equidistant to
two or more sites atrsat.

3.3 Orientations of paths

In order for a robot to trace the SGVD∞, it must be able to com-
pute the orientations of edges locally based on the closest points
of equidistant obstacles. We now show that the orientations of
SGVD∞ edges are restricted. This restriction is important to
traversing the SGVD∞ with sparse sensing, since it guarantees
a particular set of sensor orientations at all times.

First, we compute the directional derivative of the distance
function. Letf [α] be the distance to an obstacle, parameter-
ized by α, the angle to the closest point on the obstacle. In
general, there will be multiple equidistant points on an obsta-
cle underL∞, in which case we choose the closest of them
underL2.

Lemma 3.1 The directional derivative off [α] as the robot
moves forward in directionθ is:

df

ds
=



cos(θ − π) α ∈ (−π
4 , π

4 )
or (α = −π

4 and sin(θ − α) ≥ 0)
or (α = π

4 and sin(α− θ) ≥ 0)
cos(θ − 3π

2 ) α ∈ (π
4 , 3π

4 )
or (α = π

4 and sin(α− θ) ≥ 0)
or (α = 3π

4 and sin(θ − α) ≥ 0)
cos(θ) α ∈ ( 3π

4 , π]
⋃

[−π,− 3π
4 )

or (α = − 3π
4 and sin(θ − α) ≥ 0)

or (α = 3π
4 and sin(α− θ) ≥ 0)

cos(θ − π
2 ) α ∈ (− 3π

4 ,−π
4 )

or (α = −π
4 and sin(θ − α) ≥ 0)

or (α = − 3π
4 and sin(α− θ) ≥ 0)

(4)

Proof: The directional derivative off [α] can be written
as:

df

ds
[α](θ) =

df

dx
cos θ +

df

dy
sin θ (5)

When the robot is not on a diagonal to an obstacle vertex, one
of df

dx or df
dy must be 0 and the other±1 by the definition of

theL∞ norm (Equation 1). This implies thatdfds can always be
written in the formcos(θ − nπ

2 ) for some integern.
The derivative is not continuous across diagonals, so in these

cases (α = ±π
4 ,± 3π

4 ), the directional derivative depends upon
the side of the diagonal in whichθ lies. The resulting cases,
while lengthy, are straightforward to compute, yielding Equa-
tion 4.

With this, we can now show that edge orientations in the
GVD∞ are restricted.

Lemma 3.2 All edges in the GVD∞ for a rectilinear environ-
ment have orientationnπ

4 for some integern.

Proof: Pick a point on an edge of the GVD∞. To de-
termine the direction of this edge, we consider the directional
derivative of the distance to each of the equidistant obstacles.
Directions in which the directional derivatives are equal corre-
spond to the orientation of the edge.

We take two obstacles and set the directional derivatives
equal: df1

ds = df2
ds . Using Equation 4, we get:

cos
(
θ − n1

π

2

)
= cos

(
θ − n2

π

2

)
(6)

for some integersn1 andn2. This can be simplified to:

a cos θ + b sin θ = 0 (7)

wherea = cos(n1
π
2 )−cos(n2

π
2 ) andb = sin(n1

π
2 )−sin(n2

π
2 )

for integraln1, n2. Note thata, b ∈ {−2,−1, 0, 1, 2} and when
one ofa or b is±2, the other must be0. So the solutions of this
equation areθ ∈ {0,±π

2 , π} whena ∈ {±2,±1} andb = 0 or
vice versa, andθ ∈ {±π

4 ,± 3π
4 } whena, b = ±1.

The case wherea = b = 0 corresponds to either a point in
the interior of a region of equidistant points (which cannot be
on the GVD∞) or a point on the boundary of an equidistant
region that is on a diagonal to an obstacle vertex. In the latter
situation, value ofn1 andn2 for Equation 7 will only be valid
only over a 180 degree range ofθ. Since the GVD∞ contains
points only on the boundary of the equidistant region and not
in the interior, we must move at the limits of this range, which
must occur on the diagonal from the point, which must lie at
θ ∈ {±π

4 ,± 3π
4 }.

We state the following Lemma without proof:

Lemma 3.3 The boundary of the Minkowski sum of axis-
aligned rectilinear polygons with an axis aligned square con-
sists of edges with orientations ofθ ∈ {0,±π

2 , π}.

Since the SGVD∞ is the union of the Minkowski sum bound-
ary and a subset of the GVD∞, we have the following:
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Theorem 3.4 The SGVD∞ contains edges only atθ = nπ
4 for

integraln.

Corollary 3.5 All meet points occur on a diagonal equidistant
from two of the closest walls.

Proof: From Theorem 3.4, we know that all SGVD∞
edges are at orientations that are multiples ofπ

4 . Therefore, a
robot tracing the SGVD∞ must change its direction of travel
discontinuously (by a multiple ofπ4 ). df

ds [α] is discontinuous
only whenα ∈ {±π

4 ,± 3π
4 }, i.e. on a diagonal between two

walls. Diagonals are generally to the corner between two walls,
but if the equidistant walls are perpendicular and do not inter-
sect, the diagonal is to the point of intersection between the
lines through the walls.

4 Tracing the SGVD∞with an omnidi-
rectional sensor

In this section, we describe behaviors with which a robot can
trace the SGVD∞ using a short-range omnidirectional sensor.
In Section 6, we extend these behaviors to the case in which a
robot has only sparse sensing.

We assume a differential drive point robot with an omnidirec-
tional limited-range sensor. The point robot assumption is made
to simplify the behaviors; it is essentially equivalent to the as-
sumption that there are no walls in the environment smaller than
the radius of the robot, so by approaching as close as possible
to walls the robot will detect all obstacles. We assume that the
robot’s range sensor maintains a setA = {α1, α2, . . . , αn} of
the angles to all closest equidistant obstacles that are withinrsat.
If there is more than one point on a single obstacle equidistant
underL∞, then the closest point underL2 is chosen.

4.1 Situating on the SGVD∞
When the robot is first turned on, it may not be at a location on
the SGVD∞. Therefore, it must “situate” itself on the SGVD∞
before it can begin mapping. TheSITUATE behavior performs
the necessary actions. Though the robot may not be at a meet
point when theSITUATE behavior finishes, theMEET-POINT be-
havior is used to determine directions of travel that are valid
from the robot’s initial location on the SGVD∞, since the re-
quired computations are the same.

Lemma 4.1 TheSITUATE behavior moves the robot from any
starting location to a point on the SGVD∞.

Proof: If the robot sees more than one equidistant obsta-
cle, it may be inside a region of equidistant points, so lines 1–2
move the robot toward the closest point on an obstacle until
that obstacle is closest. Otherwise, if there were no visible ob-
stacles to begin with, the robot drives forward until it encoun-
ters one (lines 3–5). If it simultaneously encounters more than
one equidistant obstacle, then the robot is on the boundary of a

Behavior: SITUATE

Behavior for situating the robot on the SGVD∞ from an arbi-
trary initial starting location.

1: if |A| > 1 then // get out of regions of equidistant points
2: Pick αi ∈ A arbitrarily and move in that direction until

|A| = 1
3: else if|A| = 0 then // nothing in sight
4: Move forward until|A| > 0
5: end if
6: if |A| = 1 then // single obstacle closer than saturation

distance
7: Move in directionα1 + π until one of the following oc-

curs:
(A) Saturation distance is reached
(B) |A| > 1

8: end if
9: MEET-POINT // determine direction to move

Behavior: SATURATED(θ)
Traces a segment of the GVD∞ at the saturation distance from
current closest obstacles

1: Let n = |A|
2: Continue moving in directionθ, maintaining saturation dis-

tance to obstacles atα1 . . . αn

3: Until one of the following occurs:
(A) |A| > n
(B) Any α ∈ A becomes±π

4 or± 3π
4 andθ 6∈ {α, α + π}

4: MEET-POINT

equidistant region. Since this point is also on the boundary of a
Voronoi region, it must be on the SGVD∞.

