Precise ldentification of Composition Relationships for UML Class Diagrams

Ana Milanova
Department of Computer Science
Rensselaer Polytechnic Institute

milanova@cs.rpi.edu

Abstract gationandcompositiordo not have corresponding language
_ _ o - o concepts. Thus, while the reverse engineering of classes and
Knowing which associations are compositions is impor- inheritance hierarchies is straightforward, the reverse engi-

tant in a tool for the reverse engineering of UML class dia- neering of associations presents various Cha”enges_
grams. Firstly, recovery of composition relationship bridges

. . . UML associations model relatively permanent interclass
the gap between design and code. Secondly, since composj; yp

tion relationshi wolicitly state a requirement that certain elationships; conventionally, they are implemented using
on refationships explicitly state a requireme atcenam u,qrance fields of reference type [11] (e.g., an association
representation cannot be exposed, it is important to deter

mine if this requirement is met by component code. Veri :from classA to classB is implemented using a reference
ine 1t this requir IS y b ' ity field of type B in classA). Thus, reverse engineering tools

ng ,:hat _composmonsﬂare |r(Tj1pIetrnented protp;a_rly MaYy Pre- jfer associations by examining instance fields of reference

velcherlous program laws tU(ta' 0 rleprelsen a |ont§ xposudreitype; however, the inference is often non-trivial. One chal-
© Propose an impiementation-ievet composition mode lenge is the recovery of one-to-many associations imple-

based on ownership and a novel approach for identifying mented using pseudo-generic containers (a/ggtor).

gonggfssr:pOnns%;per‘:?giasség\'g;e' (?rl;[rs-?ggrr?;d;';saﬁj Tcga(;f_Another challenge is the recovery of compositions. Mod-
w P POl ys| ! ern reverse engineering tools such as Rati®wsgEand Ar-

signed to work on incomplete programs. We present emplr'QOUML do not address these challenges and produce incon-

'C\?l rresulisog)/n Sfe\t/ﬁ ral)((:Orrnniaoge;i] tSId In our e)r(l?inrmrerttsi, gnsistent and even incorrect class diagrams (seeh&heuc
average o of the examined Nelds account Tor retation- , \ 4 ajhinAmiot [9] for detailed examples). Clearly, this

ships that are identified as compositions. We also present qeads to a gap between design class diagrams and reverse
precision evaluation which shows that our analysis achievesengineered class diagrams which hinders understanding

almost pgrfect premspn—that IS, it allmqst never m'ss.‘esround-trip engineering and identification of design patterns.
composition relationships. The results indicate that precise

identification of interclass relationships can be done witha ~ Towards the goal of bridging this gap, this paper pro-
simple and inexpensive analysis, and thus can be easily in{0Ses a methodology for inference of binary associations

corporated in reverse engineering tools that support itera- for UML class diagrams. Its major emphasis and contribu-
tive model-driven development. tion is the inference of composition relationships, which

we believe is challenging and inadequately addressed in

previous work. While the UML concept of aggregation is
1. Introduction "largely meaningless” [6], the UML concept of composition

has a well-defined semantics that emphasizes the notion of

In modern software development design recovery owner_sh_ipa ”(_:omposition isa strong form of [Whole-part]_
through reverse engineering is performed often; in a typ- association Wlth_str_ong ownersh|p of parts by the_composne
ical iterative development process reverse engineeringa”d coincident lifetime of parts with the cpmposne. A part
is performed at the beginning of every iteration to re- May belong to only one component at a time” [18, Chapter
cover the design from the previous iteration [11]. 14]. Therefore, a composition relathnshlp at design level

UML class diagrams describe the architecture of the pro- States the requirement for ownership and rapresenta-
gram in terms of classes and interclass relationships; theyHion exposuret implementation level (i.e., the owned com-
are scalable, informative and widely-used design models.Ponent object cannot be exposed outside of its compos-
While the UML concepts of class and inheritance have cor- It€ Owner object); if composition is implemented properly
responding first-class concepts in object-oriented program-o0Wnership should be preserved.
ming languages, the UML concepts agsociation, aggre- It is important to investigate techniques for recovery of

composition relationships. Firstly, it helps bridge the gap pensive analysis, and thus can be easily incorporated in re-
between the design class diagram and the reverse engiverse engineering tools that support iterative model-driven
neered diagram. Secondly, since composition relationshipsdevelopment.

explicitly state a requirement that certain representation This work has the following contributions:

cannot be exposed, it is important to determine if this re-

quirement is met by component code. Verifying that compo-

sitions are implemented properly may prevent serious pro-
gram flaws due to representation exposure such as the well-

e We propose an implementation-level ownership and
composition model that captures well the notion of
composition in modeling.

knownsigners bug in Java 1.1% e We propose a static analysis for identifying composi-
Thus, the goals of this work are (i) to define an tion relationships in accordance with our model; the

implementation-level ownership model that captures analysis works on incomplete programs.

the notion of composition in design and (i) to de- e We present an empirical study that evaluates our anal-

sign an analysis algorithm that infers ownership and ysis on several Java components.

composition in accordance with this model. Our defi-
nition of implementation-level composition is based on 2. Problem Statement
the owners-as-dominator®wnership model [4, 13]; in)
this model the owner object (the composite) should dom-
inate an owned object (a component)—that is, all ac-

cess paths to the owned object should pass through itsexamining instance fields of reference type in the code. In

owner. The owners-as-dominators model defines an own-our model, an assqgiatign_ relationship through a fbéi#
ership boundary for each owner: intuitively, an owned refined as composition if it can be proven that all objects

object may be accessed by its owner as well as other 0b_referred byf are owned by their enclosing object. Thus,

jects within the boundary of the owner. For example, an given a suitable definition of implementation-level owner-

owned object stored in an instance field may be passed tos_hIIO and composition, our goal_ Is to design a static analy_-
an owned container. As pointed out by Clarke et. al [4, 13] sis that answers the question: given a set of Java classes (i.e,

and also observed by us during the empirical investiga_acom_ponent to be.analyzed) for Wh_a_tinstance fields we ob-
tion, the owners-as-dominators model captures well the SETV€ implementation-level composition throughout all pos-
notion of composition in modeling. sible executions of ar_bltrary cll_ent code bu_llt on top of_these

