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Abstract

Knowing which associations are compositions is impor-
tant in a tool for the reverse engineering of UML class dia-
grams. Firstly, recovery of composition relationship bridges
the gap between design and code. Secondly, since composi-
tion relationships explicitly state a requirement that certain
representation cannot be exposed, it is important to deter-
mine if this requirement is met by component code. Verify-
ing that compositions are implemented properly may pre-
vent serious program flaws due to representation exposure.

We propose an implementation-level composition model
based on ownership and a novel approach for identifying
compositions in Java software. Our approach uses static
ownership inference based on points-to analysis and is de-
signed to work on incomplete programs. We present empir-
ical results on several components. In our experiments, on
average 40% of the examined fields account for relation-
ships that are identified as compositions. We also present a
precision evaluation which shows that our analysis achieves
almost perfect precision—that is, it almost never misses
composition relationships. The results indicate that precise
identification of interclass relationships can be done with a
simple and inexpensive analysis, and thus can be easily in-
corporated in reverse engineering tools that support itera-
tive model-driven development.

1. Introduction

In modern software development design recovery
through reverse engineering is performed often; in a typ-
ical iterative development process reverse engineering
is performed at the beginning of every iteration to re-
cover the design from the previous iteration [11].

UML class diagrams describe the architecture of the pro-
gram in terms of classes and interclass relationships; they
are scalable, informative and widely-used design models.
While the UML concepts of class and inheritance have cor-
responding first-class concepts in object-oriented program-
ming languages, the UML concepts ofassociation, aggre-

gationandcompositiondo not have corresponding language
concepts. Thus, while the reverse engineering of classes and
inheritance hierarchies is straightforward, the reverse engi-
neering of associations presents various challenges.

UML associations model relatively permanent interclass
relationships; conventionally, they are implemented using
instance fields of reference type [11] (e.g., an association
from classA to classB is implemented using a reference
field of typeB in classA). Thus, reverse engineering tools
infer associations by examining instance fields of reference
type; however, the inference is often non-trivial. One chal-
lenge is the recovery of one-to-many associations imple-
mented using pseudo-generic containers (e.g.,Vector ).
Another challenge is the recovery of compositions. Mod-
ern reverse engineering tools such as RationalROSEand Ar-
goUML do not address these challenges and produce incon-
sistent and even incorrect class diagrams (see Guéh́eneuc
and Albin-Amiot [9] for detailed examples). Clearly, this
leads to a gap between design class diagrams and reverse
engineered class diagrams which hinders understanding,
round-trip engineering and identification of design patterns.

Towards the goal of bridging this gap, this paper pro-
poses a methodology for inference of binary associations
for UML class diagrams. Its major emphasis and contribu-
tion is the inference of composition relationships, which
we believe is challenging and inadequately addressed in
previous work. While the UML concept of aggregation is
”largely meaningless” [6], the UML concept of composition
has a well-defined semantics that emphasizes the notion of
ownership: a ”composition is a strong form of [whole-part]
association with strong ownership of parts by the composite
and coincident lifetime of parts with the composite. A part
may belong to only one component at a time” [18, Chapter
14]. Therefore, a composition relationship at design level
states the requirement for ownership and norepresenta-
tion exposureat implementation level (i.e., the owned com-
ponent object cannot be exposed outside of its compos-
ite owner object); if composition is implemented properly
ownership should be preserved.

It is important to investigate techniques for recovery of



composition relationships. Firstly, it helps bridge the gap
between the design class diagram and the reverse engi-
neered diagram. Secondly, since composition relationships
explicitly state a requirement that certain representation
cannot be exposed, it is important to determine if this re-
quirement is met by component code. Verifying that compo-
sitions are implemented properly may prevent serious pro-
gram flaws due to representation exposure such as the well-
knownsigners bug in Java 1.1.1

Thus, the goals of this work are (i) to define an
implementation-level ownership model that captures
the notion of composition in design and (ii) to de-
sign an analysis algorithm that infers ownership and
composition in accordance with this model. Our defi-
nition of implementation-level composition is based on
the owners-as-dominatorsownership model [4, 13]; in
this model the owner object (the composite) should dom-
inate an owned object (a component)—that is, all ac-
cess paths to the owned object should pass through its
owner. The owners-as-dominators model defines an own-
ership boundary for each owner; intuitively, an owned
object may be accessed by its owner as well as other ob-
jects within the boundary of the owner. For example, an
owned object stored in an instance field may be passed to
an owned container. As pointed out by Clarke et. al [4, 13]
and also observed by us during the empirical investiga-
tion, the owners-as-dominators model captures well the
notion of composition in modeling.

We propose a novel static analysis for ownership infer-
ence. If the ownership inference determines that all objects
stored in a field are owned by their enclosing object, the
analysis identifies a composition through that field. Our ap-
proach works on incomplete programs. This is an important
feature because in the context of reverse engineering tools
it is essential to be able to perform separate analysis of soft-
ware components. For example, it is typical to have to an-
alyze a component without having access to the clients of
that component. Our ownership inference analysis is based
on points-to analysis, which determines the set of objects a
reference variable or a reference object field may point to.
We use the points-to analysis solution to approximate the
possible accesses between run-time objects.

We present empirical results on several components. In
our experiments, on average 40% of the examined fields ac-
count for relationships that are identified as compositions.
We also present a precision evaluation which shows that
our analysis achieves almost perfect precision—that is, it
almost never misses composition relationships identified in
our model. The results indicate that precise identification of
interclass relationships can be done with a simple and inex-

1 In Java 1.1 the security system functionClass.getSigners re-
turned a pointer to an internal array allowing clients to modify the ar-
ray and compromising the security of the system.

pensive analysis, and thus can be easily incorporated in re-
verse engineering tools that support iterative model-driven
development.

This work has the following contributions:

• We propose an implementation-level ownership and
composition model that captures well the notion of
composition in modeling.

• We propose a static analysis for identifying composi-
tion relationships in accordance with our model; the
analysis works on incomplete programs.