Otherwise there is only one closest obstacle, and the robot
must drive away from this obstacle until it first sees more than
one obstacle or until it reaches the saturation distance. At this
point, the robot will be either on the boundary of a Voronoi
region or on a saturated edge, both of which are on the SGVD∞.

4.2 Tracing SGVD∞ segments

TheUNSATURATED andSATURATED behaviors are each re-
sponsible for following a single edge of the SGVD∞. They
differ slightly in their termination conditions and also in the
sensory feedback required to follow the desired segment.

The SATURATED behavior follows a line segment at the sat-
uration distance from an obstacle. This is essentially a wall-
following behavior under theL∞ distance metric. It is possible
for there to be multiple obstacles being tracked at the satura-
tion distance, but they must all be on one side of the robot and
collinear.

Lemma 4.2 The SATURATED behavior follows an SGVD∞
edge at the saturation distance and terminates when it reaches
a meet point.
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Behavior: UNSATURATED(θ, αs)
Traces a segment of the GVD∞ on the boundary of the Voronoi
region for obstacle atαs ∈ A.

1: Let n = |A|
2: Continue moving in directionθ, maintaining equidistance

from obstacle atαs to other equidistant obstacles in A
3: Until one of the following occurs:

(A) |A| > n
(B) Any α ∈ A becomes±π

4 or± 3π
4 andθ 6∈ {α, α + π}

(C) Saturation distance is reached
4: MEET-POINT

Proof: All points on a saturated edge must be at the satu-
ration distance from all the closest equidistant obstacles, so the
directionθ satisfiesdf

ds [α](θ) = 0 for all α ∈ A. This condition
is met when called from theMEET-POINT behavior.

The behavior should terminate when it reaches a location
where the robot must change direction to maintaindf

ds = 0,
or when new obstacles are encountered and a choice of which
obstacles to track must be made. Thus, termination conditions
are:

(A) When a new obstacle is detected at the equidistant range,
the robot may choose to trace the boundary of the Voronoi
region of that obstacle.

(B) When the robot crosses a diagonal (α ∈ {±π
4 ,± 3π

4 }) and
is not moving along the diagonal (toward or away from
the corner),df

ds is discontinuous. Thus, the robot must
change direction instantaneously to maintain the satura-
tion distance offset (see Corollary 3.5), so this is a meet
point.

The UNSATURATED behavior follows a line segment on the
boundary of the Voronoi region for the obstacle atαs. This seg-
ment will be equidistant to the obstacle atαs and to the other
obstacles inA. When |A| = 2, the edge is on the bisector
between two Voronoi regions. In this case, this behavior is es-
sentially a hall-following behavior — if the robot should veer
to one side of this segment, the distance to one obstacle will in-
crease whereas the distance to the other obstacle will decrease.
However, the distance of equidistance may increase or decrease
(e.g., when following a diagonal separating two perpendicular
walls).

When |A| > 2, this edge separates the Voronoi region for
αs from a region of equidistant points. If the robot should
veer off the segment into the Voronoi region, the distance to
that obstacle will decrease and distance to the other obstacles
will increase. However, if the robot veers into the equidistant
region, the distance to all obstacles represented inA remains
equal. Thus, this case is more similar to wall-following than to
hall-following in that the robot must maintain the correct offset
from a single obstacle atαs. However, since multiple obstacles
are equidistant and the equidistant range is less thanrsat, the
UNSATURATED behavior is used. The offset from the obstacle
may increase or decrease since at less thanrsat, the boundaries
of equidistant regions are on diagonals.

Behavior: MEET-POINT

Behavior for determining valid outgoing paths at a meet point.
1: ComputeW , the set of all pairs(θ, i) where directionθ

lies on the boundary of the Voronoi region of the obstacle
at αi. If at the saturation distance, exclude anyθ where
df
ds [αi](θ) > 0.

2: if at the saturation distancethen
3: ComputeY , the set of all pairs(θ, i) wheredf

ds [αi](θ) =
0 and∀αj∈A

df
ds [αj ](θ) ≥ 0

4: ComputeC, the set of uniqueθ in pairs fromW andY
5: Choose an elementc from C
6: Start moving in the directionc
7: if (c, ∗) ∈W then
8: Let s be the indexi from any pair(c, i) ∈W
9: UNSATURATED(c, αs)

10: else
11: SATURATED(c)
12: end if

Lemma 4.3 TheUNSATURATED behavior follows an SGVD∞
segment on the boundary of at least one Voronoi region and
terminates when it reaches a meet point.

Proof: Since this edge is on the boundary of a Voronoi
region, we know thatθ is a direction that maintains equidis-
tance to the closest obstacles, sodf

ds [αi](θ) = df
ds [αj ](θ) for any

αi, αj ∈ A. The termination conditions are the same as those
of theSATURATED behavior, except that the robot must also ter-
minate when it reaches the saturation distance. This is a meet
point where the GVD∞ reaches the saturation distance.

4.3 Meet points

In general, when either of the above SGVD∞ tracing be-
haviors terminate, a meet point has been reached. TheMEET-
POINT behavior determines which directions will take the robot
to a new segment of the SGVD∞. There are two phases to this
computation.

First, all directions corresponding to segments for theUN-
SATURATED behavior are computed. This is done by determin-
ing, for the current robot location, which directions correspond
to an edge on the boundary of the Voronoi region for each ob-
stacle. These can be found by considering the bisectors be-
tween one obstacle and the other obstacles. Figure 3 shows the
relevant cases. Each bisector eliminates a range of angles. Af-
ter overlapping the ranges eliminated by all the bisectors, the
angles at the extremes of the remaining range are the direc-
tions to follow the boundary of that Voronoi region. In certain
cases, the bisectors for an obstacle may eliminate all directions,
which indicates that this meet point is not on the boundary of
the Voronoi region of that obstacle. Note that if the meet point
is at the saturation distance, any direction for whichdf

ds (θ) > 0
must be discarded since the robot cannot increase the distance
of equidistance beyondrsat. Figure 4 depicts an example of the
process of determining outgoing directions from meet points
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Figure 3: Types of local bisectors between two obstacles. The
Voronoi region of the obstacle labeled “?” is being computed
by eliminating ranges of angles (highlighted side of the bisec-
tor). See Figure 4 for a complete example. Moving along the
bisector, the range of equidistance may change (+ indicates an
increase, - a decrease, 0 no change). Note that in some cases
the complete bisector is not known from only local information
(e.g., when the robot is inside or on the boundary of a region of
equidistant points).

?

=⇒ + =⇒ θ1

θ2

Figure 4: Example of determining outgoing directions from a
meet point by examining local bisectors between obstacles de-
tected at the meet point.

using local bisectors.
If the meet point is atrsat, then we also compute the direc-

tions that maintain the saturation distance to a subset of the cur-
rent equidistant obstacles. This is done by solvingdf

ds (θ) = 0
for values ofθ. The allowable values ofθ must be directions
in which the change in distance to other obstacles will be non-
negative since otherwise those obstacles would become closer
than the obstacle being traced at the saturation distance, and the
robot would no longer be on the SGVD∞.

One of the allowable directions is chosen, and the robot
moves in that direction and executes the correct behavior. In
some cases, there may be only one path (aside from the incom-
ing one) that can be taken from a meet point. In these circum-

stances, no choice is necessary.

Lemma 4.4 The MEET-POINT behavior generates the direc-
tions of all edges leaving a point on the SGVD∞ and calls the
appropriate behavior to trace the chosen edge to the next meet
point.

Proof: Line 1 of theMEET-POINT behavior calculates the
directions of edges on the boundaries of Voronoi regions. The
only other directions that can be on an edge of the SGVD∞ are
edges at the saturation distance. Lines 2–3 of the algorithm,
executed only when the meet point is at the saturation distance,
calculate these directions. See the preceding discussion for the
details of these calculations.

