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Abstract

Much work has been done in statistically describing how
DNA changes through evolution. Relative to models for neu-
tral DNA sequence positions, models for functional DNA se-
quence positions usually include a far-from-uniform equilib-
rium probability distribution and a significantly reduced rate
of change. We examine the mathematical basis for these mod-
ifications to the functional-DNA model.

We find that, although non-lethal selection pressures will
skew the equilibrium probability distribution of alleles,thus
making fitter alleles more common in the population, selec-
tion pressures do not significantly affect the rate of allele
change.

Even beyond consideration of DNA sequences, the word
“conservation” would more appropriately be used to indicate
the non-uniformity of an equilibrium probability distribution
of alleles, rather than to denote a reduced rate of change. The
design of statistical models of substitution for functional alle-
les should reflect this characterization.

1 Introduction

It is generally believed that the rate of change in functional
DNA positions is lower than that in neutral / non-functional
DNA positions, and many statistical models have incorporated
or rediscovered this accepted truth (1–4). We explore how this
might have become the accepted wisdom and why, for soft /
non-lethal selective pressures, it appears to be false.

Our interest is in models applicable to functional DNA po-
sitions, such as those within acis-regulatory element (also
termed a transcription factor binding site). Here we develop
a statistical approach that can combine any nucleotide sub-
stitution model with the well-established Darwinian fitness
formalism (5–7). We find that, although soft selection pres-
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sures will skew the equilibrium probability distribution of nu-
cleotides, thus making fitter nucleotides more likely in the
population, these pressures do not significantly affect thein-
stantaneous rate of substitutions.

1.1 Mischaracterization of Conservation from
the Counting of Mismatches

Although insertions and deletions are an important part of
DNA evolution we do not, for the sake of clarity, consider
them in the following. Instead, we focus on in-place nu-
cleotide substitutions—those nucleotide mutations that sur-
vive selection.

As a thought experiment, suppose that we have a gapless,
multiple sequence alignment of genes (e.g., small ribosomal
subunit RNA genes, which are present in all species) from
a collection of very distantly related species. For a neutral
DNA position of such an alignment, we expect a near-uniform
equilibrium probability distribution of nucleotides across the
sequences. In particular, if we choose two of the species at
random, there is about a25% chance that they have the same
nucleotide at such a position, and about a75% chance that
there is a mismatch.

When the equilibrium probability distribution of alleles for
a functional DNA position departs from uniform, the proba-
bility of mismatch in the joint probability distribution for two
species descendant from a common ancestor will be capped at

Pr[mismatch] = 1 − (θ2
A + θ2

T + θ2
C + θ2

G) , (1)

which is below75%. For example, if~θ = (70%, 10%, 10%,
10%), then the probability of a mismatch will not exceed48%.

Given that48% ≪ 75%, it is natural to label such a position
as conserved. Notice that it is the skewed equilibrium proba-
bility distribution that caps the mismatch fraction, rather than
some change in the rate of allele substitution, and that the cap
would continue to hold even if the rate of substitution were
increasedat functional DNA sequence positions.
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1.2 Mischaracterization of Conservation from
Statistical Mixture Models

As another example that might lead us astray as to the true
meaning of conservation, consider the collection of all protein
first-codon positions. First-codon positions are evolutionarily
conserved. As before, we imagine a gapless, multiple align-
ment of sequences from a collection of very distantly related
species. For the sake of clarity, we suppose that the first-codon
positions are of four types:A predominant, with equilibrium
probability distribution~θ = (70%, 10%, 10%, 10%), and,
analogously,T predominant, C predominant, andG predom-
inant.

If we choose two of the sequences at random (with replace-
ment), then the equilibrium joint probability distribution for a
givenA predominantfirst-codon position is:

A T C G
A 49% 7% 7% 7%
T 7% 1% 1% 1%
C 7% 1% 1% 1%
G 7% 1% 1% 1%

, (2)

and likewise forT predominant, C predominant, andG pre-
dominant, when rows and columns are appropriately per-
muted. This equilibrium joint probability distribution iswhat
one would get from the FEL81 model (8) (parameterized
with ~θ = (70%, 10%, 10%, 10%)), a degenerate form of
the HKY85 model (9). In these models, or with other estab-
lished techniques (10, 11), the evolutionary distance implied
by this equilibrium joint probability distribution is infinite, as
expected.