• We present an empirical study that evaluates our anal-
ysis on several Java components.

2. Problem Statement

Reverse engineering tools typically infer associations by
examining instance fields of reference type in the code. In
our model, an association relationship through a fieldf is
refined as composition if it can be proven that all objects
referred byf are owned by their enclosing object. Thus,
given a suitable definition of implementation-level owner-
ship and composition, our goal is to design a static analy-
sis that answers the question: given a set of Java classes (i.e,
a component to be analyzed) for what instance fields we ob-
serve implementation-level composition throughout all pos-
sible executions of arbitrary client code built on top of these
classes? The analysis output is a set of fields for which the
relationship is guaranteed to be a composition for arbitrary
client code.

Clearly, there are various uses of this information when
integrated in a tool for the reverse engineering of UML
class diagrams. Firstly, recovery of compositions bridges
the gap between design and implementation and eases the
understanding of underlying design. Secondly, verifying
that compositions are implemented properly and refactor-
ing early if needed may help prevent serious program flaws
such as thesigners bug in Java 1.1. Ownership of rep-
resentation is a desirable property and information about it
can be included automatically in the component documen-
tation.

The input to the analysis contains a setCls of interact-
ing Java classes. We will use ”classes” to denote both Java
classes and interfaces because for the purposes of this work
the difference is not relevant. A subset ofCls is designated
as the set ofaccessible classes; these are classes that may
be accessed by unknown client code from outside ofCls.
Such client code can only access fields and methods from
Cls that are declared in some accessible class; these acces-
sible fields and methods are referred to asboundary fields
andboundary methods.

Section 2.1 describes the ownership model, and Sec-
tion 2.2 describes the notion of implementation-level com-



public class Vector {
protected Object[] data;
public Vector(int size) {

1 data = new Object[size]; }
public void addElement(Object e,int at) {

2 data[at] = e; }
public Object elementAt(int at) {

3 return data[at]; }
public Enumeration elements() {

4 return new VIterator(this); } }
final class VIterator implements Enumeration {

Vector vector;
int count;
VIterator(Vector v) {

5 this.vector = v;
6 this.count = 0; }

Object nextElement() {
7 Object[] data = vector.data;
8 int i = this.count;
9 this.count++;
10 return data[i]; } }
main() {
11 Vector v = new Vector(100);
12 X x = new X();
13 v.addElement(x,0);
14 Enumeration e = v.elements();
15 x = (X) e.nextElement();
16 x.m(); }

Figure 1. Simplified vector and its iterator.
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Figure 2. Object graphs for Figure 1.

position based on it. Section 2.3 discusses certain con-
straints to the model that allow more precise identification
of ownership and composition.

2.1. Ownership Model

The ownership model is based on the notion ofowners-
as-dominators[4, 3, 13]. It is essentially the model pro-
posed by Potter et al. [13] with several modifications that
allow more precise handling of popular object-oriented pat-
terns and idioms such as iterators, composites and facto-
ries [7]. In this model, each execution is represented by an

object graphwhich describes access relationships between
run-time objects:

• Let f be a reference instance field in a run-time object

o. There is an edgeo
f→ o′ in the object graph iff field

f in o refers too′ at some point of program execution.2

• There is an edgeo
[]→ o′ iff some element of arrayo

refers too′ at some point of program execution.

• There is an edgeo → o′ iff an instance method or con-
structor invoked on receivero has local variabler that
refers too′, or a static method called from an instance
method or constructor invoked ono, has a local vari-
abler that refers too′. There is an edge of this kind
only if there is no edge of the first kind fromo to o′.

A run-time objecto′ is accessed in thecontextof o iff
there is an edge fromo to o′ in the object graph. The start of
program execution is expressed with a special noderoot .
Contextroot represents the context formain and for ob-
jects referenced by static fields. For example, executing
main in Figure 1 results in the object graph in Figure 2(a).
NodeVector corresponds to the object created at thenew
site at line 11, nodeObject[] corresponds to the array
created at the site at line 1, nodeVIterator corresponds
to the iterator created at the site at line 4, and nodeX corre-
sponds to the object created at the site at line 12.

The owners-as-dominators model states that the owner
of an objecto is the immediate dominator ofo in the ob-
ject graph [13].3 Thus, according to this modelObject[]
is not owned by its enclosingVector object for this ex-
ecution due to the access relationship (although only tem-
porary) betweenVIterator and Object[] . To make
the model less restrictive, we introduce therelaxed ob-
ject graph which omits edges due to certain temporary
access relationships. We consider two kinds of temporary
access relationships. The first kind arises when an object
is created in one context and immediately passed to an-
other context; the relationship between the creating object
and the new object is only temporary but if shown on the
graph it is likely to restrict ownership. This notion cap-
tures the situations when an object is created and immedi-
ately returned (e.g., as inreturn new VIterator(this); in
methodelements in Figure 1) and when an object is cre-
ated and immediately passed to another context (e.g., as in
new BufferedReader(new FileReader(fileName))). This
situation occurs in popular object-oriented design patterns

2 We require that all newly created objects appear in the object graph ex-
plicitly. Analogously to [4], this is done by requiring that at the point
of creation a new object is stored in a new local variable; clearly, this
transformation does not change program semantics.

3 Nodem dominatesnoden if every path from the root of the graph
that reaches noden has to pass through nodem. The root dominates
all nodes. Nodem immediately dominatesnoden if m dominatesn
and there is no nodep such thatm dominatesp andp dominatesn.



such as factories, decorators and composites; in these cases
the temporary relationship between the creating object and
the newly created one is a matter of safety and flexibility of
the implementation rather than an intention of the design.
The second kind of temporary access relationships arises
from field read statementsr = l.f , wherer is not assigned,
passed as an implicit or explicit argument, or returned. This
notion captures the situation that arises in iterators (consider
statementdata = vector .data in nextElement in Fig-
ure 1)—iterator objects have temporary references to the
representation of their collections, which allows efficient
access of collection elements; however, the collection ob-
ject is always in scope. Therefore, if all accesses ofo′ in
the context ofo are due to such temporary access relation-
ships, edgeo → o′ is not shown in the relaxed object graph.