In lines 4–6, a directionc is chosen, and the robot starts mov-
ing in that direction to put the robot on the edge before the ap-
propriate edge-following behavior is called in lines 7–11.

If c is associated with one or more pairs inW , then it lies
on the Voronoi region of an obstacle, so theUNSATURATED

behavior is called on line 9. Otherwise,c is not on the boundary
of any Voronoi region, so it must be a saturated edge (from a
pair in Y ), and theSATURATED behavior is called on line 11.
Note that edges at distancersat from two non-collinear walls are
unsaturated edges under this approach.

4.4 Completeness

The SITUATE behavior moves the robot to a point on the
SGVD∞ and calls theMEET-POINT behavior to move it to a
meet point. Subsequently, theMEET-POINT behavior calls ei-
ther theSATURATED or UNSATURATED behaviors to move the
robot to another meet point. With a suitable strategy for explo-
ration, the robot will traverse all edges of the SGVD∞.

We note also that there are SGVD∞ edges that extend into
each convex and nonconvex corner. It is not necessary to tra-
verse these edges to explore them (unless there is an opening at
an interior corner) because all the relevant area will be sensed
from the other segments on the SGVD∞.

Theorem 4.5 The SITUATE, SATURATED, UNSATURATED,
and MEET-POINT behaviors are sufficient to guide a robot to
trace a connected component of the SGVD∞ from any initial
configuration.

Proof: The proof follows immediately from the previous
Lemmas and discussion.

5 A virtual sensor for sparse sensing

We now consider the case in which the robot has only sparse
short-range sensing, rather than omnidirectional short-range
sensing. Specifically, we assume that the robot has eight one-
dimensional sensors (e.g. infrared sensors), with one pointing
in the forward direction and the rest spaced at45◦ intervals
around the robot.
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In order to trace the SGVD∞, the robot needs to know about
the closest equidistant obstacles. However, with sparse sensing,
the robot may not always be able to measure the distance to
the closest obstacles. Even worse, the robot may not detect an
obstacle until it has gotten too close, i.e., after the robot has
strayed off the SGVD∞.

We address these problems by introducing a “virtual sensor”
which keeps track of the distance to obstacles that can no longer
be sensed directly by the robot. Still, this does not solve the
problem of discovering an obstacle too late, so we present be-
haviors in Section 6 that handle situations where the robot has
strayed off the SGVD∞ and go back to correct it.

5.1 Basic operation

The main function of the virtual sensor is to keep track of a
set of equidistant obstacles and report their angles relative to
the robot, in similar fashion to the omnidirectional sensor. The
robot will maintain equidistance to these obstacles in order to
trace the SGVD∞. These obstacles are represented by a set
T that contains both “unseen obstacles” — representations of
obstacles that cannot be directly observed but that have been
seen in the past — and sensors that can directly observe an
obstacle. Normally, the obstacles represented byT are the
closest (known) equidistant obstacles. Lete be the distance to
these obstacles. The setT contains all sensors for which the
ranged(s) = e and all unseen obstaclesu for which the dis-
tance to that obstacled(u) = e.

When first initialized,T contains only sensors. As the robot
moves, there are six kinds of changes related to the obstacles
represented byT .

1. The distance of equidistancee may change; this does not
have any effect onT .

2. One or more obstacles inT may increase in distance be-
yond e so they are no longer equidistant; any unseen ob-
stacle or corresponding sensors should be removed from
T .

3. Obstacles seen by a sensor that were at a distance greater
thane may now be at a distancee; the sensors that can see
such obstacles should be added toT .

4. An equidistant obstacle observed by a sensor may “dis-
appear” so that it is not seen by any sensor. An unseen
obstacle should be created and added toT , and that sensor
should be removed fromT .

5. An unseen equidistant obstacle may “appear,” i.e., be de-
tected by a sensor. This unseen obstacle should be re-
moved fromT , and the appropriate sensor should be added
to T .

6. One or more previously undetected obstacles may appear
that are closer than distancee; we call the appearance of
such obstacles a “K-Appearance” and set a flag to true.
This flag remains true as long as there are any obstacles
closer thane. The setT is not changed in this case.

s0

o7o4

o5

s4

s2

s6

s1

s7s5

s3

o0

o1o2

o3

o6

Figure 5: Labels for sensors and octants which are fixed in the
world frame.

Variable Explanation
θ the robot’s current heading
S the set of sensors;S ≡ {s0, s1, . . . , s7}
U a set of unseen obstacles(o, d) whereo

is the octant in which it lies andd is the
distance to the obstacle

T the set of “objects”t ∈ U∪S (sensors and
unseen obstacles) being tracked to follow
the SGVD∞ at any given time

A a set of pairs(α, t), t ∈ T , of angles to
objects being tracked and the correspond-
ing objects

ang[s] absolute angle to the wall observed by
sensors; always a multiple ofπ2 except
when a diagonal sensor sees a corner

ang[u] absolute angle to an unseen obsta-
cle u that is being tracked; foru =
(oi, d), ang[u] ≡

⌊
i+1
2

⌋
π
2

Table 1: Variables used by the virtual sensor.

This paradigm maintains a consistent set of obstacles for the
robot to track but also indicates when the robot has strayed
off the SGVD∞. After a K-Appearance occurs, the robot’s
SGVD∞ must be corrected because a meet point was missed.
The robot will turn around and re-trace its path on the (now in-
correct) SGVD∞. The obstacle that caused the K-Appearance
will become an unseen obstacle and will eventually become
equidistant to the other obstacles represented byT . This causes
the flag to be turned off, indicating the robot is at the missed
meet point. The handling of K-Appearances is discussed in de-
tail in Section 6.

The virtual sensor is given in theVIRTUAL -SENSORalgo-
rithm, but the main work is done by theVS-TRACK algorithm,
described in Section 5.2, which maintains the setT , and the
VS-UPDATE algorithm, described in Section 5.3, which com-
putesA, the output of the virtual sensor.

5.1.1 Notation

We will label the robot’s eight range sensorss0 throughs7, as
as illustrated in Figure 5. These labels are for absolute sensor
orientations in the world frame and do not shift when the robot
changes direction. Instead, the physical sensors on the robot
have a different labels depending on the direction of the robot
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Function Explanation
d(s) L∞ distance reported by sensors; if

s detects nothing within the satura-
tion distancersat, d(s) =∞

d(u) L∞ distance to an unseen obstacleu
d−(s) returns the range on sensors just be-

fore a disappearance
ORIENT(s) absolute orientation of sensors
EC-DIAG(s) #t if sensors is on a diagonal to an

exterior (convex) corner of an obsta-
cle within rsat

IC-DIAG(s) #t if sensors is on a diagonal to an
interior (concave) corner of an ob-
stacle withinrsat

CALC-B/F(si, θ) computes the sensors and octants
behind and in front of sensorsi

when the robot moves in direction
θ. Returnssh, sj , oh, oj wheresh

is the sensor behind sensorsi; sj ,
the sensor in front;oh, the octant be-
hind; andoj , the octant in front.

SET-SAME(si, sj , b) asserts that sensorssi andsj are not
seeing the same wall if the boolean
b is #f .

IS-SAME(si, sj) returns#f if it has been asserted that
sensorssi andsj are seeing different
walls or if d(si) 6= d(sj); accounts
for transitivity and commutativity of
sensors.