However, when we examine themixtureof all first-codon
position data, and we suppose that each of the four kinds is
equally likely, then the combined equilibrium joint probability
distribution is:

A T C G
A 13% 4% 4% 4%
T 4% 13% 4% 4%
C 4% 4% 13% 4%
G 4% 4% 4% 13%

. (3)

This is the equilibrium joint probability distribution that one
would get from the JC69 model (12), a degenerate form of the
FEL81 and HKY85 models (8, 9). With this model, or with
other established techniques (10, 11, 13), one finds that the
evolutionary distance implied by this equilibrium joint proba-
bility distribution is approximately0.7662 nucleotide substi-
tutions.

Because this distance is significantly smaller than the near-
infinite distance that we observe for neutral positions, it is nat-
ural to label such a position as conserved (4). Notice that it
is the mixture of the equilibrium joint probability distribution
models that serves to shorten the phylogenetic distance, rather
than some change in the rate of allele substitution, and thatthe

apparent shortening would occur even if the rate of substitu-
tion were increased at functional DNA sequence positions.

1.3 Mischaracterization of Conservation from
Fixation within a Species

Building on earlier results (14,15), the HB98 model (2), a pop-
ular statistical approach for nucleotide substitutions infunc-
tional DNA, carefully considers fixation, the process in which
a mutation in a single organism leads to a change in all or-
ganisms in the species. While this focus on the species scale
is common, it may not be justified. Here we briefly explore
why, in this context, species fixation may be a specious fixa-
tion.

Although we frequently label a sequenced genome with the
name of the species that it represents, what we have actually
sequenced is usually a single individual organism within that
species. Likewise, when we construct an evolutionary / phy-
logenetic tree from genome sequences, it is more precise to
say that the tree relates the sequenced individuals, ratherthan
their species. In the case of sequence positions withincis-
regulatory elements, selection pressures are often soft, in that
any nucleotide may be more or less fit than another, but substi-
tutions are not lethal. In particular, it is entirely possible that
the observed nucleotide at a given position is the result of a
relatively recent, non-lethal mutation in this individualorgan-
ism’s ancestral line, and isnot representative of the species as
a whole.

Furthermore, the HB98 model assumes that nucleotide sub-
stitution is reversible (i.e., phylogenetic trees can be re-rooted
arbitrarily, so long as edge lengths are preserved); however
there is evidence that substitution is not reversible (4).

2 Methods

In this section, we focus upon the elements of our statisti-
cal model that represent departures from the established, nu-
cleotide phylogeny methodology. The analysis is most di-
rectly applicable to haploid organisms, which have a single
copy of each chromosome in each cell. More details can be
found in the appendix.

2.1 Substitution Models and Population Mod-
els

Traditionally, for a given DNA sequence position, an edge of
a phylogenetic tree is described by asubstitutionmatrix

M =









Pr[A|A] Pr[T |A] Pr[C|A] Pr[G|A]
Pr[A|T ] Pr[T |T ] Pr[C|T ] Pr[G|T ]
Pr[A|C] Pr[T |C] Pr[C|C] Pr[G|C]
Pr[A|G] Pr[T |G] Pr[C|G] Pr[G|G]









, (4)
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wherePr[bdes|banc] is the probability that an arbitrarily cho-
sen descendant will show nucleotidebdes when its ancestor
shows nucleotidebanc. The matrixM is applied to a row
vector representing a nucleotide probability distribution for
the ancestor~α = (αA, αT , αC , αG) by multiplication on the
right, to give the descendant’s nucleotide probability distribu-
tion ~δ = (δA, δT , δC , δG):

~αM = ~δ . (5)

The matrixM has the property that the sum of the elements
in any row is one.

Instead, we here employ apopulationmodel, in which the
elements of a row ofM need not sum to one. That is, because
of varying fitnesses, some alleles may have more progeny than
do other alleles, and we indicate this by giving those alleles a
larger row sum. For example, the model

M =









1.2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(6)

indicates that no mutations occur, and that alleleA will have
20% more progeny than will the other alleles. If an ances-
tral individual is equally likely to have each allele,~α = (25%,
25%, 25%, 25%), then we compute~δ = (0.30, 0.25, 0.25,
0.25), indicating that alleleA individuals benefit from their
superior fitness. The chance that a randomly chosen descen-
dant has theA allele is0.30 / (0.30 + 0.25 + 0.25 + 0.25) =
28.6%.