The relaxed object graph for the execution of the
code in Figure 1 is shown in Figure 2(b). Note that
edge Vector →VIterator is omitted because it is
due to a temporary access relationship of the first kind;
edge VIterator →Object[] is omitted as well be-
cause it is due to a temporary access relationship of the
second kind. The owner ofo is the immediate dom-
inator of o in the relaxed object graph. Thus,root
owns X, Vector and Viterator and Vector owns
Object[] .

2.2. Implementation-level Composition

Let A be a class inCls, and f be a field of typeB
declared inA whereB is a reference type (class, inter-
face or array type [8]). The ownership property holds for
f if throughout all possible executions of arbitrary clients
of Cls, every instance ofA owns the instances ofB that
its f field refers to. Consider the case whenf is a collec-
tion field—that is, all objects stored in the field are arrays
or instances of one of the standardjava.util collection
classes (e.g.,java.util.Vector ). If every instance of
A owns all corresponding instances stored in the collection,
there is aone-to-many compositionrelationship betweenA
andC, whereC is the lowest common supertype of the in-
stances stored in the collection; otherwise, there is a one-to-
many regular association (it may also be referred as aggre-
gation). For collection fields for which the ownership prop-
erty holds, there is an attribute of the association{owned
collection} which indicates that the collection is owned by
its enclosing object. Consider the case whenf is not a col-
lection field. If the ownership property holds forf , the asso-
ciation betweenA andB is aone-to-one composition; oth-
erwise it is a regular one-to-one association.

Note that in Java, due to interfaces, it is not always possi-
ble to find unique non-trivial (i.e., notObject ) least com-
mon supertype of two types. Thus, we use a variant of the
Java type system in which any two types have a unique

lowest-common supertype, used elsewhere as well [20, 5].
In this system types include a powerset of the Java types in
the classes being analyzed. The mapping from a Java type,
T is the smallest set that includesT and all its supertypes
in Java. Since the elements in this system are sets, the low-
est common supertype is the intersection of two sets.

Consider the following example taken from [20]. Sup-
pose that the least common supertype of two classesC1

andC2, both of which implement interfacesI1 and I2 is
needed. Since there are two common immediate supertypes
of C1 andC2, there is no unique supertype. The mapping of
C1 in the new type system is{C1, I1, I2, Object }; simi-
larly, the mapping ofC2 is {C2, I1, I2, Object }. The least
common supertype in these types is simply the intersection
of the two sets:{I1, I2, Object }. When mapping the new
types back to Java types it is not guaranteed that a Java type
will exist. Thus, an analysis can either choose an alternative
real type such asObject , show one-to-many associations
with all types in the set, or ask the user for help. Our anal-
ysis, described in Section 4, would displayObject in this
case; assuming that the analysis is relatively precise, hav-
ing Object as the least common supertype would indicate
a potential flaw and trigger a careful review of code and de-
sign.

Example. Consider the package in Figure 3. This ex-
ample is based on classes from the standard Java li-
brary packagejava.util.zip , with some modifi-
cations made to simplify the presentation and better il-
lustrate the problem and our approach.Cls contains the
classes from Figure 3 plus classZipEntry . The accessi-
ble classes areZipInputStream , ZipOutputStream
and ZipEntry and the boundary methods are all pub-
lic methods declared in those classes (i.e., the component
can be accessed from client code through the public meth-
ods declared in these classes).

Clearly, the CRC32 objects are always owned by
their enclosing streams. Therefore, their is one-to-one
composition relationships through fieldscrc in both
ZipInputStream and ZipOutputStream . There is
a regular one-to-one association through fieldentry in
ZipInputStream ; it is easy to construct client code
on top of these classes such that theZipEntry in-
stances created inZipInputStream objects are leaked
to client code fromgetNextEntry . Similarly, there
is a regular one-to-one association throughentry in
ZipOutputStream because theZipEntry objects are
passed from client code toputNextEntry . The associa-
tions through fieldsnames andentries are both one-to-
many regular associations betweenZipOutputStream
and ZipEntry ; both have attribute{owned collec-
tion}. Clearly, theZipOutputStream instance trivially
owns theHashtable instance. It owns theVector in-
stance as well, although theVector instance is referred



package zip;
public class InflaterInputStream {

protected Inflater inf;
protected byte[] buf;
public InflaterInputStream(Inflater inf,

int size) {
this.inf=inf;
buf=new byte[size]; }

public InflaterInputStream(Inflater inf) {
this(inf, 512); }

// methodsread andfill contain instance calls oninf }
public class ZipInputStream extends

InflaterInputStream {
private ZipEntry entry;
private CRC32 crc=new CRC32();
public ZipInputStream() {

super(new Inflater(true), 512); }
public ZipEntry getNextEntry() {

crc.reset();
inf.reset();
if ((entry=readLOC())==null) return null;
return entry; }

private ZipEntry readLOC() {
ZipEntry e=new ZipEntry();
// code reads and writes fields ofe
return e; } }

public class ZipOutputStream extends
DeflaterOutputStream {
private ZipEntry entry;
private Vector entries=new Vector();
private Hashtable names=new Hashtable();
private CRC32 crc=new CRC32();
public ZipOutputStream() {

super(new Deflater(...)); }
public void putNextEntry(ZipEntry e) {

// code reads and writes fields ofe
if (names.put(e.name, e)!=null) { ... }
entries.addElement(e);
entry=e; }

public void closeEntry() {
ZipEntry e=entry;
// code reads and writes fields ofe
crc.reset();
entry=null; }

public void finish() {
Enumeration enum=entries.elements();
while (enum.hasMoreElements()) { ... } } }

Figure 3. Sample package zip .

to in the context of its iterator (recall the example in Fig-
ure 1); however, the iterator is a local object owned by
the enclosingZipOutputStream object which en-
sures that theVector instance is dominated by the en-
closing ZipOutputStream and may be accessed only
within its ownership boundary.