APPEAR(s) returns#t if there has been a dis-
continuous decrease in range ons

DISAPPEAR(s) returns#t if there has been a dis-
continuous increase in range ons

Table 2: Utility functions for implementing the virtual sensor.

motion; for example, when the robot moves in directionθ =
iπ
4 , its front sensor issi. We will sometimes refer to sensors

relative to the direction of the robot’s motion: front diagonal
sensors, side sensors, and rear diagonal sensors. For example,
if the robot’s direction is5π

4 , s5 is the front sensor,s6 ands4

are the front diagonal sensors,s7 ands3 are the side sensors,
ands0 ands2 are the rear diagonal sensors. We may also refer
to the two adjacent sensors (to a given sensor) as the “forward
sensor” and “backward sensor,” again relative to the direction
of the robot’s motion. When we refer to “diagonal sensors,”
this means the sensors at orientations of±π

4 and± 3π
4 , namely

s1, s3, s5, ands7.
Figure 5 also shows labels for the eight octants,o0 through

o7, which are also fixed in world frame. Octantoi includes
points at directions fromiπ

4 to (i + 1)π
4 . Keeping the sensor

and octant labels fixed in the world frame simplifies the book-
keeping for the virtual sensor.

In our algorithms, we use the symbols#t for true, #f for
false, ∧ for the booleanAND operation, ∨ for OR, and

Algorithm: VIRTUAL -SENSOR

Maintain a set of equidistant obstacles for the robot to track.
1: VS-INIT

2: loop
3: VS-TRACK

4: VS-UPDATE

5: end loop

Algorithm: VS-INIT

Initialize virtual sensor state
1: Perturb robotθ to determine ang[s] for diagonal sensors
2: for all si ∈ S do
3: sh, sj , oh, oj ← CALC-B/F(si, θ)
4: SET-SAME(si, sj , d(si) == d(sj) ∧ ang[si] == ang[sj ])
5: end for
6: Let T = {s ∈ S|d(s) = minσ∈S d(σ)}

¬ for NOT. We also assume that orientations and angles are
compared modulo2π.

5.1.2 Variables and utility functions

The variables used by the virtual sensor are listed in Table 1.
The “ang” variable is a slightly special variable, used to keep
track of the angles to unseen obstacles and to walls observed
by the sensors. This information is needed to properly calculate
the virtual sensor output. For unseen obstacles and nondiago-
nal sensors, this angle can be calculated, but for the diagonal
sensors, the algorithms must actively determine these angles.

A number of utility functions, listed in Table 2, are used to
simplify the presentation of the algorithms. A few functions
merit some additional explanation. TheCALC-B/F function,
used to compute the forward and backward sensors and octants,
can be applied to the front sensor, returning two backward (and
no forward) sensors and octants. The back sensor is handled
similarly.

Knowing whether two adjacent sensors are detecting the
same obstacle is necessary to determine when unseen obsta-
cles should be created and to calculate the virtual sensor out-
put. When we know that two sensors are seeing different walls,
a false (#f ) assertion with theSET-SAME function is made. A
true (#t ) assertion, however, means that the sensorsmaybe ob-
serving the same obstacle. TheIS-SAME function checks for
false assertions but also compares the distance on the sensors
when it is called. For convenience,IS-SAME handles commu-
tativity of the arguments and transitivity of “sameness.”

5.1.3 Implementation note

In practical circumstances, theEC-DIAG andIC-DIAG functions
would depend on the robot having a sensor range of slightly
more thanrsatand would look for a local maximum or minimum
in the range by observing a time series of readings. This would
require the robot to travel a small distance past the diagonal to
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Algorithm: VS-TRACK

Track unseen obstacles.
1: Let ∆d be the distance moved in directionθ
2: for all u = (o, d) ∈ U do // track unseen obstacles
3: Let α = ang[u]
4: d← d + ∆d df

ds [α](θ)
5: end for
6: for all si ∈ S | APPEAR(si) ∨ DISAPPEAR(si), in order

from front to backdo
7: sh, sj , oh, oj ← CALC-B/F(si, θ)
8: if DISAPPEAR(si) then
9: if IS-SAME(si, sh) == #f ∨ ang[si] 6= ang[sh] then

10: Add (oh, d−(si)) to U
11: if si ∈ T then
12: Add (oh, d−(si)) to T
13: SET-SAME(si, sh, d(si) == d−(sh))
14: end if
15: if APPEAR(si) then
16: SET-SAME(si, sh, #f ) // for bothsh if front sensor
17: Removesi from T
18: end if
19: if d(si) <= rsat then
20: if ORIENT(si) ∈ {±π

4 ,± 3π
4 } then

21: if ORIENT(si) == θ ∨ DISAPPEAR(si) then
22: ang[si] = "?"
23: else
24: ang[si] = ORIENT(sj)
25: if ∃(o, d) ∈ U | o == oj ∧ d == d(si) then
26: Remove(o, d) from U
27: SET-SAME(si, sj , #f )
28: else
29: SET-SAME(si, sj , d(si) == d(sj))
30: end if
31: end for
32: Let e = mint∈T d(t)
33: U ← U − {u = (o, d) ∈ U | d > e}
34: T ← {t ∈ S ∪ U | d(t) = e}

detect a corner; the robot could then move backwards to the
potential meet point.

5.2 Tracking unseen obstacles

The primary function of theVS-TRACK algorithm is to main-
tain the setT which represents the closest equidistant obstacles.
In order to provide information about obstacles that cannot be
sensed directly, “unseen obstacles” are created and maintained.
An unseen obstacle is a pair(o, d) whereo is the octant the
obstacle lies in, andd is the distance to the obstacle.

As the robot moves, the distance to unseen obstacles must
be updated; this is handled by the first part of theVS-TRACK

algorithm (lines 1–5). However, the bulk of theVS-TRACK al-
gorithm (lines 6–31) is devoted to handling the appearance and
disappearance of obstacles on the sensors. This may involve
creating or removing unseen obstacles as well as updating the

(a) (b)

Figure 6: Two examples where an obstacle disappears from sen-
sors1 with the same sensor readings. In example (a), an unseen
obstacle should be created, but not in example (b).

virtual sensor state. Finally, the last part of this algorithm (lines
32–34) updates the setT .

5.2.1 Disappearances

A “disappearance” is a discontinuous increase in the range re-
ported by a sensor, either to a finite value or to∞. The main
decision that must be made when a disappearance occurs is
whether to create an unseen obstacle or not.

Figure 6 shows two disappearances with the same readings
on the other sensors; an unseen obstacle should be created in
one but not in the other. The key to deciding when to create
an unseen obstacle is whether the back sensor is detecting the
same wall.

In the general case, the robot may not have seen enough of
the environment to determine whether two sensors observe the
same wall or not. Because we only keep limited state informa-
tion about the environment, we assume that two sensors on the
same side of the robot with the same distance readingsare ob-
serving the same wall — unless there is some evidence to the
contrary (expressed as a falseSET-SAME assertion). If we as-
sume two walls are the same and they are not, the robot will
discover this in the course of its exploration and correct its map
appropriately.

Disappearances are handled on lines 8–14 ofVS-TRACK. If it
is known that the backward sensor does not see the same wall,
an unseen obstacle is created. In addition, this unseen obsta-
cle must be added toT if that sensor was being tracked at the
equidistant range.

After a disappearance, the sensor may still detect a wall; we
call this a “finite-range” disappearance. This situation is like an
appearance because a new obstacle is now seen on that sensor.
We need to decide whether this sensor and its back sensor are
seeing the same wall. If the distances are different, we know
that they see different walls; this is asserted in line 13. Whether
or not the forward sensor sees the same wall is evaluated by the
last part of this section (lines 19–30), which is executed for both
disappearances and appearances.