2.2 Generation Model

Approximating the biology of a haploid organism, we model
a single generation as a possible mutation during DNA repli-
cation, followed by a mutationless selection effect between
replication events. Mathematically, the consequence of this
assumption is that the population model matrix for a gener-
ation is the matrix product of a substitution model, in which
each matrix row sumis one, and a diagonal matrix, like that
shown in Equation 6.

We also assume that the timescale for a generation is much
shorter than both the timescale for mutations and the timescale
for selection effects. In particular, we are assuming that mu-
tations within cis-regulatory elements are not immediately
lethal, but that they instead affect the fitness of a cell lineover
a timescale of multiple generations. Mathematically, the con-
sequence of this assumption is that both the mutation matrix
and the diagonal selection matrix for a generation are quite
close to the identity matrix, which is the matrix having1’s on
the main diagonal and0’s elsewhere.

2.3 Phylogenetic Model

To calculate the appropriate population model matrix for a
phylogenetic tree edge representing a time ofG generations,
we take the single-generation matrix and raise it to theGth
power. This is efficiently evaluated via a matrix spectral de-
composition.

To calculate the likelihood of a proposed phylogenetic tree,
from observed nucleotides at a given DNA alignment posi-
tion, we invoke the well-established Felsenstein algorithm (8),
twice. The first invocation is the traditional approach, but us-
ing the population model matrices as if they were substitution
model matrices.

We then scale this computed “unnormalized likelihood” by
dividing it by the result of a second invocation of the algo-
rithm, which is designed to efficiently compute the sum of
these unnormalized likelihoods over all4s possible sets of
observed nucleotides (wheres is the number of sequences
aligned). In an intuitive sense, this normalization process
is a probabilistic conditioning upon the fact that all of the
aligned sequences correspond to organisms that survived until
the time of their sequencing.

3 Results

With the standard approach to nucleotide phylogeny, modi-
fied as described above, we discover that little change to the
instantaneous rate of substitution results from soft selection
pressures. Also, we evaluate existing models for their consis-
tency with the model presented here. Additional details are
available in the appendix.

3.1 Instantaneous Rate of Substitution

When a neutral DNA alignment position obeys the HKY85
model (9) with nucleotide equilibrium probability distribution
(βA, βT , βC , βG) = (30%, 30%, 20%, 20%) and transition /
transversion ratio ofκ = 3, the instantaneous rate of nu-
cleotide substitutions will, in the presence of selection effects,
be nearly unchanged from the rate for the neutral DNA po-
sitions. The rate ratio will fall in the interval[0.901, 1.148],
regardless of the soft selection fitnesses. Furthermore, when
neutral DNA positions are described by the HKY85 model
with ~β uniform andκ = 1 (i.e., the simpler JC69 model (12)),
then the instantaneous rate of nucleotide substitutions isnot
changed at all.

These results indicate that for reasonable, neutral DNA
models, even with arbitrary, soft selection fitnesses, it may
be appropriate to approximate the nucleotide substitutionrate
for functional DNA positions as being unchanged from the
neutral rate.
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Figure 1: The probability of mismatch in the case that se-
lection favors one nucleotide, to the extent that the equilib-
rium probability distribution is(28/31, 1/31, 1/31, 1/31).
Thex-axis is the expected number of nucleotide substitutions
per neutral DNA sequence position, between two individuals.
The y-axis shows the probability of mismatch according to
the model presented here (upper curve), and according to the
HB98 model (lower curve). As a side-effect of its focus on
species fixation, the HB98 model underpredicts the mismatch
probability.
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Figure 2: Thedifferencebetween the probabilities of mis-
match derived from each of two models, in the case that selec-
tion favors one nucleotide, to the extent that the equilibrium
probability distribution is(28/31, 1/31, 1/31, 1/31). The
x-axis is the expected number of nucleotide substitutions per
neutral DNA sequence position, between two individuals. The
y-axis shows the amount by which the HKY85 model over-
predicts the probability of mismatch, relative to our model.
Although the HKY85 model is designed to reflect an arbitrary
equilibrium probability distribution in theabsenceof selec-
tion effects, the extent of its overprediction of the mismatch
probability is only slight.

3.2 Evolutionary Timescales

In examining the case that selection favors one nucleotide,
to the extent that the equilibrium probability distribution is
(28/31, 1/31, 1/31, 1/31), we find that the HKY85 model
approximates the effects of selection better than does the
HB98 model.

Figure 1 shows that the HB98 model deviates significantly
from the model presented here. Although the models agree
in the limit of infinite evolutionary separation, they disagree
significantly for distances commonly found in a phylogenetic
tree. The HB98 model significantly underpredicts the ex-
pected number of mismatches in functional DNA positions as
a function of the expected number of substitutions in neutral
DNA positions.