2.3. Discussion

In order to allow more precise identification of
implementation-level composition, we employ the follow-
ing constraint, standard for other problem definitions that
require analysis of incomplete programs [17, 15]. We only
consider executions in which the invocation of a bound-

ary method does not leaveCls—that is, all of its transitive
callees are also inCls. In particular, if we consider the pos-
sibility of unknown subclasses, all instance calls from
Cls could potentially be ”redirected” to unknown exter-
nal code that may affect the composition inference. For ex-
ample, a field may be identified as composition in the
current set of classes but an unknown subclass may over-
ride some method and the overriding method may leak the
field (e.g., by assigning it to a static field).

Thus,Cls is augmented to include the classes that pro-
vide component functionality as well as all other classes
transitively referenced. In the experiments presented in Sec-
tion 5 we included all classes that were transitively ref-
erenced byCls. This approach restricts analysis informa-
tion to the currently ”known world”—that is, the informa-
tion may be invalidated in the future when new subclasses
are added toCls. Another approach is to change the analy-
sis to make worst case assumptions for calls that may enter
some unknown overriding methods. However, in this case,
the analysis will be overly conservative and likely report
fewer compositions. Thus, we believe that it is more use-
ful to restrict the analysis to the known world; of course,
the analysis user must be aware that the information is valid
for the given set of known classes.

3. Points-to Analysis

Points-to analysis determines the set of objects that a
given reference variable or a reference field may point to.
This information has a wide variety of uses in software tools
and optimizing compilers. In this paper, points-to informa-
tion is used for ownership inference. It is needed to con-
struct a graph that approximates all possible object graphs
that can happen when arbitrary client code is built on top of
Cls. There is a large body of work on points-to analysis with
different trade-offs between cost and precision. In this paper
we consider ownership inference based on the well-known
Andersen-style flow- and context-insensitive points-to anal-
ysis for Java from [16].4

3.1. Points-to Analysis for Java

The points-to analysis is defined in terms of three sets.
SetR is the set of locals, formals and static fields of ref-
erence type. SetO is the set of object names; the objects
created at an allocation sitesi are represented by object
nameoi ∈ O. SetF contains all instance fields in program

4 Flow-insensitive analyses do not take into account the flow of con-
trol between program points and are less precise and less expensive
than flow-sensitive analyses. Context-sensitive analyses distinguish
between different calling contexts of a method and are more precise
and more expensive than context-insensitive ones.



classes. The analysis solution is apoints-to graphwhere the
edges represent the following ”may-refer-to” relationships:

• Let r ∈ R ando ∈ O. An edger → o in the points-
to graph means that at run timer may refer to some
object that is represented byo.

• Let f ∈ F be a reference instance field in objects rep-

resented by someo ∈ O. An edgeo
f→ o2 means that

at run time fieldf of some object represented byo may
refer to some object represented byo2.

• If o represents array objects,o
[]→ o2 shows that some

element of some array represented byo may refer at
run time to an object represented byo2.

The Andersen-style points-to analysis for Java from [16]
is a relatively precise flow- and context-insensitive
inclusion-based analysis. It propagates may-refer-to rela-
tionships by analyzing program statements. For example,
when it analyzes statement ”p = q” it infers thatp may re-
fer to any object thatq may refer to.

3.2. Fragment Points-to Analysis

Points-to analyses and Andersen’s analysis in particular
are typically designed aswhole-program analyses; they take
as input a complete program and produce points-to graphs
that reflect relationships in the entire program. However, the
problem considered in this paper requires points-to analy-
sis of a partial program. The input is a set of classesCls
and the analysis needs to construct an approximate object
graph that is valid across all possible executions of arbi-
trary client code built on top ofCls. To address this prob-
lem we make use of a general technique calledfragment
analysisdue to Nasko Rountev [14, 17, 15]. Fragment anal-
ysis works on a program fragment rather than on a complete
program; in our case the fragment is the set of classesCls.

Initially, the fragment analysis produces an arti-
ficial main method that serves as a placeholder for
client code written on top ofCls. Intuitively, the artifi-
cial main simulates the possible flow of objects between
Cls and the client code. Subsequently, the fragment anal-
ysis attachesmain to Cls and uses some whole-program
analysis engine to compute a points-to graph which summa-
rizes the possible effects of arbitrary client code. The frag-
ment analysis approach can be used with a wide variety of
points-to and class analyses; for the purposes of this pa-
per we only consider fragment analysis used with the
Andersen-style points-to analysis from [16].

The placeholdermain method for the classes from Fig-
ure 3 is shown in Figure 4. The method contains variables
for types fromCls that can be accessed by client code. The
statements represent different possible interactions involv-
ing Cls; their order is not relevant because the subsequent

void main() {
ZipEntry ph ZE;
ZipInputStream ph ZIS;
ZipOutputStream ph ZOS;
ph ZE = new ZipEntry();
ph ZIS = new ZipInputStream();
ph ZOS = new ZipOutputStream();
ph ZE.setCRC(0);
ph ZE = ph ZIS.getNextEntry();
ph ZOS.putNextEntry(ph ZE);
ph ZOS.closeEntry();
ph ZOS.finish(); }

Figure 4. Placeholder main method for zip .

whole-program analysis is flow-insensitive. Methodmain
invokes all public methods from the classes inCls desig-
nated as accessible.

The details of the fragment analysis will not be discussed
here; they can be found in [17]. For the purposes of our anal-
ysis we discuss theobject reachability[15] property of the
results computed by the fragment analysis; this property is
relevant for the analysis described in Section 4. Consider
some client program built on top ofCls and an execution of
this program (the program must satisfy the constraints dis-
cussed in Section 2.3). Letr ∈ R be a variable declared
in Cls and at some point during executionr is the start
of a chain of object references that leads to some heap ob-
ject. In the fragment analysis solution, there will be a chain
of points-to edges that starts atr and leads to some object
nameo that represents the run-time object. A similar prop-
erty holds ifr is declared outside ofCls. In this case, in the
fragment analysis solution, the starting point of the chain is
the variable frommain that has the same type asr.