5.2.2 Appearances

An “appearance” is a discontinuous decrease in the range re-
ported by a sensor, either from∞ or from a finite value. Ap-
pearances are often caused by a corner of an obstacle crossing
the ray of a sensor. This means that a wall has started crossing
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Figure 7: Appearance examples, with the angle from the robot
to the newly detected wall displayed: (a) appearances at less
thanrsat where the angle to the wall for diagonal sensors will
be the orientation of the forward sensor; (b) a point on a wall
appears atrsat on a front diagonal sensor; (c) a corner of an
obstacle appears atrsat on a front diagonal sensor; the angle
will be set normally (to 0 in this case) and will be changed to
π
2 by theS-MEET-POINT behavior if the robot keeps moving to
the right.

from one octant to the next as the robot moves forward. How-
ever, an appearance can also be caused by any point of a wall
(along the sensor ray) that has decreased in range torsat. Fig-
ure 7 illustrates several different situations.

A single appearance definitively indicates that the backward
sensor is not seeing the same wall. In addition, if the sensor was
being tracked, it should be removed fromT since the wall that
appeared is closer (this is a K-Appearance). These two changes,
handled in lines 15–18, are unique to appearances (and not to
the “appearance” caused by a finite-range disappearance).

The remainder of the appearance handling applies to both
appearances and to finite-range disappearances. The first part
(lines 20–24) sets the angle to the wall for this sensor; this only
needs to be done for the diagonal sensors. Figure 7 indicates
this angle for the examples shown; it can easily be seen in these
cases that the angle should be set to the orientation of the for-
ward sensor. The angle for a sensor can only change if the robot
crosses the diagonal from an interior or exterior corner. This is
taken care of by theFIX-ANG algorithm called from line 1 of the
VS-UPDATE algorithm. We should note that if the appearance
is caused by an exterior corner atrsat(Figure 7c), the angle is
not correct but will be fixed immediately during the execution
of theVS-UPDATE algorithm.

There are two exceptions to setting the angle to the orienta-
tion of the forward sensor: when the appearance happens on the
front sensor and when the appearance is due to a disappearance.
In these cases, we cannot instantaneously determine the angle,
so it is set to an “unknown” value. In the meet point behav-
ior when the actual angle is required, the robot must actively
measure it.

The second part of the appearance handling (lines 25–29)
makes an assertion about whether this sensor and the forward
sensor are seeing the same wall. If there is an unseen obstacle
in the forward octant at the same distance, then we assume the
unseen obstacle has appeared on this sensor. The unseen obsta-
cle is removed, and we know that the forward sensor cannot be
seeing the same wall — an unseen obstacle can only be created
when an wall disappears from a sensor and that sensor was the

only sensor that detected that wall. Otherwise, we assume that
the distances from the two sensors indicate whether or not they
see the same wall.

Note that a wall can disappear from one sensor and appear
on an adjacent sensor simultaneously. For this reason, theVS-
TRACK algorithm processes sensors from front to back (line 6)
so that the disappearance is handled first (creating an unseen
obstacle), before the appearance (removing the unseen obsta-
cle).

5.2.3 UpdatingT

The setT is updated in lines 32–34. This update is fairly
straightforward, but the key to the correctness of theVS-TRACK

algorithm lies in knowing that an appearance or disappearance
of an obstacle represented byT will always be detected.

When one obstacle occludes another, a disappearance or ap-
pearance may be missed by a sensor. Furthermore, differ-
ent sensors may miss different events. This could potentially
cause “phantom” unseen obstacles — an obstacle that disap-
pears from one sensor but never appears on the sensor behind
it and is therefore never removed. SinceT contains obstacles
at the same distance, none may occlude any other. The only
exception is a K-Appearance: when an obstacle appears that
is closer than the obstacles represented inT . This obstacle
could then occlude obstacles represented byT . We address
K-Appearances fully in Section 5.3.1 but offer the following
related lemmas in the meantime.

Lemma 5.1 As long as there is no known obstacle closer than
the obstacles represented byT , any unseen obstacle inT will
either be removed or will appear on a sensor.

Proof: An unseen obstacle must initially have a distance
of rsat or less. As the robot moves, the distance must either
increase, decrease, or remain the same. If the distance decreases
the robot will eventually see the unseen obstacle, as the sensors
will sweep all points withinrsat. If the distance increases, the
unseen obstacle will eventually be at a distance of greater than
rsat and will therefore be removed. This leaves only the case
where the unseen obstacle distance remains the same. From
examining Equation 4, we note that this can only occur when
the robot is traveling in a directionnπ

2 and the obstacle is in
one of the four “side” octants. (For example, ifθ = 0, the
obstacle must be ino1, o2, o5, or o6.) However, all points in
these octants will be swept by the side or rear diagonal sensors,
so the obstacle will appear on a sensor. Note that since there is
no known closer obstacle, the appearance of the unseen obstacle
cannot be occluded.

Lemma 5.2 The setT will represent the closest known equidis-
tant obstacles until a K-Appearance occurs.

Proof: When the virtual sensor is initialized,T con-
tains only the sensors with the minimum distance reading. As
the robot moves about its environment, there are six kinds of
changes that can occur, as listed in Section 5.1.
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Algorithm: VS-UPDATE

Update the output of the virtual sensor.
1: FIX-ANG(θ)
2: Let A = {}
3: for all si ∈ S do
4: if EC-DIAG(si) ∧ d(si) == e then
5: ang[si] = ORIENT(si)
6: if IC-DIAG(si) ∧ d(si) == e then
7: sh, sj , oh, oj ← CALC-B/F(si, θ)
8: if IS-SAME(si, sh) == #f then
9: Add (ang[sh], si) to A

10: if IS-SAME(si, sj) == #f then
11: Add (ang[sj ], si) to A
12: end for
13: Let M = {}
14: for all si ∈ S | ¬IC-DIAG(si) do
15: if (d(si) == e ∧ ¬∃m ∈M | IS-SAME(si,m)) then
16: Add si to M
17: end for
18: A← A ∪ {(ang[t], t) | t ∈ T ∩ U ∨ t ∈M}
19: K-Appear = (∃r ∈ S ∪ U | d(r) < e)
20: if ∃si |

{
APPEAR(si) ∧ ORIENT(si) ∈ {θ + π

2 , θ − π
2 }

∧ ¬(∃(a, t) ∈ A | a == ORIENT(si))} then
21: S-Appear ← #f

Algorithm: FIX-ANG(γ)
Fix angles of sensors when they pass over corners.

1: for all si ∈ S do // update sensor state for this direction
2: sh, sj , oh, oj ← CALC-B/F(si, γ)
3: if EC-DIAG(si) then
4: ang[si] == ORIENT(sh)
5: else if IC-DIAG(si) then
6: ang[si] == ORIENT(sj)
7: end for

Case 1 is when the distance of the closest equidistant obsta-
cles represented byT changes; this distance,e, is computed in
line 32. Cases 2 and 3 remove obstacles at a distance greater
thane and add obstacles now ate; this is handled on line 34.
Case 4 addresses obstacles that have disappeared from a sen-
sor; this was discussed in Section 5.2.1. Case 5 covers obsta-
cles that appear on a sensor; this was discussed in Section 5.2.2.
Finally, case 6 handles K-Appearances. We note that an obsta-
cle that causes a K-Appearance will be closer than any obstacle
represented inT but the sensor that detects it will not be added
to T .

These six cases ensure thatT is properly updated based on
observed appearances and disappearances as well as calculated
updates to unseen obstacles. However, one possibility remains:
that an obstacle disappears, causing an unseen obstacle to be
created, and there is never an observed appearance to remove
it. By the previous lemma, it is not possible for this to happen
as long as no known obstacle exists closer which could occlude
the appearance, and this is what a K-Appearance signals.

5.3 Generating virtual sensor output

The VS-TRACK algorithm maintains information about the set
of nearest equidistant obstacles. In order to emulate the output
of an omnidirectional sensor, the virtual sensor must use the
tracking information to produce a setA containing angles to
those obstacles. TheVS-UPDATE algorithm performs the nec-
essary computations.