Figure 2 shows thedifferencein the number of mismatches
predicted by the model presented here and the HKY85 model
parameterized with the appropriate equilibrium probability
distribution. Although there is a difference, it is small; accord-
ingly, in situations where a traditional model must be used,it
appears that the HKY85 model functions well.

4 Discussion

4.1 Reduction of Substitution Rate Is Inappro-
priate

Most current algorithms for locatingcis-regulatory elements
use a separate “foreground” equilibrium probability distribu-
tion ~θ for each position within acis-regulatory element. In
such a situation, when a foreground equilibrium probability
distribution~θ is known (or estimated) but a corresponding nu-
cleotide fitness matrix is not, we can use, to some advantage,
the similarity of the HKY85 model (9) (parameterized with
~θ and the neutral ratio of transitions to transversions) to our
model. In particular, for evaluation of a phylogenetic tree, it
may be perfectly adequate to use the HKY85 model rather
than the less efficient foreground model that we present here,
given that the latter requires computation of the relative nu-
cleotide fitnesses. On the other hand, the use of the HB98
model gives results that appear to be significantly less accu-
rate than the results from the use of the HKY85 model.

4.2 Existing Algorithms Can Be Adapted

Because of the likelihood normalization that is inherent inour
population model matrix approach, the final likelihood val-
ues do not change if we multiply all nucleotide fitnesses by a
constant. In order to remove this extra degree of freedom, it
may make sense if we restrict those fitness matrices that are
allowed. This can be achieved by (i) scaling the fitnesses so
that the maximum fitness is 1.0; (ii) scaling so that the gener-
ation model gives a population level that is stable (i.e., neither
asymptotically growing or shrinking); or (iii) employing other
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criteria. Generally, with the use of a fixed background model
for neutral DNA positions (such as the HKY85 model (9) with
a specified~β andκ) and one such restriction on fitnesses, we
obtain a one-to-one correspondence between foreground equi-
libria ~θ and selection fitness matrices. Thus, if within any al-
gorithm we have a hypothesis for~θ, then we can numerically
determine the fitnesses. This allows adaptation of existing~θ-
based algorithms for use with the model presented here.

Note that, generally, the model presented here is not re-
versible, and we cannot arbitrarily re-root a phylogenetictree
before performing likelihood calculations.

4.3 General Applicability

Although we have focused on models for nucleotide substi-
tution, the results will be similar for the heritable alleles of
any trait. The distinction between phenotype and genotype
in diploid organisms, which have two copies of each chromo-
some in each cell, complicates the analysis in that setting,but
we conjecture similar results.

4.4 Conclusion

We have shown that that there is reason to believe that soft
/ non-lethal selection pressures exhibit their effect through a
skewing of the equilibrium probability distribution, but that
the effect on the overall instantaneous rate of nucleotide sub-
stitution is small. In particular, the word “conservation”might
more appropriately be used to indicate the non-uniformity of
an equilibrium probability distribution, rather than a reduced
rate of substitution.

We can calculate the likelihood of a phylogenetic tree in
the presence of selection effects using the population model
matrices presented here, via two passes of Felsenstein’s algo-
rithm (8).

When we approximate the probability of observed data
at a sequence position by using the nucleotide substitution
model for neutral DNA positions, and by parameterizing that
model with a foreground equilibrium probability distribu-
tion ~θ instead of the background equilibrium probability dis-
tribution~β, we have evidence that it is better for the modeler to
leave the overall instantaneous rate of substitution unchanged
than it is for the modeler to reduce that ratead hoc. Similarly,
in part because the HB98 model (2) changes the rate of sub-
stitution at functional DNA positions, our evidence is thatthe
HB98 model does not describe nucleotide substitutions well.

A Appendix (or Supplemental Online
Materials

We establish notation in Sections A.1 and A.2. In Section A.3
we set up the equations for evaluating the instantaneous rate

of nucleotide substitution for a simple ancestor and descen-
dant relationship, and we adapt it to a more realistic scenario
of two descendants of a common ancestor in Section A.4. In
Section A.5 we apply these equations to the HKY85 model
for nucleotide substitutions at neutral DNA positions, to find
that soft selection pressures do not significantly affect instan-
taneous rates of substitution. In Section A.6 we compare our
model to established models, to evaluate the quality of the
models over evolutionary timescales. In Section A.7 we ex-
plain how the consistency of observed data with population
model matrices can be evaluated with two invocations of the
well-established algorithm of Felsenstein (8). Finally, in Sec-
tion A.8 we discuss why the soft selection model presented
here is appropriate in the analysis ofcis-regulatory elements.