We illustrate this property for our points-to analy-
sis. Consider the example from Figures 3 and 4. There
are three allocation sites in themain method; they
are denoted by namesZE1, ZIS1 and ZOS1. Name
byte[] corresponds to the allocation site in class
InflaterInputStream . There are three alloca-
tion sites in classZipInputStream ; they are denoted
by namesCRC1, Inflater1 andZE2. There are four al-
location sites in classZipOutputStream ; they are de-
noted by Vector1 , Hashtable1 , Deflater1 and
CRC2. In addition, we consider the allocation sites in
Vector (recall Figure 1), which are transitively reach-
able; they are denoted byObject[] and VIter1 .
The points-to graph computed by Andersen’s analy-
sis from the code in Figures 4, 3 and 1 is shown in Figure 5.
Heap object names are underlined and reference vari-
able names are prefixed by the name of their declaring
method. For simplicity, implicit parametersthis and ob-
ject namesInflater1, byte[], Hashtable1 and
Deflater1 are not shown.
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Figure 5. Points-to graph computed by the
fragment points-to analysis.

4. Identifying Composition Relationships

We propose a novel analysis for ownership inference that
is based on the output of the fragment points-to analysis.
The ownership analysis constructs theapproximate object
graphAg which approximates all possible run-time object
graphs that can happen when client code is built on top
of Cls. The analysis usesAg to identify aboundarysub-
graph rooted ato for each object nameo; the subgraph con-
tains paths that are guaranteed to represent flow within the
ownership boundary ofo. Whenever the edge appears in the
boundary of its source forall edges labeled withf , the re-
lationship throughf is identified as composition.

4.1. Approximate Object Graph

The nodes inAg are taken from the set of object names
O and the edges represent ”may-access” relationships. Fig-
ure 6 outlines the construction ofAg given a points-to graph
Pt . SetCm denotes the set of object names that represent
the contexts of invocation of methodm. If m is an instance
method or constructor,Cm is the points-to set of the im-
plicit parameterthis of m. If m is a static methodCm

includes the union of the points-to sets ofthis for all in-
stance methods or constructors that may callm (directly or
through a sequence of static calls); it includesroot if m is
main or may be called frommain .

Lines 1-2 account for edges due to flow from the contexts
of the callee to the contexts of the caller. For example, at a
constructor call new edges are added toAg from each con-
text enclosing the call to the name representing the newly
created object. Similarly, at an instance call not through
this new edges are added from each context enclosing
the call to each returned object. Note that when the newly
constructed object is immediately passed to another context
(e.g., as innew A(new B(...))), or immediately returned to
another context (e.g., as inreturn new V Iterator(this)),

input Stmt: set of statementsPt: R ∪O → P(O)

output Ag : O → P(O)

[1] foreach
s : l = new C(...) s.t.l not immediately passed or
immediately returned to another context,
s : l = r.m(...) s.t.r 6= this ,
s : l = r.f s.t.r 6= this andl assigned to a variabledo

[2] add{c → oj | c∈CEnclMethod(s) ∧ oj ∈Pt(l)} to Ag

// add access edges due to flow from callees to callers
[3] foreach

s : l = new C(r),
s : l.m(r) s.t.l 6= this ,
s : l.f = r s.t.l 6= this do

[4] add{oi → oj | oi∈Pt(l) ∧ oj ∈Pt(r)} to Ag

// add access edges due to flow from callers into callees

[5] foreachoi
f→ oj ∈ Pt do label withf eachoi → oj ∈ Ag

Figure 6. Construction of Ag . P(X) denotes
the power set of X. Ag is initially empty.

no new edges are added to that object from the contexts
enclosing the constructor call. Also, at indirect read state-
ments, no edges are added when variablel is not assigned
or passed as an explicit or implicit argument later (e.g., it
is used only to access instance or array fields such as in
x=l[i]). This is consistent with the definition of the relaxed
object graph in Section 2.1. Lines 3-4 account for edges due
to flow from the contexts of the caller to the contexts of
the callee. For example, at instance calls edges are added
to each object in the points-to set of a reference argument,
from each object in the points-to set of the receiver. Finally,
line 5 labels the edges with the appropriate field identifier.
For brevity, we omit discussion of static fields. The actual
implementation creates edges fromroot to each object in
the points-to set of a static field; the case is handled cor-
rectly by this algorithm and by the algorithm in Section 4.2.

We discuss thereachability property of the approxi-
mate object graph. Consider some client program built
on top ofCls and an execution of this program (the pro-
gram must satisfy the constraints discussed in Section 2.3).
Let c be a context (i.e.,root or a heap object) and at some
point during executionc is the start of a chain in the re-
laxed object graph that leads to some heap objector. In Ag ,
there will be a chain of edges that starts at the representative
of c and leads to the representative ofor. Figure 7 shows the
approximate object graph computed from the code on Fig-
ures 3, 4 and 1, and the points-to graph in Figure 5 (only ob-
ject names from Figure 5 are shown). For the majority of
edges inference is straight-forward. For example, edges
root →ZIS1, root →ZIS2 and root →ZE1 are due
to the constructor calls inmain and edgesZIS1 →CRC1
and ZIS1 →ZE2 are due to the constructor calls in
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CRC1

Object[]

ZE2 Vector1ZE1

ZIS1 ZOS1 CRC2
crc crc

root

VIter1
vector

[] []

entry entryentries

Figure 7. Approximate object graph com-
puted by the algorithm in Figure 6.

input Ag : O → P(O)

output Bndry : O → P(O)

initialize Bndry(oi)={oi}
Forbid(oi)={oi → oj s.t.∃ ok s.tok → oi ∧ ok → oj}

[1] while changes occur inBndry

[2] foreachBndry(oi) ando ∈ Bndry(oi)

[3] foreacho → oj not inBndry(oi) and not inForbid(oi)