The first part of theVS-UPDATE algorithm (lines 2–12) han-
dles sensors that lie on a diagonal to an interior or exterior cor-
ner. For exterior corners, the closest point is exactly at the cor-
ner; for interior corners, there are two closest points, on the
walls adjacent to the corner. The next part of the algorithm
(lines 13–17) ensures that no two sensors that see the same ob-
stacle contribute toA, since each equidistant obstacle should
only be reported once to the meet point and other behaviors. Fi-
nally, the output state of the virtual sensor can be constructed.
Angle pairs for each equidistant obstacle are added toA. The
K-Appear andS-Appear flags are also set if necessary.

5.3.1 K-Appearances and S-Appearances

An obstacle discovered closer than the obstacles represented by
T causes a K-Appearance, indicating the robot has strayed off
the SGVD∞. In order for the robot to return to the SGVD∞,
this obstacle must be “ignored” by the virtual sensor for the
time being so that the robot can retrace its steps. The setT
represents the obstacles that the virtual sensor previously deter-
mined to be the closest equidistant obstacles, so this set must
be maintained for the robot to find its way back to the SGVD∞.
TheK-Appear flag is set whenever a K-Appearance occurs.

There is one type of K-Appearance that must be handled
slightly differently. This is when the robot is following the
boundary of an obstacle atrsat and a new obstacle appears at
rsat on a side sensor (opposite the obstacle the robot has been
following). Without any special handling, this would be treated
as a meet point. However, in this situation, it means that the
robot missed a meet point where it should have switched to an
unsaturated behavior. TheVS-UPDATE algorithm sets the flag
S-Appear to indicate when this situation might have arisen.
Line 20 checks whether there has been an appearance on a side
sensor and that there is no other obstacle on that side of the
robot. TheS-SATURATED behavior takes care of the rest.

5.4 Virtual sensor correctness

We have described the background and operation of the virtual
sensor, so we now set about establishing its correctness.

Lemma 5.3 The virtual sensor produces a setA equivalent to
the setA produced by the omnidirectional sensor for the obsta-
cles represented byT .

Proof: By Lemma 5.2,T represents all the closest
equidistant obstacles. The setA should contain only one ele-
ment for each obstacle. Through theSET-SAME assertions, the
robot records when sensors are known to be observing distinct
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walls, and this is used to only add one element toA per obstacle
wall.

An obstacle is represented in the setA by a pair containing
the angle from the robot to each obstacle and either an unseen
obstacle or a sensor that can see the corresponding wall. The
unseen obstacle or sensor is associated so that the behaviors
can know which sensor to use or how to access the distance to
the unseen obstacle in the virtual sensor state.

The angles produced by the virtual sensor cannot, in general,
be identical to those from the omnidirectional sensor. However,
the directional derivative of Equation 4 returns the same result
if the angles to obstacles (except for angles on the diagonals,
i.e.,±π

4 and± 3π
4 ) are rounded to the nearestnπ

2 . The angles
reported for sensors and unseen obstacles are always values of
nπ

2 except for diagonal sensors that see exterior corners. There-
fore, the setA produced by the virtual sensor is equivalent to
that from the omnidirectional sensor, with respect to the known
closest equidistant obstacles.

Theorem 5.4 The virtual sensor correctly emulates the omni-
directional sensor with respect to known obstacles until a K-
Appearance occurs. If the virtual sensor is used to immediately
return to the missed meet point, the sensor will thereafter cor-
rectly emulate the omnidirectional sensor again.

Proof: The previous lemmas establish the emulation of
the omnidirectional sensor until a K-Appearance is detected.
Once one occurs, there is an obstacle closer than any obstacle
represented inT , and this obstacle could occlude appearance
or disappearances that enable the virtual sensor to maintainT .
However, if the robot turns around, this obstacle will become
an unseen obstacle and thus unable to occlude any obstacle rep-
resented byT . By returning to the missed meet point, this un-
seen obstacle will be added as an element ofT , so the virtual
sensor will emulate the omnidirectional sensor with this newly-
discovered obstacle.

6 Tracing the SGVD∞ with sparse sens-
ing

We now turn to the problem of tracing the SGVD∞ using the
virtual sensor. We begin by introducing sparse sensing versions
of the SGVD∞ tracing behaviors and discussing their differ-
ences from the behaviors that assume an omnidirectional sen-
sor. We then show that these behaviors exhibit the same com-
pleteness properties as the omnidirectional behaviors, and dis-
cuss the results of simulations of the behaviors.

The robot again begins the mapping process by situating it-
self on the SGVD∞. The S-SITUATE behavior is somewhat
different than the omnidirectionalSITUATE behavior. When the
robot is first “turned on,” the virtual sensor is uninitialized and
the robot knows only about what is seen by its real sensors.
Though we could take a similar approach to the originalSIT-
UATE by using the virtual sensor immediately, there are com-
plications because K-Appearances may occur and because the

Behavior: S-SITUATE

Behavior for situating the robot on the SGVD∞ from an arbi-
trary initial starting location and orientation.

1: if no sensor sees an obstaclethen
2: move forward until at least one sensor sees an obstacle
3: Turn the robot until the front sensor sees a local minimum
4: Move forward until the obstacle is reached (zero distance)
5: if robot is on a wallthen
6: follow the wall until a corner is reached
7: Turn to align the robot with the diagonal from the corner
8: Start moving forward
9: Start runningVIRTUAL -SENSOR

10: S-UNSATURATED(#t )

Behavior: S-SATURATED(k)
Traces a segment of the SGVD∞ at the saturation distance from
current closest obstacles.

1: Let n = |A|
2: repeat
3: Move in directionθ, maintaining saturation distance to

all objectst ∈ T |(∗, t) ∈ A
4: until one of the following conditions is true:

(A) ∃si ∈ S such that(ORIENT(si) 6∈ {θ, θ + π}) ∧
(EC-DIAG(si) = #t ∨ IC-DIAG(si) == #t )

(B) K-Appear == k ∧ S-Appear == #f
(C) |A| > n

5: if (K-Appear == #t ∧ k == #t ) ∨ (|A| > n ∧
S-Appear == #t ∧ K-Appear == #f ) then

6: HANDLE-K-APPEARANCE(S-SATURATED)
7: else
8: S-MEET-POINT(k)
9: end if

robot is not necessarily aligned at an orientation ofnπ
4 . These

issues can be overcome, but it is far simpler to take the ap-
proach inS-SITUATE and use only the sparse sensors to situate
the robot, by approaching a single obstacle until there is guar-
anteed to be no closer obstacle.

Once the robot is situated on the SGVD∞, it traverses it in
order to create its map. With a virtual sensor that closely emu-
lates the functionality of an omnidirectional sensor, the sparse-
sensing analogs to the omnidirectional SGVD∞ tracing behav-
iors, S-SATURATED, S-UNSATURATED, and S-MEET-POINT,
are mostly equivalent to their omnidirectional counterparts. The
main difference is that they must be capable of handling K-
Appearances.

6.1 Handling K-Appearances

Recall that a K-Appearance occurs when a new obstacle is de-
tected by one of the sensors at less than the equidistant range,
indicating that the robot has strayed from the SGVD∞. The
robot must return to the SGVD∞ by backtracking until the
newly detected obstacle is at the equidistant range.

13



Behavior: S-UNSATURATED(t, k)
Traces a segment of the SGVD∞ separating the Voronoi re-
gions of two sites, or on the boundary of the Voronoi region
for the site represented byt ∈ T (on the border of a region of
equidistant points).