We propose a novel static analysis for ownership infer- clas:_ses? '_I'h_e analysis output is a set of f|e_I(_JIs for Wh'c_h the
ence. If the ownership inference determines that all objects'€/ationship is guaranteed to be a composition for arbitrary

stored in a field are owned by their enclosing object, the cI|eCn|t colde.h . f this inf . h
analysis identifies a composition through that field. Our ap- . ear 3(’1 t ere arel,- ;/arlohus uses of this n ormaﬂorfw when
proach works on incomplete programs. This is an importantIntegrate In a tool for the reverse engineering of UML

feature because in the context of reverse engineering tool%"]lSS d|ak\)grams. Fdlrst!y, recgv_erylof comp_osmonds bndgesh
it is essential to be able to perform separate analysis of softIN€ gap between design and implementation and eases the

ware components. For example, it is typical to have to an- Understanding of underlying design. Secondly, verifying
alyze a component without having access to the clients of,that compositions are implemented properly and refactor-

that component. Our ownership inference analysis is based"9 Early ';: needed matl)y help prevelntlserlous prr?gra][n flaws
on points-to analysiswhich determines the set of objects a suc as_t signers bug in Java 1.1. aners Ip ot rep-
reference variable or a reference object field may point to. resentapon IS a deswable_ propgrty and information about it
We use the points-to analysis solution to approximate theCan be included automatically in the component documen-

possible accesses between run-time objects. tation.

We present empirical results on several components. [n_ 1 1€ input to the analysis contains a €& of interact-

our experiments, on average 40% of the examined fields ac:"Y Java classes. We will use "classes” to denote both Java

count for relationships that are identified as compositions. classes and interfaces because for the purposes of this work

We also present a precision evaluation which shows that"® ﬁlﬁerencg IS nof[brlele\{ant. ;subset%l IS deS|ghnated
our analysis achieves almost perfect precision—that is, it as the set oaccessible classetnese are classes that may

almost never misses composition relationships identified inbe a;}cc?ssed b&/ unknowln client cof(.jeldfrom (;)ut3|dh€§9f ;
our model. The results indicate that precise identification of Such client code can only access fields and methods from

interclass relationships can be done with a simple and inex-(’_% th‘f"t are declared in some accessible class; the_se acces-
sible fields and methods are referred tabasindary fields
1 InJava 1.1 the security system functi@tass.getSigners re- andboqndary methOd_S .
turned a pointer to an internal array allowing clients to modify the ar- Section 2.1 describes the ownership model, and Sec-
ray and compromising the security of the system. tion 2.2 describes the notion of implementation-level com-

Reverse engineering tools typically infer associations by

public class Vector
protected Object[] data;
public Vector(int size)

1 data = new Object[size]; }
public void addElement(Object e,int at)
2 datafat] = e; }

public Object elementAt(int at)
3 return datalat];

public Enumeration elements()
4 return new Vlterator(this);

{
b}

final class Vlteratorimplements Enumeration

Vector vector;

int count;

Viterator(Vector v)
this.vector = v;
this.count = 0;

Object nextElement()

7 Object]] data = vector.data;

8 int i = this.count;

9 this.count++;

10 return datali];

bl
main() {
11 Vector v = new Vector(100);
12 X x = new X();
13 v.addElement(x,0);
14 Enumeration e = v.elements();
15 x = (X) e.nextElement();
16 xm(); }

Figure 1. Simplified vector and its iterator.

r oot
X-——Vect or -y ter at or

5
6

l1

at
Ohj ect []
(a) Original Object Graph

r oot

X—Vect or
u

L \/| t eT at or

bj ect[]
(b) Relaxed Object Graph
Figure 2. Object graphs for Figure 1.

object graphwhich describes access relationships between
run-time objects:

e Let f be areference instance field in a run-time object

o. There is an edge L o inthe object graph iff field
fin o refers too’ at some point of program executién.

There is an edge IR o' iff some element of array
refers too’ at some point of program execution.

There is an edge — ¢’ iff an instance method or con-
structor invoked on receiverhas local variable that
refers too’, or a static method called from an instance
method or constructor invoked an has a local vari-
abler that refers ta’. There is an edge of this kind
only if there is no edge of the first kind fromto o’.

A run-time objecto’ is accessed in theontextof o iff
there is an edge fromto o’ in the object graph. The start of
program execution is expressed with a special modé .
Contextroot represents the context farain and for ob-
jects referenced by static fields. For example, executing
main in Figure 1 results in the object graph in Figure 2(a).
NodeVector corresponds to the object created atithe
site at line 11, nod®bject[] corresponds to the array
created at the site at line 1, nod#erator corresponds
to the iterator created at the site at line 4, and néderre-
sponds to the object created at the site at line 12.

The owners-as-dominators model states that the owner
of an objecto is the immediate dominator ef in the ob-
ject graph [13F Thus, according to this modé&lbject[]
is not owned by its enclosingector object for this ex-
ecution due to the access relationship (although only tem-
porary) betweerVlIterator and Object[] . To make
the model less restrictive, we introduce tredaxed ob-
ject graphwhich omits edges due to certain temporary
access relationships. We consider two kinds of temporary
access relationships. The first kind arises when an object
is created in one context and immediately passed to an-
other context; the relationship between the creating object
and the new object is only temporary but if shown on the
graph it is likely to restrict ownership. This notion cap-
tures the situations when an object is created and immedi-

position based on it. Section 2.3 discusses certain con-ately returned (e.g., as ireturn new VIterator(this); in

straints to the model that allow more precise identification
of ownership and composition.

2.1. Ownership Model

The ownership model is based on the notiorowhers-
as-dominatorq4, 3, 13]. It is essentially the model pro-
posed by Potter et al. [13] with several modifications that
allow more precise handling of popular object-oriented pat-
terns and idioms such as iterators, composites and facto
ries [7]. In this model, each execution is represented by an

methodelements in Figure 1) and when an object is cre-
ated and immediately passed to another context (e.g., as in
new BufferedReader(new FileReader(fileName))). This
situation occurs in popular object-oriented design patterns

We require that all newly created objects appear in the object graph ex-
plicitly. Analogously to [4], this is done by requiring that at the point
of creation a new object is stored in a new local variable; clearly, this
transformation does not change program semantics.