[4] Wl={},Tmp={}, inBndry=true
[5] marko → oj , and add toWl andTmp

[6] while Wl not empty andinBoundary

[7] removeo → oj from WL

[8] foreachok → oj ∈ Bndry(oi) s.t.ok → o ∧ ok → oj

[9] if ok → oj unmarked, mark and add toWl andTmp

[10] foreacho → ok s.t.o → ok ∧ ok → oj

[11] if o → ok ∈ Bndry(oi)

[12] if ok → oj unmarked, mark and add toWl andTmp

[13] elseinBndry = false
[14] if inBndry

[15] addTmp to Bndry(oi), addBndry(oj) to Bndry(oi)

Figure 8. Ownership analysis.

class ZipInputStream . Edge ZOS1→ VIter1
is due to call enum=entries.elements() in method
finish . Edge VIter1 →Vector1 is due to state-
mentreturn new VIterator(this) in methodelements ;
note that there is no edgeVector1 →VIter1 due
to this statement. Edgeroot →ZE2 is due to state-
ment ph ZE = ph ZIS .getNextEntry() in main , and
edgesZOS1→ZE2 and ZOS1→ZE1 are due to state-
ment ph ZOS .putNextEntry(ph ZE ) in main . Edges
Object[] →ZE2 andObject[] →ZE1 are due to flow
at statementdata[at ] = e in addElement .

4.2. Ownership Boundary

The algorithm in Figure 8 takesAg as input and out-
puts subgraphsBndry(oi) for each object name. Subgraph

Bndry(oi) contains paths that are guaranteed to represent
flow within the ownership boundary of an instance repre-
sented byoi. More precisely, we have the following lemma.
If a pathp: oi → o1... → ok → o ∈ Bndry(oi), then for
eachor

i (a run-time object represented byoi) andor reach-
able fromor

i on a path represented byp, we have (i)or
i

dominatesor and (ii) Bndry(oi) is closed with respect to
or (i.e., the representative ofeverypath fromor

i to or is
also in Bndry(oi)). For example, the boundary ofZOS1
includes nodesZOS1,CRC2,Vector1,Object[] and
VIter1 and the edges between them. It is easy to see
that for every run-time pathZOS1r→Vector1 r, ZOSr

dominatesVector1 r. Vector1 r is reachable along paths
ZOSr→Vector1 r and ZOSr→VIter1 r→ Vector1 r;
the representatives of both paths are inBndry(ZOS1).

Below we briefly outline the algorithm and its correct-
ness proof. The algorithm uses the fact thator

j flows from
objector

i to some objector
k only if one of the following is

true: (1)or
k has a handle to bothor

i andor
j (and due to the

reachability propertyAg contains edgesok → oi, ok → oj ,
oi → oj), or (2) or

i has a handle to bothor
k andor

j (and
Ag contains edgesoi → ok, oi → oj , ok → oj). This ob-
servation helps identify encapsulation more precisely. Sup-
pose that our running example has another input stream ob-
ject, created byroot and denoted by nameZIS2 . The re-
lationship betweenZIS2 and its crc object would be rep-
resented by edgeZIS2 →CRC1in Figure 7. A naive algo-
rithm may identifyroot as the dominator of the crc ob-
jects, and fail to identify the composition relationship be-
tweenZipInputStream andCRC32. In fact, theCRC1
object is created and dominated by its enclosingZIS1 ob-
ject because there is nook such that eitherok has handles
to bothZIS1 andCRC1, or ZIS1 has handles to bothok

andCRC1; thus, theCRC1object created by theZIS1 ob-
ject does not flow to or from any other context.

The algorithm builds the boundary of an object nameoi

by adding edges.Bndry(oi) grows from zero to one edge,
oi → oj , when (i) there is nook that has handles to both
oi andoj and (ii) there is nook such thatoi has handles to
bothok andoj , andok has a handle tooj . The first condition
is guaranteed by the check at line 3 and the second condi-
tion is guaranteed by the fact that the flag variableinBndry
stays true only if the loop at lines 10-13 is skipped. Thus,
an edgeoi → oj is added to the empty boundary ofoi only
when it is guaranteed that theoi object accesses theoj ob-
ject exclusively (i.e., no other object has a handle to it). Ex-
amples of such edges areZIS1 →CRC1andZOS1→CRC2.
Clearly, the conditions of the lemma hold in this case.

Consider an edgeo → oj (examined at lines 3-15). Con-
sider some client program built on top ofCls and an exe-
cution of this program (the program must satisfy the con-
straints discussed in Section 2.3). Letor

i be any run-time
object represented byoi andor be an object reachable on



a pathor
i → . . . or

k → or whose representative is in the
boundary ofoi. We may assume that (i)or

i dominatesor

and (ii) Bndry(oi) is closed w.r.t.or. Let or refer to an in-
stanceor

j . We need to examine allor
k such thator

j may flow
to or fromor

k (i.e., there is an edgeor
k → or

j ). If all theseor
k

are dominated byor
i thenor

i dominatesor
j . If the boundary

is closed w.r.t. eachor
k adding edgeso → oj andok → oj

ensures that the boundary is closed w.r.t.or
j .

At lines 4-5 the algorithm marks the edge as visited in the
current iteration, sets theinBndry flag to true, and initial-
izes the worklist and the closure setTmp (discussed later)
to o → oj . Objector

j flows fromor into someor
k when one

of the following conditions is true. First,or
k has handles to

bothor andor
j (e.g.,or

j may be returned from a method in-
voked onor). Since all paths toor

i → ... → or
k are subpaths

of paths toor, their representatives must be inBndry(oi);
thus,or

k is (i) dominated byor
i and (ii)Bndry(oi) is closed

w.r.t. or
k. This case is examined at lines 8-9 andok → oj

is added to the worklist; it is examined in a subsequent it-
eration of the while loop in order to find the representa-
tives of the objects thator

j may flow to fromor
k. In addition,

ok → oj is added toTmp, the closure set ofo → oj—
adding the edges in the closure set to the boundary (line
15) ensures that the boundary is closed w.r.t. eachor

j . Sec-
ond, or

j may flow from or into someor
k such thator has

handles to bothor
k and or

j . Sinceo → ok ∈ Bndry(oi)
we have that (i)or

k is dominated byor
i and (ii) the bound-

ary is closed w.r.t.or
k. This case is examined at the loop at

lines 10-13 and appropriateok → oj are added to the work-
list and to the closure set. Finally, if the edges in the clo-
sure set form appropriate paths,inBndry is true and at line
15 the algorithm adds the closure setTmp and the bound-
ary ofoj to the boundary ofoi.