A.1 Substitution in the Absence of Selection

We write a substitution matrixM for an edge of a phyloge-
netic tree as indicated by Equation 4. For closely related an-
cestral and descendant individuals,M is likely to be not very
different from the identity matrixI. If the evolutionary dis-
tance is short enough that the probability of two substitutions
at a single sequence position is negligible, then the distance
of M from I is reasonably assumed to be proportional to the
edge length in the phylogenetic tree. That is, there is an in-
stantaneous rate matrixR, such that

M(ǫ) = I + ǫR + O(ǫ2) , (7)

whereǫ is the short edge length, and whereO(ǫ2) indicates
that terms of sizeǫ2 or smaller have been omitted.

It has been shown that, sinceM is a substitution model,
we must insist that the off-diagonal elements ofR be non-
negative, and that the diagonal elements ofR be non-positive
numbers, set so that the elements of each row ofR sum to
0 (11). This last condition is represented by the equation:

R~1T = ~0T , (8)

where~1 = (1, 1, 1, 1), ~0 = (0, 0, 0, 0), and where the super-
scriptT indicates a matrix transposition.

For longer edge lengths, we apply the matrixM(ǫ) as many
times as necessary to attain lengthx:

M(x) ≈ (I + ǫR)x/ǫ , (9)

where this expression is easier to understand whenx/ǫ is a
positive integer. The expression is exact in the limit asǫ →
0+, so we take the limit (proof omitted) and write

M(x) = lim
ǫ→0+

(I + ǫR)x/ǫ = exp(xR) , (10)

a formula that is efficiently evaluated via a matrix spectralde-
composition. (See Section A.6.)
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In the limit, asx → +∞, the descendant’s probability dis-
tribution ~δ will converge to an equilibrium probability distri-
bution~β, independent of the ancestral probability distribution
~α. We define a diagonal matrix,

D~β =









βA 0 0 0
0 βT 0 0
0 0 βC 0
0 0 0 βG









, (11)

and compute

J(x) = D~βM(x) , (12)

a matrix commonly referred to as the equilibrium joint proba-
bility distribution matrix for an edge of lengthx. It represents
the joint probability distribution between the ancestor and the
descendant, in the case when the ancestor starts in the equilib-
rium probability distribution~β.

It is common to calibrate tree edge lengths by having them
represent the expected number of substitutions per sequence
position (including multiple substitutions at a single sequence
position), when the ancestral probability distribution~α is in
the equilibrium probability distribution~β. This is achieved
only if

ods

(

∂

∂x
J(x)

∣

∣

∣

∣

x=0

)

= 1 , (13)

whereods() is the sum of the off-diagonal elements.
To verify the desired calibration, we differentiate the matrix

expression of Equation 12 to obtain

∂

∂x
J(x)

∣

∣

∣

∣

x=0

= D~βR . (14)

We then exploit Equation 8, so as to prove that the sum of
all the elements ofD~θR, which can be written as~1D~θR

~1T ,
is exactly zero. This means that the sum of the off-diagonal
elements ofD~θR is exactly the negative of the sum of the
diagonal elements,i.e., the desired calibration is achieved in
the case that the matrix trace (i.e., the sum of the diagonal
elements) ofD~βR is negative one:

ods

(

∂

∂x
J(x)

∣

∣

∣

∣

x=0

)

= −trace
(

D~βR
)

. (15)

This equation is applicable for any instantaneous rate matrix
R, and is not restricted to,e.g., the HKY85 model (9), or re-
versible models.

A.2 Substitution in the Presence of Selection

Even when no allele is lethal, it is reasonable, if some nu-
cleotides are more fit than others, to assume that some of them
will produce more offspring than will others. For a short phy-
logenetic tree edge length, the relative fitnesses will not be

very influential, and it is reasonable that the population of
each nucleotide will be multiplied by a factor near1. That
is, we can reasonably assume that, for short tree edges, the
nucleotide substitution matrix is:

N(ǫ) = (I + ǫR + O(ǫ2))(I + ǫS + O(ǫ2)) . (16)

Here we are usingN , instead ofM , to indicate that selection
pressures are present.S is a diagonal matrix and if,e.g., nu-
cleotideA is more fit thanT , thenSAA > STT . Much as
before, we see that a longer edge length is described by the
matrix