Node m dominatesnoden if every path from the root of the graph
that reaches node has to pass through node. The root dominates

all nodes. Noden immediately dominatesoden if m dominatesn

and there is no node such thatn dominatep andp dominates..

such as factories, decorators and composites; in these caséswest-common supertype, used elsewhere as well [20, 5].
the temporary relationship between the creating object andin this system types include a powerset of the Java types in
the newly created one is a matter of safety and flexibility of the classes being analyzed. The mapping from a Java type,
the implementation rather than an intention of the design. T is the smallest set that includésand all its supertypes
The second kind of temporary access relationships arisesn Java. Since the elements in this system are sets, the low-
from field read statemenis= . f, wherer is not assigned, est common supertype is the intersection of two sets.
passed as an ImplICIt or eXpliCit argument, or returned. This Consider the f0||owing examp|e taken from [20] Sup_
notion captures the situation that arises in iterators (considefpose that the least common supertype of two classes
statementdata = vector.data in nextElement in F|g' and 02’ both of which imp'ement interfaces and IZ is
ure 1)—iterator objects have temporary references to thepeeded. Since there are two common immediate supertypes
I’epresentation of their CO||eCti0nS, which allows efficient of C’1 andc2’ there is no unique Supertype_ The mapp|ng of
access of collection elements; however, the collection ob- ¢, in the new type system i§Cy, I1, I, Object }; simi-
ject is always in scope. Therefore, if all accesses’dh larly, the mapping of’; is {C», I3, I, Object }. The least
the context ob are due to such temporary access relation- common supertype in these types is simply the intersection
ships, edge — o’ is not shown in the relaxed object graph. of the two sets{I,, I, Object }. When mapping the new
The relaxed object graph for the execution of the types back to Java types it is not guaranteed that a Java type
code in Figure 1 is shown in Figure 2(b). Note that will exist. Thus, an analysis can either choose an alternative
edge Vector —Vlterator is omitted because it is real type such a®bject , show one-to-many associations
due to a temporary access relationship of the first kind; with all types in the set, or ask the user for help. Our anal-
edge Viterator ~ —Object[] is omitted as well be- ysis, described in Section 4, would disp@pject in this
cause it is due to a temporary access relationship of thecase; assuming that the analysis is relatively precise, hav-
second kind. The owner ob is the immediate dom- ingObject as the least common supertype would indicate

inator of o in the relaxed object graph. Thuspot a potential flaw and trigger a careful review of code and de-
owns X, Vector and Viterator and Vector owns sign.
Object[] Example. Consider the package in Figure 3. This ex-
ample is based on classes from the standard Java li-
2.2. Implementation-level Composition brary packagejava.util.zip , with some maodifi-
cations made to simplify the presentation and better il-
Let A be a class inCls, and f be a field of typeB lustrate the problem and our approadiis contains the

declared inA where B is a reference type (class, inter- classes from Figure 3 plus clagipEntry . The accessi-
face or array type [8]). The ownership property holds for ble classes argiplnputStream , ZipOutputStream
f if throughout all possible executions of arbitrary clients and ZipEntry and the boundary methods are all pub-

of Cls, every instance ofA owns the instances a8 that lic methods declared in those classes (i.e., the component
its f field refers to. Consider the case whegtis a collec- can be accessed from client code through the public meth-
tion field—that is, all objects stored in the field are arrays 0ds declared in these classes).

or instances of one of the standagada.util collection Clearly, the CRC32 objects are always owned by
classes (e.gjava.util.Vector). If every instance of their enclosing streams. Therefore, their is one-to-one

A owns all corresponding instances stored in the collection, composition relationships through fieldsrc in both
there is aone-to-many compositiarlationship betweer ZiplnputStream and ZipOutputStream . There is
andC', whereC is the lowest common supertype of the in- a regular one-to-one association through fiefdry in
stances stored in the collection; otherwise, there is a one-toZiplnputStream ; it is easy to construct client code
many regular association (it may also be referred as aggreon top of these classes such that thgEntry in-
gation). For collection fields for which the ownership prop- stances created iliplnputStream objects are leaked

erty holds, there is an attribute of the associatfowned to client code fromgetNextEntry . Similarly, there
collection} which indicates that the collection is owned by is a regular one-to-one association throughtry in
its enclosing object. Consider the case wifes not a col- ZipOutputStream because th&ipEntry objects are
lection field. If the ownership property holds férthe asso- passed from client code wutNextEntry . The associa-
ciation betweem and B is aone-to-one compositigth- tions through fieldnames andentries are both one-to-
erwise it is a regular one-to-one association. many regular associations betwe2ipOutputStream

Note that in Java, due to interfaces, it is not always possi-and ZipEntry ; both have attribute{owned collec-
ble to find unique non-trivial (i.e., ndbject) least com- tion}. Clearly, theZipOutputStream instance trivially
mon supertype of two types. Thus, we use a variant of theowns theHashtable instance. It owns th&ector in-
Java type system in which any two types have a uniquestance as well, although théector instance is referred

package zip; ary method does not leav@s—that is, all of its transitive

public class InflaterinputStream { callees are also ifd'ls. In particular, if we consider the pos-
Bﬁgigﬁigg Lnf{gf]erbmf; sibility of unknown subclasses, all instance calls from
public |nﬂat)énnputsiream(mﬂater inf, Cls could potentially be “redirectedl“lto .unknown exter-
int size) { nal code that may affect the composition inference. For ex-
Lhd?équg/\l/nft;ayte[size]-) ample, a field may be identified as composition in the
public InflaterinputStream(inflater inf) { current set of classes but an unknown subclass may over-
this(inf, 512); } ride some method and the overriding method may leak the
/I methodsread andfill contain instance calls anf } field (e.g., by assigning it to a static field).
public class ZiplnputStream extends Thus, Cls is augmented to include the classes that pro-
|ng|r?\}§trénpztilésgﬁgmemry. { vide component functionality as well as all other classes
private CRC32 cre=new CRC32(); t_ransmvely'referenced. In the experiments presenFed in Sec-
public ZipIinputStream() { tion 5 we included all classes that were transitively ref-
glt!peg(_nfzw |ﬂf|ate’[l(tru'|35), 512); } erenced byCls. This approach restricts analysis informa-
pucrlcc.reslgt(;try getNextentry() { tion to the currently "known world"—that is, the informa-
inf.reset();’ tion may be invalidated in the future when new subclasses
lrfet(u(fnnt;yn:tsédLOC())==nU||) return null; are added taCls. Another approach is to change the analy-
private ZipEntFy readLOC() (sis to make worst cage_assumptlons for calls th_at may enter
ZipEntry e=new ZipEntry(); some unknown overriding methods. However, in this case,
/ code reads and writes fields ef the analysis will be overly conservative and likely report
_retum & _ i fewer compositions. Thus, we believe that it is more use-
DLIJDUHJ C|aOSS Z'PSOUtPUtStream extends ful to restrict the analysis to the known world; of course,
peri\?;?é ;fgg;tgezwtry. the analysis user must be aware that the information is valid
private Vector entries=new Vector(); for the given set of known classes.
private Hashtable names=new Hashtable();
private CRC32 crc=new CRC32();
public ZipOutputStream() { 3. Points-to Analysis
super(new Deflater(...)); }
public void putNextEntry(ZipEntry e) {
(é code readsta”d writes f'eI'_de Points-to analysis determines the set of objects that a
éngﬂgggéapéiéﬁigﬁ{g’; e)=nul) I givgq referen.ce variablg ora rgference figld may point to.
entry=e; } This information has a wide variety of uses in software tools
DugllCEV?ld closetEr_ntry() { and optimizing compilers. In this paper, points-to informa-
//Igoger¥eef§segnré,’writes fields of tion is used for ownership inference. It ig needgd to con-
crc.reset(); struct a graph that approximates all possible object graphs
uglri]ct:ryic?ig”;finish(; that can happen when arbitrary client code is built on top of
P Enumeration enum=entries.elements(); Cls. There is a large body of work on point_s-_to analys_is with
while (enum.hasMoreElements()) { .. }}} differenttrade-offs between cost and precision. In this paper
Figure 3. Sample package zip . we consider ownership inference based on the well-known