1: Let n = |A|
2: repeat
3: Move in directionθ, maintaining equidistance from ob-

ject t to all other equidistant objectsr ∈ T | (∗, t) ∈ A
4: until one of the following conditions is true:

(A) ∃si ∈ S such thatORIENT(si) 6∈ {θ, θ + π} and
(EC-DIAG(s) == #t or IC-DIAG(s) == #t )

(B) ∃r ∈ T |d(r) == saturation distance
(C) K-Appear == k ∧ S-Appear == #f
(D) |A| > n

5: if (K-Appear == #t ∧ k == #t ) then
6: HANDLE-K-APPEARANCE(S-UNSATURATED)
7: else
8: S-MEET-POINT(k)
9: end if

The mechanics of this operation are relatively simple. Since
the virtual sensor computesA as if the newly detected obsta-
cle does not exist (because it is too close), the robot can use
the S-SATURATED, S-UNSATURATED, andS-MEET-POINT be-
haviors to retrace the incorrect SGVD∞, as long as they ter-
minate when the new obstacle is at the equidistant range. This
is accomplished by modifying those behaviors to take an argu-
mentk. When theK-Appear flag (set by the virtual sensor) is
equal tok, theS-SATURATED andS-UNSATURATED behaviors
terminate. During “normal” operation,k == #t , and while the
robot is backtracking,k == #f .

When a K-Appearance is detected by the virtual sensor,
it sets the K-Appear flag to #t , causing the segment-
following behavior in control at the time (eitherS-SATURATED

or S-UNSATURATED) to terminate and call theHANDLE-K-
APPEARANCE behavior. HANDLE-K-APPEARANCE initiates
backtracking by turning the robot around, and then returns con-
trol to the behavior that called it, which terminates when the
new obstacle is at the equidistant range, where a meet point
should be placed.

While the robot is backtracking to handle a normal K-
Appearance, it may encounter previously-discovered meet
points. Since they are incorrect (there is a closer obstacle),
they must be discarded. TheS-MEET-POINT behavior checks
for this condition and deletes the meet point. It also enforces
the choice of a direction that takes the robot along a previously
explored path; since it has been previously explored, there can
be no K-Appearances as the robot returns along that path.

Figure 8 depicts this strategy for handling K-Appearances.
It shows a scenario with several K-Appearances, and where in
one case the robot places multiple incorrect meet points before
it encounters a K-Appearance and backtracks.

An S-Appearance is a special type of K-Appearance that only
occurs when an obstacle appears at the saturation distance, in-

Behavior: S-MEET-POINT(k)
Behavior for determining valid outgoing paths at a meet point.

1: Let p = label of this meet point
2: if (p, ∗, ∗) 6∈ V ∨ ((p,Ap, ∗) ∈ V ∧ |A| > |Ap|) then
3: Add (p, A, (U, T, ang[·], same[·])) to V
4: else
5: Restore virtual sensor state fromV
6: if ∃(α, t) ∈ A | α == "?" then
7: Perturb robotθ to determine unknownα values
8: ComputeW , the set of all pairs(α, t) ∈ A) where direc-

tion θ lies on the boundary of the Voronoi region of the
objectt. If at the saturation distance, exclude anyθ where
df
ds [α](θ) > 0.

9: if at the saturation distancethen
10: ComputeY , the set of all pairs(θ, (α, t) ∈ A) where

df
ds [α](θ) = 0 and∀(β,r)∈A|r 6=t

df
ds [β](θ) ≥ 0

11: end if
12: ComputeC, the set of uniqueθ in pairs fromW andY
13: if S-Appear == #t ∧ Y is not emptythen
14: S-Appear = #f
15: if K-Appear == #t then
16: Delete this meet point
17: if ∃c ∈ C|c corresponds to an explored edgethen
18: Choosec
19: else
20: S-SITUATE(#t )
21: else
22: Choose an elementc from C // direction to move
23: k← #t
24: end if
25: FIX-ANG(c)
26: Start moving in the directionc
27: if (c, ∗) ∈W then
28: Chooset arbitrarily from the pairs(c, t) ∈W
29: S-UNSATURATED(t, k)
30: else
31: S-SATURATED(k)
32: end if

dicating that the robot used theS-SATURATED behavior to tra-
verse a portion of the SGVD∞ that should have been traversed
using theS-UNSATURATED behavior. The strategy for dealing
with an S-Appearance is the same as for a K-Appearance, ex-
cept that theS-MEET-POINT behavior is responsible for recog-
nizing (by checking values ofdfds ) when the robot has returned
to the meet point where the robot should have switched to using
the S-UNSATURATED behavior. TheS-MEET-POINT behavior
is given this responsibility since the virtual sensor is unable to
recognize the termination condition internally, because the new
obstacle is already equidistant to the one being tracked.

One other change is necessary to theS-MEET-POINT behav-
ior for dealing with K-Appearances. Recall that once an unseen
obstacle is farther than the equidistant range from the robot, the
virtual sensor stops tracking it. This means that if the robot
returns to the vicinity of the obstacle when navigating later, it
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Behavior: HANDLE-K-APPEARANCE(B)
Handle the appearance of an obstacle at closer than the equidis-
tant range.

1: Stop and turn 180 degrees
2: Begin moving forward
3: Call B(#f )

(a) (b) (c)

(d) (e)

Figure 8: A situation in which the robot must handle K-
Appearances. (a) The first K-Appearance — the top obstacle is
closer than either of the walls being traced. (b) After handling
the first K-Appearance, the robot has placed two incorrect meet
points. (c) The second K-Appearance — the bottom obstacle
is closer than the bottom wall and the top obstacle. (d) After
handling the second K-Appearance, the robot replaces one of
the incorrect meet points with another, but then detects another
K-Appearance. (e) The final map after all incorrect meet points
have been discarded and no more K-Appearances occur.

may cause a K-Appearance, which requires extra work for the
robot to return to the SGVD∞. Lines 1–5 ofS-MEET-POINT

avoid this by associating information with a meet point about
the state of the virtual sensor at the meet point. When the robot
returns to a previously-visited meet point, it can update its sen-
sor state to avoid dealing with K-Appearances. This is useful
for improving navigation efficiency, but is not strictly necessary
for navigation since backtracking is sufficient. However, stor-
ing virtual sensor state at meet pointsis necessary to ensure that
when the robot is backtracking to handle a K-Appearance, no
other K-Appearances occur.

Aside from the modifications to handle K-Appearances, the
behaviors for tracing the SGVD∞ with sparse sensing are the
same as the omnidirectional versions, aside from several small
syntactical differences that do not change their functionality.

6.2 Completeness

The following lemmas and theorem show the correctness of the
sparse-sensing behaviors and establish the completeness of our
mapping.

Lemma 6.1 The S-SITUATE behavior moves the robot from
any starting location to a location on the correct SGVD∞.

Proof: The S-SITUATE behavior begins by moving for-
ward until a sensor detects an obstacle within the saturation dis-
tance. The robot then approaches this obstacle until it is exactly
upon it, so there can be no closer obstacles. Since the robot
does not make use of the virtual sensor while doing this, un-
seen obstacles, appearances, and disappearances do not affect
the robot’s approach. By moving until the end of the wall is
reached, the robot is guaranteed to be at a location on the correct
SGVD∞, since the SGVD∞ contains terminal segments into all
corners in the environment. Additionally, since the robot is at a
corner, it can compute the normal angles of the adjacent walls
and orient itself at the correct angle to trace the SGVD∞ seg-
ment it is on.

Lemma 6.2 When a K-Appearance occurs, the robot returns
to a point either on the correct SGVD∞ or that will be detected
as not on the correct SGVD∞ only if another K-Appearance
occurs.

Proof: When a K-Appearance occurs, theHANDLE-K-
APPEARANCE behavior is initiated, which causes the robot to
stop and return along the (now incorrect) SGVD∞ segment
from which it came. At any meet point that is encountered,
the S-MEET-POINT behavior requires the robot to move along
a (now incorrect) SGVD∞ segment that it had previously ex-
plored. Therefore no new K-Appearances can occur while the
robot re-traces that segment, since they would have been de-
tected on the first traversal. The robot stops backtracking only
when all obstacles, both directly observable and unseen, are at
the same distance. By Lemma 6.1, this must occur before the
robot backtracks over all the previously explored segments in
its SGVD∞ since the robot’s initial location after situating is
guaranteed to be on the correct SGVD∞. Thus, once all known
obstacles are at the same distance, the robot is on the correct
SGVD∞ unless a future K-Appearance occurs that renders the
meet point incorrect.