N(x) = lim
ǫ→∞

(I + ǫQ + O(ǫ2))x/ǫ

= exp(xQ) , (17)

whereQ = R + S.
However, unless all fitnesses are exactly zero, we now have

the case that the sum of the elements of~αN(x) is not nec-
essarily equal to the sum of the elements of~α. That is, the
overall population may have shrunk or grown, and we have to
compute the nucleotide frequencies of the descendant popula-
tion with this in mind. Specifically,

~δ =
~αN(x)

~αN(x)~1T
. (18)

As in the case lacking selection, this will, regardless of~α,
have a limiting nucleotide equilibrium probability distribution
as x → +∞. We will denote this equilibrium probability
distribution as~θ so as to differentiate it from~β, which we used
in the absence of selection. For a equilibrium joint probability
distribution matrix, we write

K(x) =
D~θN(x)

~1D~θN(x)~1T
. (19)

A question of central interest is: what doesK(x) look like?
In particular, what is the instantaneous rate of substitution
that it implies? We will show that, in cases relevant tocis-
regulatory elements, it holds true that

ods

(

∂

∂x
K(x)

∣

∣

∣

∣

x=0

)

≈ −trace
(

D~βR
)

. (20)

That is, the instantaneous rate of substitution differs little from
the rate for neutral DNA positions (Equation 15).

A.3 Ancestor-to-Descendant Substitution
Rate, in the Presence of Selection

We can take the derivative∂/∂x of the matrixK(x) directly,
usingN(x)|x=0 = I and (∂N(x)/∂x)|x=0 = Q:

∂

∂x
K(x)

∣

∣

∣

∣

x=0

=
D~θ(∂N(x)/∂x)

~1D~θN(x)~1T
−

(D~θN(x))(~1D~θ(∂N(x)/∂x)~1T )

(~1D~θN(x)~1T )2

6



=
D~θQ

~1D~θI
~1T

−
(D~θI)(~1D~θQ

~1T )

(~1D~θI
~1T )2

= D~θQ − D~θ(
~1D~θQ

~1T )

= D~θR + D~θS − D~θ(
~1D~θQ

~1T ) . (21)

Now, the second term of this last expression is the product of
two diagonal matrices,D~θ andS, and it will have no non-
zero off-diagonal elements. Also, the final term of this last
expression is the product of a diagonal matrixD~θ and a scalar
~1D~θQ

~1T , and it will have no non-zero off-diagonal elements.
This means that, when we are calculating the effect ofS on
the expected rate of substitutions, it suffices that we examine
the sum of the off-diagonal elements of the first term,D~θR.
This is the formula of Equation 14, except that in the present
case we useD~θ, from the selection-influenced, equilibrium
probability distribution implied byQ, rather thanD~β , from
the neutral-site equilibrium probability distribution implied by
R alone. Note that, despite the switch fromD~β to D~θ, the
second factor does not need to be switched fromR to Q.

As before, we can exploit the equalityR~1T = ~0T . The
overall instantaneous rate of substitutions simplifies to

ods

(

∂

∂x
K(x)

∣

∣

∣

∣

x=0

)

= −trace(D~θR) , (22)

a formula that can be evaluated so long as~θ andR are known
(or estimated), even if the fitness matrixS is not known.

Because we usually have DNA of present-day individuals,
with no guarantee that they will have plentiful progeny in the
future, the equilibrium joint probability distributionK(x) is
not necessarily representative of actual data. However, we
can repeat the calculations, looking at the equilibrium joint
probability distribution between two present-day descendants
of a common ancestor.

A.4 Equilibria Joint Probability Distribution
for Descendants in the Presence of Selec-
tion

In the case that each of two individuals is an evolutionary dis-
tancex/2 from their common ancestor, their equilibrium joint
probability distribution is

L(x) =
N(x/2)T D~θN(x/2)

~1N(x/2)T D~θN(x/2)~1T
. (23)

Using a derivation along the lines of that which gave us
Equation 22, we can conclude that

ods

(

∂

∂x
L(x)

∣

∣

∣

∣

x=0

)

=
−trace(RT D~θ + D~θR)

2

= −trace(D~θR) . (24)

A.5 Overall Instantaneous Rate of Nucleotide
Subsection

We look at a specific example for the neutral-site substitution
model, the HKY85 nucleotide substitution model (9). In this
situation we have that

R~β =µ~β









−βY − κβG βT βC κβG

βA −βR − κβC κβC βG

βA κβT −βR − κβT βG

κβA βT βC −βY − κβA









,

βR = βA + βG ,

βY = βC + βT ,

µ~β =
1

1 − ~β · ~β + (κ − 1)(2βAβG + 2βT βC)
,

M~β(x) = exp(xR~β) , and

J~β(x) = D~β exp(xR~β) , (25)

where~β · ~β is a simple dot product, andκ > 0 is the ratio of
the transition rate to the transversion rate.