Andersen-style flow- and context-insensitive points-to anal-
ysis for Java from [16}.

to in the context of its iterator (recall the example in Fig-

ure 1); however, the iterator is a local object owned by 3.1. Points-to Analysis for Java

the enclosing ZipOutputStream object which en-

sures that thé/ector instance is dominated by the en-
closing ZipOutputStream and may be accessed only Se
within its ownership boundary.

The points-to analysis is defined in terms of three sets.
tR is the set of locals, formals and static fields of ref-
erence type. Seb is the set of object names; the objects
created at an allocation site are represented by object

2.3. Discussion nameo; € O. SetF contains all instance fields in program

In order to allow more precise identification of _ N _
implementation-level composition, we employ the follow- 2 Flow-insensitive analyse§ do not take into account the flow of con-
. . L trol between program points and are less precise and less expensive
Ing qonstramt,_stan_dard for other problem definitions that {han flow-sensitive analyses. Context-sensitive analyses distinguish
require analysis of incomplete programs [17, 15]. We only between different calling contexts of a method and are more precise
consider executions in which the invocation of a bound- ~ and more expensive than context-insensitive ones.

classes. The analysis solution ipa@ints-to graptwhere the yoid main() {

edges represent the following "may-refer-to” relationships: ZipEntry ph _ZE;
ZiplnputStream ph _ZIS;

e Letr € Rando € O. An edger — o in the points- leOutpgtStream_ ph 7Z.OS;
to graph means that at run timemay refer to some SE éFS - nneg\\//v ZZIPpI?rr]]E)rgt%tream()-
object that is represented by ph_ZOS = new ZipOutputStrear’n();

e Let f € I be areference instance field in objects rep- BEéE'Sftgﬁ,%(lg'gewextEntry();
resented by some € O. An edgeo > 0, means that PE égg-gluotg‘eeé(rt]ﬁ””y(ph -ZE);
at run time fieldf of some object represented bynay thos:finish(); yo; }

refer to some object representedday

e If o represents array objects,l 0o shows that some

element of some array representeddgnay refer at
run time to an object represented dyy

Figure 4. Placeholder main method for zip .

) . whole-program analysis is flow-insensitive. Methodin
The Andersen-style points-to analysis for Java from [16] ;okes all public methods from the classes(is desig-
is a relatively precise flow- and context-insensitive pated as accessible.

inclusion-based analysis. It propagates may-refer-to rela-] o)
when it analyzes statemeni = ¢” it infers thatp may re- here; they can be found in[17]. For the purposes of our anal-

fer to any object thag may refer to. ysis we discuss thebject reachability{15] property of the
results computed by the fragment analysis; this property is

relevant for the analysis described in Section 4. Consider
some client program built on top @fis and an execution of

: , L . this program (the program must satisfy the constraints dis-
Points-to analyses and Andersen’s analysis in particular) .)
y y P cussed in Section 2.3). Let € R be a variable declared

are typically designed ashole-program analysehey take in Cls and at some point during executienis the start

as input a complete program and produce points-to graphs))
that reflect relationships in the entire program. However, the pf a chain of object references that leads to some heap ob

problem considered in this paper requires points-to analy_Ject. I_n the fragment analysis solution, there will be a (_:hain
sis of a partial program. The input is a set of classts of points-to edges that startssatind leads to some object

and the analysis needs to construct an approximate ObjecpamﬁoItjha_tfre_prdeselnts (tjhe ru_rgtlrga(?lolijec;_. A S|m|I<'_;1r p;]rop-
graph that is valid across all possible executions of arbi_fer:ym(;ntsalnrallssiicsslrjtio(l)wu'[tileestart?ﬁ) toilr?t%a;stﬁé";r:aien is
trary client code built on top o€ls. To address this prob- th gme ble f y in th t’h th g pt
lem we make use of a general technique caflfagment € variable frommain that has the same type as
analysisdue to Nasko Rountev [14, 17, 15]. Fragmentanal- We illustrate this property for our points-to analy-
ysis works on a program fragment rather than on a completesis. Consider the example from Figures 3 and 4. There
program; in our case the fragment is the set of clagges are three allocation sites in theain method; they
Initially, the fragment analysis produces an arti- are denoted by nameZEl, ZIS1 and ZOS1l Name
ficial main method that serves as a placeholder for byte[] corresponds to the allocation site in class
client code written on top ofCls. Intuitively, the artifi- InflaterInputStream . There are three alloca-
cial main simulates the possible flow of objects between tion sites in clas<iplnputStream ; they are denoted
Cls and the client code. Subsequently, the fragment anal-by name<CRC] Inflaterl andZE2. There are four al-
ysis attachesnain to Cls and uses some whole-program location sites in clasgipOutputStream ; they are de-
analysis engine to compute a points-to graph which summa-noted by Vectorl , Hashtablel , Deflaterl and
rizes the possible effects of arbitrary client code. The frag- CRC2 In addition, we consider the allocation sites in
ment analysis approach can be used with a wide variety ofVector (recall Figure 1), which are transitively reach-
points-to and class analyses; for the purposes of this pa-able; they are denoted bbject]] and Viterl
per we only consider fragment analysis used with the The points-to graph computed by Andersen’s analy-
Andersen-style points-to analysis from [16]. sis from the code in Figures 4, 3 and 1 is shown in Figure 5.
The placeholdemain method for the classes from Fig- Heap object names are underlined and reference vari-
ure 3 is shown in Figure 4. The method contains variablesable names are prefixed by the name of their declaring
for types fromCis that can be accessed by client code. The method. For simplicity, implicit parametetkis and ob-
statements represent different possible interactions involv-ject namednflaterl, byte[], Hashtablel and
ing Cls; their order is not relevant because the subsequentDeflaterl are not shown.