Lemma 6.3 Any portion of the SGVD∞ traced by the robot
that is incorrect because there is an obstacle closer than the
equidistant range will eventually be discarded because of a K-
Appearance.

Proof: First, we show that the robot is guaranteed to
sweep all portions of the environment within the saturation dis-
tance of the SGVD∞ with its sparse sensors. If an obstacle has
a wall of length less than the maximum distance between sen-
sors, the robot may fail to detect it while the robot is on the
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SGVD∞, and the obstacle causes a K-Appearance. The maxi-
mum distance between sensors occurs at the saturation distance
from the robot.

If no such obstacles exist, the robot’s sensors sweep all
points in the environment within the saturation distance of the
SGVD∞. The robot must move at least the maximum distance
between sensors to trace each wall in the environment, because
each wall is contained inside a Voronoi region whose boundary
is on the SGVD∞ and is traced by the robot. If there is an ob-
stacle within the saturation distance of the SGVD∞ that is oc-
cluded, there is another obstacle closer than it which determines
the SGVD∞. Since each wall of the occluding obstacle consti-
tutes a site and is traced to follow the corresponding SGVD∞
segments, the robot eventually circumnavigates the occluding
obstacle and “uncovers” the occluded obstacle.

Thus, if obstacles with walls short enough to cause a K-
Appearance exist, they will be detected as the robot sweeps
portions of the environment close to SGVD∞ segments cor-
responding to larger obstacles (or obstacles that caused previ-
ous K-Appearances). The obstacles that caused K-Appearances
will then be circumnavigated to trace the corresponding
SGVD∞ segments and the space occluded by them will be
swept. Therefore, all space within the saturation distance of
the correct SGVD∞ will be swept by the robot’s sensors and
all obstacles in this area will be discovered.

By Lemma 6.2, each K-Appearance causes the robot to re-
turn to the correct SGVD∞, discarding segments that are incor-
rect because of the new obstacle. No obstacle beyond the sat-
uration distance from the SGVD∞ can cause a K-Appearance
since the saturation distance is the maximum equidistant range.
Once every K-Appearance is encountered, no incorrect seg-
ments remain in the SGVD∞.

Theorem 6.4 Together with the virtual sensor, theS-SITUATE,
S-SATURATED, S-UNSATURATED, HANDLE-K-APPEARANCE,
and S-MEET-POINT behaviors are sufficient to guide a robot
with sparse sensing to trace a connected component of the
SGVD∞ from any initial configuration.

Proof: By Theorem 5.4, the virtual sensor correctly em-
ulates an omnidirectional sensor except in K-Appearance situ-
ations. By Lemma 6.1, theS-SITUATE behavior is guaranteed
to place the robot on the correct SGVD∞. And, aside from
the handling of K-Appearance situations, theS-SATURATED,
S-UNSATURATED, andS-MEET-POINT behaviors are identical
to their omnidirectional counterparts. Therefore, except in K-
Appearance situations, Theorem 4.5 applies.

By Lemma 6.2, the robot is always either on the correct
SGVD∞ or able to return to it when a K-Appearance occurs.
By Lemma 6.3, every obstacle in the environment that can
cause a K-Appearance does so.

Therefore, these behaviors enable a robot with sparse sensing
to trace a connected component of the SGVD∞ from any initial
configuration.

(a)

(b)

Figure 9: SGVD∞ maps produced in simulation by the behav-
iors from Section 6, using a virtual sensor implemented as de-
scribed in Section 5.

6.3 Experimental results

The virtual sensor and SGVD∞ tracing behaviors have been
implemented in simulation and tested in a variety of environ-
ments. The simulations assumed a robot with no sensor or ac-
tuator error and were primarily focused on verifying the correct-
ness of the behaviors experimentally and were used mostly to
test the behaviors in difficult scenarios such as K-Appearances.

Figures 9 and 10 show several maps produced in simulation
using a robot with sparse, limited-range sensing. Figure 9(a) is
a fairly simple scenario aside from the one small obstacle at the
top, which causes a K-Appearance for large enough saturation
distances. There are also several regions of equidistant points in
the environment. Figure 9(b) shows the SGVD∞ of a difficult
scenario in which multiple K-Appearances occur, similar to that
discussed in Section 6.1.

Figure 10 shows how the SGVD∞ changes as the saturation
distance (i.e. the sensing range) is increased. In these exper-
iments, the robot initially starts near the left wall, facing left.
With a small saturation distance, as in Figure 10(a), the robot
encounters the wall and traces it at the saturation distance, but
never discovers any of the obstacles interior to the environment
since the are outside its sensing range. With a slightly increased
sensing range, as in Figure 10(b), the robot encounters some of
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(a) (b)

(c) (d)

Figure 10: The effect on the SGVD∞ of varying the saturation
distance.

the obstacles and “jumps” between obstacles that are within the
saturation distance of each other, but it still cannot find all of
the obstacles in the environment. Increasing the sensing range
further, the robot discovers every obstacle, as in Figure 10(c).
Finally, with an “infinite” saturation distance, the robot pro-
duces the GVD∞ of the environment, shown in Figure 10(d),
since no obstacles are ever outside the saturation distance. All
of the maps in Figures 9 and 10 were produced using the virtual
sensor.

7 Conclusions

In this paper, we have presented algorithms that enable a robot
capable of only sparse, short-range sensing to create a topo-
logical map of an enclosed rectilinear environment. The map
is based on the saturated generalized Voronoi diagram of the
environment, constructed under theL∞ distance metric (the
SGVD∞). We have shown that the SGVD∞ exhibits properties
that are well-suited to tracing by a robot with sparse sensing. In
particular, in a rectilinear world and under theL∞ metric, the
SGVD∞ paths consist of straight line segments at orientations
of nπ

4 . A robot with sparse sensors spaced atnπ
4 is therefore

able to detect the meet points where two or more SGVD∞ seg-
ments come together.

We first developed behaviors for tracing the SGVD∞ with
a short-range omnidirectional sensor, and then extended these
behaviors to the sparse sensing case. This was accomplished
by introducing a “virtual sensor” that emulates the output of the
omnidirectional sensor by tracking unseen obstacles, i.e., ob-
stacles that were detected but that later disappeared from the
sensors. The virtual sensor enables the robot to properly trace
SGVD∞ segments once the obstacles with Voronoi regions bi-
sected by the segments have been detected. With sparse sens-
ing, however, it is still possible for the robot to miss meet points

when a small obstacle is observed too late by the robot’s sen-
sors. When such an obstacle is detected, our behaviors back-
track to return the robot to the SGVD∞ and correct its map.
We have shown both the omnidirectional and sparse sensing
behaviors to be complete in that they will trace all portions of
the SGVD∞ reachable from the robot’s initial location on the
SGVD∞. We believe these are the first such algorithms for
robots with sparse sensing in arbitrary rectilinear environments.

Our virtual sensor could be viewed as maintaining a local
map of the area around the robot that is updated using odometry
information. However, the virtual sensor maintains relatively
little state information when compared to approaches that keep
detailed local maps about the area near the robot, e.g. by storing
occupancy grid data or other detailed metric information.

Creating maps of an unknown environment takes longer
when using a robot with less powerful sensing. One reason
is that the robot can miss meet points on the SGVD∞ and must
backtrack to correct them. We also note that the virtual sensor
requires odometry information, whereas the omnidirectional
sensing behaviors do not. Potentially this makes the sparse
sensing behaviors more fragile, but it should be duly noted that
the robot is still able to trace exactly the same map as a robot
with omnidirectional sensing.
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