If a given position of acis-regulatory element motif has a
nucleotide equilibrium probability distribution of~θ, then, even
though we do not knowS, we can compute the implied overall
instantaneous rate of substitution in the presence of selection
pressures, using Equation 24:

ods

(

∂

∂x
L(x)

∣

∣

∣

∣

x=0

)

(26)

=
1 − ~θ · ~β + (κ − 1)(θAβG + θGβA + θT βC + θCβT )

1 − ~β · ~β + (κ − 1)(2βAβG + 2βT βC)
.

As an example, when the neutral-DNA equilibrium proba-
bility distribution (βA, βT , βC , βG) equals(30%, 30%, 20%,
20%) andκ equals3, the overall instantaneous rate of Equa-
tion 26 will fall in the interval[0.901, 1.148], regardless of the
selection matrixS and the selection-influenced equilibrium
probability distribution~θ.

When the selection-neutral equilibrium probability distri-
bution is described byκ = 1 and ~β uniform, Equation 26
reduces exactly to

ods

(

∂

∂x
L(x)

∣

∣

∣

∣

x=0

)

= 1 , (27)

regardless of the values ofS and ~θ. These results indicate
that for reasonable background models, even with an arbitrary
soft selection matrixS and foreground equilibrium probabil-
ity distribution ~θ, it may be appropriate to approximate with
Equation 27.

Because of the similarity of Equations 22 and 24, the re-
sults are identical for an ancestor and a descendant. In either
case, the overall instantaneous rate of substitution in thepres-
ence of selection differs little from the overall neutral rate of
substitution.
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A.6 Mismatch Fraction as a Function of Dis-
tance

It is informative to look at the value ofods(L(x)), the mis-
match fraction of nucleotides between two individuals equally
distant from their common ancestor, as a function ofx,
the evolutionary distance between the individuals as mea-
sured by the expected number of nucleotide substitutions per
DNA position. We compare it toods(J~θ(x)) for J~θ(x) =
D~θ exp(xR~θ). J~θ(x) is different fromJ~β(x) (from Equa-
tion 25), in that, although it is of the form of a background
equilibrium joint probability distribution, it is parameter-
ized by the foreground equilibrium probability distribution ~θ,
rather than by the background equilibrium probability distri-
bution~β. Additionally, we compare these toods(HB98~θ(x)),
the number of mismatches predicted by the HB98 model.

For illustrative purposes, suppose that we have the simplest
of the background nucleotide substitution models, the JC69
model (12), in whichκ = 1 and~β is uniform:

R~β =









−1 1/3 1/3 1/3
1/3 −1 1/3 1/3
1/3 1/3 −1 1/3
1/3 1/3 1/3 −1









. (28)

We choose a selection fitness matrixS that favors one nu-
cleotide:

S =









0 0 0 0
0 Z 0 0
0 0 Z 0
0 0 0 Z









(29)

Z = −279/28 ≈ −10 ,

where we have chosen a value ofZ such that the following
equations do not contain radicals.

An eigenvector (or spectral) decomposition ofQ gives us

Q = P−1DP

=









28 0 0 1
1 −1 −1 − 28

3
1 1 0 − 28

3
1 0 1 − 28

3









×









− 27
28 0 0 0
0 − 949

84 0 0
0 0 − 949

84 0
0 0 0 − 31

3









×









28
787

1
787

1
787

1
787

0 − 1
3

2
3 − 1

3
0 − 1

3 − 1
3

2
3

3
787 − 28

787 − 28
787 − 28

787









. (30)

We use this to determine

exp(xQ) =

∞
∑

k=0

xk

k!
Qk =

∞
∑

k=0

xk

k!
(P−1DP )k

=

∞
∑

k=0

xk

k!
P−1DkP = P−1

(

∞
∑

k=0

xk

k!
Dk

)