3.2. Fragment Points-to Analysis

ph_ZI' S ph_zZGCs input Stmt set of statementsPt: RUO — P(0)

crc \\ ph_2E ¢ cre output Ag: O — P(0)
CRCI=—7ZI S1 Z0S1—=CRC2 [1] foreach
entries s: 1 =mnew C(...) s.t.I notimmediately passed or
entry vect or, . .
7 X Vectorl=—"—Vlterl immediately returned to another context,
d%t a J s: 1l =r.m(...)s.t.r #this
finish. enumr] i i ;
readLCC. e Dbi ect s:l=r.fstr#this andl assigned to a variablio
ec
cl oseEntr] L] [2] add{c — 0; | c€Chrneimtetnods) N 0j € Pt(1)} to Ag
/l add access edges due to flow from callees to callers
- € [3] foreach
ment . e s:l=mnew C(r),

s:l.m(r) s.t.l # this
s:l.f =rstil#this do
[4] add{o; — o,]|0;€ Pt(l) A o; € Pt(r)} to Ag
/l add access edges due to flow from callers into callees

Figure 5. Points-to graph computed by the
fragment points-to analysis.

s .
4. Identifying Composition Relationships [5] foreacho; = o; € Pt dolabel with f eacho; — o; € Ag

Figure 6. Construction of Ag. P(X) denotes
We propose a novel analysis for ownership inference that the power set of X. Ag is initially empty.
is based on the output of the fragment points-to analysis.
The ownership analysis constructs #ygproximate object

graph Ag which approximates all possible run-time object o new edges are added to that object from the contexts
graphs that can happen when client code is built on top enclosing the constructor call. Also, at indirect read state-
of Cls. The analysis usedyg to identify aboundarysub- ments, no edges are added when varidtitenot assigned
graph rooted at for each object name; the subgraph con- o passed as an explicit or implicit argument later (e.g., it
tains paths that are guaranteed to represent flow within theg ;sed only to access instance or array fields such as in
ownership boundary of. Whenever the edge appears inthe ,.—;1;1) This is consistent with the definition of the relaxed

boundary of its source faall edges labeled witlf, the re- gpject graph in Section 2.1. Lines 3-4 account for edges due

lationship througly is identified as composition. to flow from the contexts of the caller to the contexts of
the callee. For example, at instance calls edges are added

4.1. Approximate Object Graph to each object in the points-to set of a reference argument,

from each object in the points-to set of the receiver. Finally,
The nodes iMdg are taken from the set of object names line 5 labels the edges with the appropriate field identifier.
O and the edges represent "may-access” relationships. Figfor brevity, we omit discussion of static fields. The actual
ure 6 outlines the construction dfy given a points-to graph implementation creates edges froaot to each object in
Pt. SetC,, denotes the set of object names that representthe points-to set of a static field; the case is handled cor-
the contexts of invocation of methed. If m is an instance rectly by this algorithm and by the algorithm in Section 4.2.

method or constructor;,, is the points-to set of the im- We discuss thaeachability property of the approxi-
plicit parameterthis of m. If m is a static method,, mate object graph. Consider some client program built
includes the union of the points-to setstbis for all in- on top of Cls and an execution of this program (the pro-

stance methods or constructors that may ea(directly or gram must satisfy the constraints discussed in Section 2.3).
through a sequence of static calls); it includest if m is Letc be a context (i.eroot or a heap object) and at some
main or may be called fronmain . point during executior is the start of a chain in the re-
Lines 1-2 account for edges due to flow from the contexts laxed object graph that leads to some heap obfedn Ag,
of the callee to the contexts of the caller. For example, at athere will be a chain of edges that starts at the representative
constructor call new edges are addedlipfrom each con- of c and leads to the representativeodf Figure 7 shows the
text enclosing the call to the name representing the newlyapproximate object graph computed from the code on Fig-
created object. Similarly, at an instance call not through ures 3, 4 and 1, and the points-to graph in Figure 5 (only ob-
this new edges are added from each context enclosingject names from Figure 5 are shown). For the majority of
the call to each returned object. Note that when the newly edges inference is straight-forward. For example, edges
constructed object is immediately passed to another contextoot —ZIS1, root —ZIS2 androot —ZE1 are due
(e.g., asimew A(new B(...))), orimmediately returned to to the constructor calls imain and edgeZIS1 —CRC1
another context (e.g., asimturn new VIterator(this)), and ZIS1 —ZE2 are due to the constructor calls in

r oot

vect or

ZE2, ZEl-—Vectort—Viterl
dat a
&i{ !
nj ect[]

Figure 7. Approximate object graph com-
puted by the algorithm in Figure 6.

input
output

Ag: O — P(O)
Bndry: O — P(O)

initialize Bndry(o;)={o:}

Forbid(o;)={0; — 0; s.t.Jox S.tox — 0; Aox — 05}

[1] while changes occur iBndry

(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]
(12]
[13]
(14]
(15]

foreach Bndry(o;) ando € Bndry(o;)
foreacho — o; notin Bndry(o;) and not inForbid(o;)
Wi={}, Tmp={}, inBndry=true
marko — o5, and add tolW! and Tmp
while Wi not empty andnBoundary
removeo — o; from WL
foreachor, — o; € Bndry(o;) s.t.op, — 0 A ox, — 0;
if o, — o; unmarked, mark and add ! and T'mp
foreacho — oy S.t.o — or A ok, — 0;
if o — o € Bndry(o;)
if o — o; unmarked, mark and add ! and T'mp
elseinBndry = false
if inBndry
add Tmp to Bndry(o;), add Bndry(o;) to Bndry(o;)

Figure 8. Ownership analysis.

class ZiplnputStream
is due to call enum=entries.elements() in method
is due to state-
mentreturn new VIterator(this) in methodelements ;
note that there is no edg¥ectorl —Viterl
to this statement. Edgeoot —ZE2 is due to state-
ment ph_ZE = ph_ZIS.getNextEntry() in main, and
edgesZ0OS1-ZE2 and ZOS1—~ZE1 are due to state-
ment ph_Z0S.putNextEntry(ph_ZE) in main. Edges
—ZE1 are due to flow

finish

Obiject[]

Edge ZOS1- Viterl

. Edge Viterl —Vectorl

—ZE2 and Object[]

at statemendatalat] = e in addElement .