We briefly illustrate the algorithm on our running ex-
ample. Consider edgeZIS1 →CRC1. The algorithm
skips the loop on lines 8-9 because setBndry(ZIS1 )
is empty; it skips the loop on lines 10-13 as well be-
cause there is nook with handles to bothZIS1 and
CRC1. At line 15, edge ZIS1 →CRC1 is added to
Bndry(ZIS1 ). Edges ZOS1→CRC2, ZOS1→VIter1
and Vector1 →Object[] are processed analogously.
For edgeZOS1→Vector1 the algorithm goes through
lines 10-13 witho → ok being ZOS1→VIter1 . It de-
termines thatZOS1→VIter1 is already in the bound-
ary of ZOS1; thus, the vector object can be accessed
only by its enclosing output stream object and the iter-
ator object which is enclosed in that output stream ob-
ject. Thus we have the following boundary graphs:
Bndry(ZIS1 ) = {ZIS1 →CRC1}, Bndry(Vector1 )
= {Vector1 →Object[] } and Bndry(ZOS1) =
{ZOS1→CRC2, ZOS1→Vector1 , ZOS1→VIter1 ,
Vector1 →Object[] , VIter1 →Vector1 }.

A corollary of the lemma is that whenever we have an

edgeoi→oj ∈ Bndry(oi) eachor
i owns theor

j instances
that it may refer to. If for every edge labeled withf we

haveo
f→ o′ ∈ Bndry(o) the analysis identifies one-to-one

implementation-level composition or collection ownership.

4.3. Composition Relationships

Let f be an instance field of reference type inCls. Con-

sider all field edgeso
f→ o′ in Pt . Clearly, if for each edge

o → o′ ∈ Bndry(o), the ownership property holds forf
and the analysis identifies one-to-one implementation-level
composition or collection ownership.

Consider an edgeo
f→ o′ wheref is a field of collec-

tion type. The set of instances stored in collections repre-
sented byo′ is approximated by setStored(o′), the union of
the points-to sets of the variables passed as appropriate ac-
tual arguments to standardput methods invoked ono′.
For example, for Figures 3 and 4, setStored(Vector1 )
is the points-to set of variablee in putNextEntry
which is the actual argument to the standard put method
of Vector , addElement ; thereforeStored(Vector1 )
= {ZE1,ZE2 }. Similarly, set Stored(Hashtable1 )
is the points-to set ofe in putNextEntry ; therefore
we haveStored(Hashtable1 ) = {ZE1,ZE2 }. We ex-
tend the notation to haveStored(f) denote the union of
the setsStored(o′) whereo′ is a collection object stored in
f . If for each pathp through an edgeo → o′ to an name
in Stored(f) we havep ∈ Bndry(o), the analysis iden-
tifies a one-to-many composition relationship throughf ;
otherwise the analysis identifies a one-to-many associa-
tion relationship.

It remains to identify the least common supertypeC of
the objects stored in collections fields as the analysis needs
to infer an association between the enclosing class off and
C. As explained in Section 2.2 our analysis uses a new type
system to infer the least common supertype of all types in
Stored(f), then maps the new type to a Java type. If a Java
type does not exist, the analysis usesObject , thus loos-
ing precision. In our example, the least common supertype
of all instances stored inVector1 is easily identified to
beZipEntry ; thus, the analysis infers that there is a regu-
lar one-to many association betweenZipOutputStream
andZipEntry through fieldentries .

5. Experimental Study

The goal of the study is to address two questions. First,
how often does our analysis discover implementation-level
composition? Second, howimprecisethe analysis is—that
is, how often it misses implementation-level composition?

For the experiments we used several Java compo-
nents from the standard library packagesjava.text and



java.util.zip [15]. The components are described
briefly in the first two columns of Table 1. Each compo-
nent contains the set of classes inCls (these are the classes
that provide certain functionality plus all other classes that
are directly or transitively referenced by them); the num-
ber of classes in each component is shown in column (3).
We considered all reference instance fields in the classes
in Cls that provide the component functionality; this num-
ber is given in column (4).

5.1. Results

We applied the algorithm described earlier in order to
determine which fields accounted for composition relation-
ships. The results are given in the last two columns of Ta-
ble 1. Column (5) shows how many of the fields from col-
umn (4) are identified as one-to-one compositions and col-
umn (3) shows how many of the fields are identified as
owned collections (i.e., arrays and standardjava.util
collections).

On average, the analysis reported 30% one-to-one com-
positions and 10% owned collections—that is, 40% of the
reference instance fields account for representation that
is not being exposed outside of its enclosing object. The
owned collections in componentzip are analogous to the
Vector and Hashtable in our running example; they
store exposedZipEntries and account for one-to-many
association relationships. Two of the owned collections for
componentcollator and one of the owned collections
for date accounted for one-to-many compositions. The re-
maining owned collections are arrays of simple type.

5.2. Analysis Precision

The issue of analysis precision is of crucial importance
for software tools. If an analysis is imprecise, it may report
that the relationship between two classes is not a composi-
tion while in reality it is, or that a collection is not owned
while in reality it is owned (i.e., the analysis reports that cer-
tain representation may be exposed while in fact it is not).
Such information is not useful and may confuse the user
and even render the tool unusable. For example, if a user at-
tempts to ensure the consistency between the code and the
composition relationships in UML design class diagrams,
imprecision will mean that a large chunk of code will have
to be examined manually. Since imprecision results in waste
of human time, analysis designers must carefully and pre-
cisely identify and evaluate any sources of imprecision.