P

=









28 0 0 1
1 −1 −1 − 28

3
1 1 0 − 28

3
1 0 1 − 28

3









×









e−
27
28

x 0 0 0

0 e−
949
84

x 0 0

0 0 e−
949
84

x 0

0 0 0 e−
31
3

x









×









28
787

1
787

1
787

1
787

0 − 1
3

2
3 − 1

3
0 − 1

3 − 1
3

2
3

3
787 − 28

787 − 28
787 − 28

787









, (31)

which we use to compute~θ andods(L(x)). Similarly we can
computeods(J~θ(x)) andods(HB98~θ(x)):

~θ =
1

31
(28, 1, 1, 1) , (32)

ods
(

J~θ(x)
)

=
174

961

(

1 − e−
961
174

x
)

, (33)

ods
(

HB98~θ(x)
)

=
174

961
−

112

961
e−

31
81

log(28)x

−
2

31
e−(1+ 28

81
log(28))x , (34)

ods (L(x)) =
2

31









+1910085 e−
27
28

x

−1898316 e−
949
168

x

+607600 e−
31
3

x

−619369 e−
949
84

x













+680605 e−
27
28

x

−122472 e−
949
168

x

+61236 e−
31
3

x





.(35)

The not-very-close relationship ofods(L(x)) and
ods

(

HB98~θ(x)
)

is graphed in Figure 1. The closer relation-
ship of ods(L(x)) and ods

(

J~θ(x)
)

is graphed in Figure 2.
These figures are shown and discussed in the main text.

A.7 Likelihood of a Phylogenetic Tree

When a nucleotide fitness matrix is known (or estimated), we
can exactly calculate the probability of the observed data for a
sequence position, via two invocations of Felsenstein’s algo-
rithm. For each tree edge, we use the population model matrix
of Equation 17, wherex is the length of the tree edge, as if it
were a substitution matrix. With these matrices we evaluate
the observed data with a first invocation of Felsenstein’s algo-
rithm.

This gives us an unnormalized probability of the data, be-
cause we have not yet accounted for the fact that the leaf pop-
ulation sizes need to be scaled to 1.0. Although this may be
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technically correct only when no element ofS is positive, we
might say that we have not yet statistically conditioned upon
the fact that the leaf individuals have survived until the time
of their sequencing.

To scale appropriately, we must divide the unnormalized
probability by the sum of the unnormalized probabilities over
all 4s possible sets of observed nucleotides, wheres is the
number of sequences aligned. Fortunately, this value can be
computed in a single use of Felsenstein’s algorithm, by us-
ing (1, 1, 1, 1) (instead of(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
or (0, 0, 0, 1)) as the “observed data” at each leaf.

We are currently attempting this in the “OrthoGibbs” ver-
sion of our Gibbs Sampling software (16).

Notice that this approach, using Felsenstein’s algorithm
twice, generalizes to work with hard selection pressures, in
which some nucleotides are lethal or nearly so. Whatever the
appropriate component substitution and fitness matrices are
for a generation, we can write them asM andT , respectively.
Instead of Equation 17 we have

N(x) = (MT )x/ǫ , (36)

exactly. This can be computed efficiently for anyx, via a
spectral decomposition of the matrix productMT , and used
in the invocations of Felsenstein’s algorithm, as above.

A.8 Soft Selection and cis-Regulatory Ele-
ments

Sequence positions withincis-regulatory elements are of-
ten ambiguous. In many cases, a single nucleotide will be
strongly preferred at some position, but rarely is any allele ex-
cluded. This relates directly to the severity of the selection
effects that give rise to the equilibrium probability distribu-
tions, and indicates that our assumption that selection effects
are soft / non-lethal is reasonable.

Asymptotically, as the value ofZ in Equation 29 becomes
strongly negative, the resulting equilibrium probabilitydistri-
bution (Equation 32) has one part in3|Z| for each of the nu-
cleotides other than the favored one, with the remainder of the
equilibrium probability distribution in the favored nucleotide.
Thus, the fact that equilibrium probability distributionsfor el-
ement positions are relatively moderate is directly indicative
of the softness of the selection fitnesses.

As an example, an equilibrium probability distribution of~θ
= (99.7%, 0.1%, 0.1%, 0.1%) would arise from a value of
Z ≈ −333. Mutation rates have a typical time scale of100
million years (i.e., approximately1% of nucleotides are mu-
tated during each million years), thus a value ofZ = −333
indicates that the timescale for selection effects is approx-
imately 0.3 million years. This is much longer than the
timescale for a generation, and it justifies the assumption that
selection effects are soft.
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