4.2

The algorithm in Figure 8 takedg as input and out-
puts subgraph8ndry(o;) for each object name. Subgraph

. Ownership Boundary

due

Bndry(o;) contains paths that are guaranteed to represent
flow within the ownership boundary of an instance repre-
sented by;. More precisely, we have the following lemma.

If a pathp: 0; — 01... — o — o € Bndry(o;), then for
eacho] (a run-time object represented by ando” reach-
able fromo] on a path represented by we have (i)o]
dominateso” and (ii) Bndry(o;) is closed with respect to

o" (i.e., the representative @verypath fromo] to o" is
also in Bndry(o;)). For example, the boundary @OS1
includes nodeZ0S1,CRC2,Vectorl,Object[] and
Viterl and the edges between them. It is easy to see
that for every run-time patzOSI"—Vectorl ", ZOS
dominatesd/ectorl ".Vectorl T isreachable along paths
Z0S —Vectorl " andZOS —Vlterl "— Vectorl 7;

the representatives of both paths areindry(Z0OS1).

Below we briefly outline the algorithm and its correct-
ness proof. The algorithm uses the fact tiaflows from
objecto] to some objecb} only if one of the following is
true: (1)o has a handle to both’ ando} (and due to the
reachability propertylg contains edges;, — o;, o, — 05,

o; — 05), or (2) oj has a handle to both; ando’ (and

Ay contains edges; — oy, 0; — 0j, o — 0;). This ob-
servation helps identify encapsulation more precisely. Sup-
pose that our running example has another input stream ob-
ject, created byoot and denoted by namé&S2 . The re-
lationship betweeZIS2 and its crc object would be rep-
resented by edgélS2 —CRC1in Figure 7. A naive algo-
rithm may identifyroot as the dominator of the crc ob-
jects, and fail to identify the composition relationship be-
tweenZiplnputStream andCRC32 In fact, theCRC1
object is created and dominated by its enclosifig§l ob-

ject because there is ng such that eitheo, has handles

to bothZIS1 andCRC1 or ZIS1 has handles to bothy,
andCRC1 thus, theCRC1lobject created by thglS1 ob-

ject does not flow to or from any other context.

The algorithm builds the boundary of an object naspe
by adding edgesBndry(o;) grows from zero to one edge,
o; — oj, when (i) there is n@,, that has handles to both
o; ando; and (i) there is n@;, such thab; has handles to
bothoy ando;, andoy, has a handle to;. The first condition
is guaranteed by the check at line 3 and the second condi-
tion is guaranteed by the fact that the flag variablBndry
stays true only if the loop at lines 10-13 is skipped. Thus,
an edge; — o; is added to the empty boundary @fonly
when it is guaranteed that tle object accesses the ob-
ject exclusively (i.e., no other object has a handle to it). Ex-
amples of such edges afé&51 —CRC1andZOS1—-CRC2
Clearly, the conditions of the lemma hold in this case.

Consider an edge — o; (examined at lines 3-15). Con-
sider some client program built on top 6fis and an exe-
cution of this program (the program must satisfy the con-
straints discussed in Section 2.3). ltbe any run-time
object represented ky, ando” be an object reachable on

a patho] — ...o; — o" whose representative is in the
boundary ofo,. We may assume that (§ dominateso”
and (ii) Bndry(o;) is closed w.r.to". Let o” refer to an in-
stancev’;. We need to examine al}, such thab’ may flow
to or fromoy, (i.e., there is an edgg, — o). If all theseoy,
are dominated by; theno; dominates;. If the boundary
is closed w.r.t. each;], adding edges — o; ando;, — o;
ensures that the boundary is closed woft.

Atlines 4-5 the algorithm marks the edge as visited in the
current iteration, sets thwBndry flag to true, and initial-
izes the worklist and the closure s€tnp (discussed later)
to o — o;. Objecto’; flows fromo” into someo;, when one
of the following conditions is true. First;, has handles to
botho™ ando} (e.g.,0; may be returned from a method in-
voked ono"). Since all paths to] — ... — o}, are subpaths
of paths too", their representatives must be Bndry(o;);
thus, o}, is (i) dominated by and (ii) Bndry(o;) is closed
w.r.t. of. This case is examined at lines 8-9 and— o;
is added to the worklist; it is examined in a subsequent it-
eration of the while loop in order to find the representa-
tives of the objects that; may flow to fromo;.. In addition,
or — o; is added toTmp, the closure set 0§ — o;—

edgeo;—o; € DBndry(o;) eacho; owns theo’ instances

that it may refer to. If for every edge labeled withwe

haveo 5 of € Bndry(o) the analysis identifies one-to-one

implementation-level composition or collection ownership.
4.3. Composition Relationships

Let f be an instance field of reference type(¥s. Con-

sider all field edges L o'in Pt Clearly, if for each edge
o — o' € Bndry(o), the ownership property holds fgr
and the analysis identifies one-to-one implementation-level

composition or collection ownership.

Consider an edge RN where f is a field of collec-
tion type. The set of instances stored in collections repre-
sented by’ is approximated by settored(o’), the union of
the points-to sets of the variables passed as appropriate ac-
tual arguments to standamlt methods invoked on'.
For example, for Figures 3 and 4, s¢fored(Vectorl)
is the points-to set of variable in putNextEntry
which is the actual argument to the standard put method
of Vector , addElement ; thereforeStored(Vectorl)

adding the edges in the closure set to the boundary (line= {ZE1,ZE2}. Similarly, set Stored(Hashtablel)

15) ensures that the boundary is closed w.r.t. edclsec-
ond, o7 may flow fromo” into someoj, such thato” has
handles to botlv}, and 0} Sinceo — o € Bndry(o;)

we have that (ip;, is dominated by! and (ii) the bound-
ary is closed w.r.to}.. This case is examined at the loop at
lines 10-13 and appropriate — o; are added to the work-
list and to the closure set. Finally, if the edges in the clo-
sure set form appropriate pathis Bndry is true and at line
15 the algorithm adds the closure sétp and the bound-

ary ofo; to the boundary ob;.