In our experiments, we examined the fields inCls that
were not identified as compositions or owned collections.
We attempted to prove that it was possible to write client
code for which some object stored in such a field would
be exposed (i.e., it would not be owned by its enclosing ob-

ject in accordance with the ownership model in Section 2.1).
In all cases, except one, we were able to prove that the ob-
ject was exposed. Thus, the analysis achieves almost perfect
precision.

Field defaultCenturyStart in componentdate
accounted for the one case of imprecision. The impreci-
sion was due to context-insensitive object naming in the
points-to and composition analyses.The object stored in the
field comes from a call to a methodgetTime which cre-
ates and immediately returns aDate object. Although
the Date object stored indefaultCenturyStart
does not flow out of its enclosingSimpleDateFormat
object, other Date objects created bygetTime in
SimpleDateFormat are being returned (i.e., there are
edges inAg to theSimpleDateFormat object and the
only representative ofDate ). This imprecision may be re-
solved by using an analysis that employs more precise ob-
ject naming. In the case ofgetTime it may distinguish the
Date objects for different call sites ofgetTime ; the tar-
get of thedefaultCenturyStart edge would be a
separateDate object that does not flow out and the own-
ership inference algorithm will correctly identify that there
is a composition relationship through this field. How-
ever, it is unclear whether a more precise context-sensitive
points-to analysis will result in substantial benefits for the
ownership and composition analyses.

5.3. Conclusions

Our results indicate that the ownership model captures
conceptual composition relationships appropriately— we
encountered several cases when values of private fields were
stored in other parts of the object representation. Thus, a
simpler model based on exclusive ownership—that is, a
model which requires that an owned object is in exclusive
relationship with its owner, would not have been sufficient
to identify compositions. The results also show that compo-
sition relationships occurs often. Therefore, the analysis can
provide useful information for reverse engineering tools. It
is important that highly precise information can be obtained
with practical analysis—the combined running time of the
points-to and composition inference analyses does not ex-
ceed 10 seconds on any component (based on the average
of three runs on a Sun Fire 380R). Of course, these results
need to be reconfirmed on more components.

6. Related Work

Recent work by Gúeh́eneuc and Albin-Amiot [9]
presents definitions and identification algorithms for
implementation-level association, composition and ag-
gregation relationships. Our work focuses more closely
on compositions and differs substantially from [9] in



(1)Component (2)Functionality (3)#Classes (4)#Fields Compositions
(5)#One-to-one (6)#Owned collections

Analysis Perfect Analysis Perfect
gzip GZIP IO streams 199 7 4(57%) 4(57%) 0(0%) 0(0%)
zip ZIP IO streams 194 10 3(30%) 3(30%) 2(20%) 2(20%)
checked IO streams with checksums 189 2 0(0%) 0(0%) 0(0%) 0(0%)
collator text collation 203 24 10(42%) 10(42%) 6(25%) 6(25%)
date date formatting 205 20 3(15%) 4(20%) 5(25%) 5(25%)
number number formatting 198 3 2(67%) 2(67%) 0(0%) 0(0%)
boundary iteration over boundaries in text 199 7 0(0%) 0(0%) 0(0%) 0(0%)
Average 30% 31% 10% 10%

Table 1. Java components and implementation-level compositions.

both the definition of implementation-level composi-
tion and in the proposed identification algorithm. The
definition of composition in [9] is based on exclusive own-
ership. This may not be sufficient to model such commonly
used object-oriented patterns and idioms such as it-
erators, composites, decorators, and factories [7] as
well as the common situation when instance fields re-
fer to owned objects that are stored in owned collections
or temporarily accessed by other parts of the repre-
sentation of the owner. Our definition is based on the
owners-as-dominators model which does not require ex-
clusive relationship with the owner; as observed by us and
other researchers [4, 13], this model captures well the no-
tion of composition in modeling [18].

Most importantly, we present an identification algorithm
that may be more appropriate. Guéh́eneuc and Albin-Amiot
propose the use of dynamic analysis, but point out serious
disadvantages. First, dynamic analysis is slow, second, it re-
quires a complete program, and third, the results that are
obtained may be incomplete because they are based on par-
ticular runs of particular clients of the component. Our de-
tection algorithm is based on practical static analysis that
works on incomplete programs and produces a solution that
is valid over all unknown clients of the component.

Work in [10] and [19] addresses the issue of recover-
ing one-to-many associations through containers, since re-
verse engineering tools typically loose the association be-
tween the enclosing class and the class whose instances are
stored in the container field (recall theentries field of
Vector type in Figure 3). Identification of composition is
not addressed in these papers. Although our work focuses
on identification of composition, our algorithm identifies
one-to-many associations as well, and the algorithm is more
general than those in [10] and [19].

Ownership type systems disallow certain accesses of ob-
ject representation [12, 4, 3, 1, 2]. These systems require
type annotations and typically do not include automatic in-
ference algorithms or empirical investigations. In contrast,

we infer ownership automatically and present an empiri-
cal study of the effectiveness of our approach; we believe
that our analysis can be usefully incorporated in software
tools for reverse engineering of class diagrams from Java
code. The only type annotation inference analysis that we
are aware of is given by Aldridge et al. [1] for the purposes
of alias understanding. Similarly to the work by Guéh́eneuc
and Albin-Amiot [9], theowned annotation is used only
when the analysis is able to proveexclusiveownership; in
the majority of cases it infers alias parameters. Our work fo-
cuses on a different problem, composition inference, and in-
fers ownership using a more general ownership model that
captures better the notion of composition in modeling. In
addition, our algorithm may scale better.

7. Conclusions and Future Work

This work presents an approach for performing analy-
sis that identifies composition relationships in Java compo-
nents. We define an ownership-based implementation-level
composition model and a static analysis that infers com-
position relationships in incomplete programs. Our empiri-
cal study indicates that (i) the ownership-based model cap-
tures well the notion of composition in modeling and (ii)
implementation-level compositions occur often and almost
all such compositions can be identified. Clearly, no defini-
tive conclusions can be drawn from these limited experi-
ments. In our future work we plan to focus on further em-
pirical investigation.
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