We briefly illustrate the algorithm on our running ex-
ample. Consider edgeZlS1 —CRC1 The algorithm
skips the loop on lines 8-9 because d@tdry(ZIS1)
is empty; it skips the loop on lines 10-13 as well be-
cause there is n@; with handles to bothZIS1 and
CRC1 At line 15, edge ZIS1 —CRC1 is added to
Bndry(ZIS1). Edges ZOS1-CRC2 ZOS1-Viterl
and Vectorl —Object[] are processed analogously.
For edgeZOS1—Vectorl the algorithm goes through
lines 10-13 witho — o} beingZOS1—Viterl . It de-
termines thatZOS1—Viterl is already in the bound-
ary of ZOSZ thus, the vector object can be accessed
only by its enclosing output stream object and the iter-
ator object which is enclosed in that output stream ob-
ject. Thus we have the following boundary graphs:
Bndry(ZIS1) = {ZIS1 —-CRC3, Bndry(Vectorl)
{Vectorl —Object]] } and Bndry(ZOSJ
{ZOS1-CRC2 ZOSl—Vectorl , ZOSl—Viterl ,
Vectorl —Object]] ,Viterl —Vectorl }.

A corollary of the lemma is that whenever we have an

is the points-to set of in putNextEntry ; therefore
we have Stored(Hashtablel) = {ZE1,ZE2 }. We ex-
tend the notation to hav8tored(f) denote the union of
the setsStored(o’) whereo' is a collection object stored in
f. If for each pathp through an edge — o’ to an name
in Stored(f) we havep € Bndry(o), the analysis iden-
tifies a one-to-many composition relationship through
otherwise the analysis identifies a one-to-many associa-
tion relationship.

It remains to identify the least common supertypef
the objects stored in collections fields as the analysis needs
to infer an association between the enclosing clagsarfd
C. As explained in Section 2.2 our analysis uses a new type
system to infer the least common supertype of all types in
Stored(f), then maps the new type to a Java type. If a Java
type does not exist, the analysis ugaisject , thus loos-
ing precision. In our example, the least common supertype
of all instances stored iNectorl is easily identified to
beZipEntry ;thus, the analysis infers that there is a regu-
lar one-to many association betwe@&pOutputStream
andZipEntry through fieldentries

5. Experimental Study

The goal of the study is to address two questions. First,
how often does our analysis discover implementation-level
composition? Second, hoimprecisethe analysis is—that
is, how often it misses implementation-level composition?

For the experiments we used several Java compo-
nents from the standard library packaggeg.text and

java.util.zip [15]. The components are described jectinaccordance with the ownership modelin Section 2.1).
briefly in the first two columns of Table 1. Each compo- In all cases, except one, we were able to prove that the ob-
nent contains the set of classes(ifs (these are the classes jectwas exposed. Thus, the analysis achieves almost perfect
that provide certain functionality plus all other classes that precision.

are directly or transitively referenced by them); the num- Field defaultCenturyStart in componentdate

ber of classes in each component is shown in column (3).accounted for the one case of imprecision. The impreci-
We considered all reference instance fields in the classesion was due to context-insensitive object naming in the
in Cls that provide the component functionality; this num- points-to and composition analyses.The object stored in the

ber is given in column (4). field comes from a call to a methag®tTime which cre-
ates and immediately returns @ate object. Although
5.1. Results the Date object stored indefaultCenturyStart

does not flow out of its enclosingimpleDateFormat

We applied the algorithm described earlier in order to OPject, otherDate objects created bygetTime in
determine which fields accounted for composition relation- SimpleDateFormat are being returned (i.e., there are
ships. The results are given in the last two columns of Ta- €dges indyg to the SimpleDateFormat object and the
ble 1. Column (5) shows how many of the fields from col- Only representative dbate). This imprecision may be re-
umn (4) are identified as one-to-one compositions and col-S0Ived by using an analysis that employs more precise ob-
umn (3) shows how many of the fields are identified as /€Ct naming. In the case getTime it may distinguish the
owned collections (i.e., arrays and standgrda. util Date objects for different call sites ajetTime ; the tar-
collections). get of thedefaultCenturyStart edge would be a

On average, the analysis reported 30% one-to-one comSeparatédate object that does not flow out and the own-
positions and 10% owned collections—that is, 40% of the grsh|p mferen.c.e algonthm WI!| correctly |dent|f¥ that there
reference instance fields account for representation thatS @ composition relationship through this field. How-
is not being exposed outside of its enclosing object. The EVer, it is unclear whether a more precise context-sensitive
owned collections in componerip are analogous to the pomts—tol analysis will rg_sult in substantial benefits for the
Vector andHashtable in our running example; they —OWnership and composition analyses.
store exposedipEntries and account for one-to-many)
association relationships. Two of the owned collections for 2-3. Conclusions
componentollator and one of the owned collections
for date accounted for one-to-many compositions. There- ~ Our results indicate that the ownership model captures

maining owned collections are arrays of simple type. conceptual composition relationships appropriately— we
encountered several cases when values of private fields were
5.2. Analysis Precision stored in other parts of the object representation. Thus, a

simpler model based on exclusive ownership—that is, a
model which requires that an owned object is in exclusive
relationship with its owner, would not have been sufficient
to identify compositions. The results also show that compo-
sition relationships occurs often. Therefore, the analysis can
provide useful information for reverse engineering tools. It
is important that highly precise information can be obtained
with practical analysis—the combined running time of the

The issue of analysis precision is of crucial importance
for software tools. If an analysis is imprecise, it may report
that the relationship between two classes is not a composi
tion while in reality it is, or that a collection is not owned
while in reality it is owned (i.e., the analysis reports that cer-
tain representation may be exposed while in fact it is not).

Such information is not useful and may confuse the user’ L
points-to and composition inference analyses does not ex-

and even render the tool unusable. For example, if a user at 410 q t (based on th
tempts to ensure the consistency between the code and th&S€ seconds on any component (based on the average

composition relationships in UML design class diagrams, of three runs on a Sun Fire 380R). Of course, these results
imprecision will mean that a large chunk of code will have need to be reconfirmed on more components.

to be examined manually. Since imprecision results in waste

of human time, analysis designers must carefully and pre-6. Related Work

cisely identify and evaluate any sources of imprecision.

In our experiments, we examined the fieldsG¥s that Recent work by Géhéneuc and Albin-Amiot [9]
were not identified as compositions or owned collections. presents definitions and identification algorithms for
We attempted to prove that it was possible to write client implementation-level association, composition and ag-
code for which some object stored in such a field would gregation relationships. Our work focuses more closely
be exposed (i.e., it would not be owned by its enclosing ob- on compositions and differs substantially from [9] in

(2)Component (2)Functionality | (3)#Classes (4)#Fields Compositions
(5)#0One-to-one (6)#Owned collections

Analysis Perfect | Analysis Perfect
gzip GZIP 10 streams 199 7| 4(57%)| 4(57%)| 0(0%) 0(0%)
zip ZIP IO streams 194 10| 3(30%) | 3(30%)| 2(20%) | 2(20%)
checked 10 streams with checksums 189 2 0(0%) 0(0%) | 0(0%) 0(0%)
collator text collation 203 24 | 10(42%) | 10(42%) | 6(25%) 6(25%)
date date formatting 205 20 | 3(15%) | 4(20%) | 5(25%) | 5(25%)
number number formatting 198 3| 2(67%)| 2(67%)| 0(0%) 0(0%)
boundary iteration over boundaries in text 199 7 0(0%) 0(0%) | 0(0%) 0(0%)
Average 30% 31% 10% 10%

Table 1. Java components and implementation-level compositions.

both the definition of implementation-level composi- we infer ownership automatically and present an empiri-
tion and in the proposed identification algorithm. The cal study of the effectiveness of our approach; we believe
definition of composition in [9] is based on exclusive own- that our analysis can be usefully incorporated in software
ership. This may not be sufficient to model such commonly tools for reverse engineering of class diagrams from Java
used object-oriented patterns and idioms such as it-code. The only type annotation inference analysis that we
erators, composites, decorators, and factories [7] asare aware of is given by Aldridge et al. [1] for the purposes
well as the common situation when instance fields re- of alias understanding. Similarly to the work by &@&neuc

fer to owned objects that are stored in owned collections and Albin-Amiot [9], theowned annotation is used only

or temporarily accessed by other parts of the repre-when the analysis is able to proegclusiveownership; in
sentation of the owner. Our definition is based on the the majority of cases it infers alias parameters. Our work fo-
owners-as-dominators model which does not require ex-cuses on a different problem, composition inference, and in-
clusive relationship with the owner; as observed by us andfers ownership using a more general ownership model that
other researchers [4, 13], this model captures well the no-captures better the notion of composition in modeling. In
tion of composition in modeling [18]. addition, our algorithm may scale better.

Most importantly, we present an identification algorithm
that may be more appropriate. &&neuc and Albin-Amiot 7. Conclusions and Future Work
propose the use of dynamic analysis, but point out serious
di;advantages. First, dynamic analy;is is slow, second, itre- This work presents an approach for performing analy-
quires a complete program, and third, the results that aregs that identifies composition relationships in Java compo-
obtained may be incomplete because they are based on pagents. We define an ownership-based implementation-level
ticular runs of particular clients of the component. Our de- composition model and a static analysis that infers com-
tection algorithm is based on practical static analys_is thatposition relationships in incomplete programs. Our empiri-
works on incomplete programs and produces a solution thalzg) stydy indicates that (i) the ownership-based model cap-
is valid over all unknown clients of the component. tures well the notion of composition in modeling and (ii)
Work in [10] and [19] addresses the issue of recover- implementation-level compositions occur often and almost
ing one-to-many associations through containers, since re-all such compositions can be identified. Clearly, no defini-
verse engineering tools typically loose the association be-tive conclusions can be drawn from these limited experi-
tween the enclosing class and the class whose instances amaents. In our future work we plan to focus on further em-
stored in the container field (recall tlemtries field of pirical investigation.
Vector type in Figure 3). Identification of composition is
not addressed in these papers. Although our work focusesRe]c(;/,reﬂceS
on identification of composition, our algorithm identifies
one-to-many associations as well, and the algorithm is more [1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annota-

general than those in [10] and [19]. tions for program understanding. ®@OPSLA 2002.
Ownership type systems disallow certain accesses of ob- [2] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for

ject representation [12, 4, 3, 1, 2]. These systems require object encapsulation. IROPL, 2003.

type annotations and typically do not include automatic in- [3] D. Clarke and S. Drossopoulou. Ownership, encapsulation

ference algorithms or empirical investigations. In contrast, and the disjointness of type and effect.)OPSLA 2002.

(4]
(5]

(6]
(7]

(8]
(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

(17]

(18]

(19]

[20]

D. Clarke, J. Potter, and J. Noble. Ownership types for flex-
ible alias protection. I©OPSLA 1998.

A. Donovan, A. Kiezun, M. S. Tschantz, and M. D. Ernst.
Converting Java programs to use generic librariesOOP-
SLA 2004.

M. Fowler. UML Distilled Third Edition Addison-Wesley,
2004.

E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign
Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, 1995.

J. Gosling, B. Joy, G. Steele, and G. Bracfihe Java Lan-
guage SpecificationAddison-Wesley, 2nd edition, 2000.
Y.-G. Gueheneuc and H. Albin-Amiot. Recovering binary
class relationships: Putting icing on the UML cake ABP-
SLA 2004.

D. Jackson and A. Waingold. Lightweight recovery of object
models from bytecode. IICSE 1999.

C. Larman.Applying UML and PatternsPrentice Hall, 2nd
edition, 2002.

J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
ECOOR, 1998.

J. Potter, J. Noble, and D. Clarke. The ins and outs of ob-
jects. InAustralian Software Engineering Conferend898.

A. Rountev.Dataflow Analysis of Software FragmenhD
thesis, Rutgers University, 2002.

A. Rountev. Precise identification of side-effect free meth-
ods. InICSM, 2004.

A. Rountev, A. Milanova, and B. G. Ryder. Points-to analy-
sis for Java using annotated constraintsO@PSLA 2001.

A. Rountev, A. Milanova, and B. G. Ryder. Fragment
class analysis for testing of polymorphism in Java softwhare.
IEEE TSE 30(6):372-386, June 2004.

J. Rumbaugh, I. Jacobson, and G. Boothe Unified Mod-
eling Language Reference ManualAddison-Wesley, 2nd
edition, 2004.

P. Tonella and A. Potrich. Reverse engineering of the uml
class diagram from c++ code in presence of weakly typed
containers. INCSM, pages 376-385, 2001.

D. von Dincklage and A. Diwan. Converting Java classes to
use generics. I®OOPSLA 2004.

