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Abstract

Our goal is a registration algorithm capable of align-
ing image pairs having some combination of low overlap,
large illumination differences (e.g. day and night), substan-
tial scene changes and different modalities. Our approach
starts by extracting and matching keypoints. Ranked-
ordered matches are tested individually in succession. Each
is used to generate a transformation estimate in a small im-
age region surrounding the keypoints. The growth process
works by iterating three steps: 1) refining the estimate by
symmetrically matching features on the two images, 2) ex-
panding the region according to the uncertainty in the map-
ping, 3) selecting an appropriate transformation model. Im-
age features are corner points and face points located by
analyzing the intensity structure of image neighborhoods.
After convergence, if a correctness test verifies the transfor-
mation it is accepted and the algorithm ends; otherwise the
process starts over with the next keypoint match. Experi-
mental results on a suite of challenging image pairs shows
that the algorithm substantially out-performs recent algo-
rithms based on keypoint matching.

1 Introduction

This paper addresses the problem of developing an image
registration algorithm that can work on many different types
of images, scenes, and illumination conditions. The algo-
rithm should successfully align pairs of images taken of in-
door or outdoor scenes, and in natural or man-made envi-
ronments. It should be able to align images taken at dif-
ferent times of day, during different seasons of the year, or
using different imaging modalities. The algorithm should
adjust for rotation and zoom between the images and for
low image overlap. Our primary assumption is that the im-
ages to be aligned should be spatially-related by a known
transformation model — the most common model being a
planar projective transformation. Such a registration algo-
rithm will have numerous applications ranging from mosaic

construction to change detection and visualization.
In order to make the difficulty of general-purpose regis-

tration concrete, we have gathered a test suite of 18 chal-
lenging image pairs, some of which are shown in Figures 1-
3.1 The alignment is clear to the human observer for each
pair but difficult for current registration algorithms. Two
crucial issues emerge from examining and experimenting
with these images. First, initialization is difficult. Recently
developed keypoint detection and matching algorithms only
produce a small number of correct matches, occasionally
none and sometimes fewer than 10 out of the top 100. Sec-
ond, there is often no relationship between the intensities
for a large fraction of the image pixels. For example, in
the winter-summer pair from Figure 3, snow on the roofs
in winter produces homogeneous intensity regions, where
these roofs appear as dark, textured regions in the summer
image.

The key idea behind our proposed algorithm is to start at
just one corresponding location and grow, discovering con-
sistency between images as part of the alignment process.
This intuition is realized in several important steps:

1. The algorithm starts by matching keypoints. Each
match is used individually to generate an initial sim-
ilarity transformation, which is roughly accurate in a
small image region. This means the algorithm can suc-
ceed even if only one keypoint match is correct.

2. The initial transformation is “grown” into an image-
wide alignment by iterating steps of matching, robust
refinement, model selection and region growing, con-
trolled by the transformation estimate error and uncer-
tainty. (This process, called the “Dual-Bootstrap,” was
originally developed for retinal images — reference
omitted.) The growth and refinement process keeps
the alignment accurate within the growing region, us-
ing robust techniques to select only the constraints that
are consistent.

1All of these will be available through our website.
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Figure 1: Two images of the North-Rim of the Grand
Canyon (test pair “GC-2”) taken morning and midday.

3. When the growth process reaches the image bound-
aries, the alignment is tested for overall accuracy and
consistency. If it passes this test, the algorithm halts
with success. If not, another keypoint match is tested
using the foregoing steps.

Step 3 matches corners and face points detected across mul-
tiple scales using a process that is an extension of Harris
corner detection. Each feature point characterizes the inten-
sity structure in small image regions. The overall algorithm
will be analyzed on our test suite and compared against the
behavior of the keypoint algorithm of [4].

2 Background

Many papers have been published on the various aspects of
the registration problem. We focus on four approaches most
relevant to the problems addressed here.

Much recent work has focused on extracting and match-
ing multiscale keypoints, either Harris corners [11] or scale-
scale peaks of the Laplacian of Gaussian [9]. An invariant
descriptor is extracted from the intensities near each key-
point, and used by indexing methods to match keypoints
between images. Brown and Lowe [4] have described an
algorithm that uses random sampling of keypoint matches
to align images and form mosaics. This approach handles
scale and orientation changes well, but it relies on sufficient
number of correct keypoint matches.

Figure 2: A color image and a fluorescein angiogram
(test pair “Melanoma”) of a patient having a choroidal
melanoma.

Many algorithms directly minimize intensity differences
between images. A number of these fall under the frame-
work of the Lucas-Kanade approach which computes the
alignment by incrementally warping one image onto an-
other [1]. This is most effective in a hierarchical setting
[2]. The method has been extended to handle multisensor
data by computing and normalizing derivatives in four di-
rections as the “intensity” at each pixel [8]. These tech-
niques require good initialization, although coarse searches
have proven effective in many cases [14]. Scale and orien-
tation differences between images cause problems for these
methods.

Mutual information has been used effectively for align-
ing multimodal imagery, mostly in medical image analysis
[10, 16]. It requires good initialization, and typically uses
an expensive, non-differential search. The possibility of in-
corporating mutual information in the framework proposed
here may be considered in future work.

Finally, our technique employs the well-known itera-
tive closest points algorithm [3, 6, 13], which alternates
(re)matching and estimation steps. While ICP has been used
most often in range image registration, it can be employed
using intensity images based on extracted features.

2



Figure 3: Three images of the same scene near our cam-
pus. The top two images were taken day and night during
the summer. The bottom was taken during the day in the
winter (and with a much smaller scale). They form three
test pairs: “Day-Night”, “Winter-Summer” and “DNWS”
(Day-Night-Winter-Summer).

3 Initialization

Initialization is crucial because nothing is assumed about
the relative position, orientation and scales of the images,
not to mention affine and projective distortions. Extraction
and matching of keypoints is used because keypoint tech-
niques are designed to be invariant to similarity distortion
of the image coordinates and linear scaling of intensities. In
particular, we use the publically-available implementation
of Lowe’s keypoint extraction algorithm [9] and reimple-
mented his matching algorithm. Similar results are obtained
with [11].

Multiscale keypoints are extracted from each image sep-
arately. Keypoints are then matched, and rank-ordered
based on their distinctiveness. In our algorithm, as dis-
cussed earlier, each is used separately, starting with the
highest ranking match, to generate an initial similarity
transformation. This initial transformation is refined locally
and then the Dual-Bootstrap procedure is applied. If the re-
sulting transformation is verified as correct, the procedure
stops. Otherwise, the next ranked match is tested. This

Figure 4: Initial keypoint match and side-by-side alignment
for one of our winter-summer pairs. The image region on
the right has been scaled by a factor of 2.25, and there are
substantial illumination, blurring, and changes (snow) be-
tween the regions.

greedy procedure continues until one transformation is ver-
ified and accepted, or a fixed number have been tried.

The initial similarity transformation is established from
the positions of the two keypoints, the orientations of their
dominant intensity gradients, and their relative scales (Fig-
ure 4). This provides a rough local alignment, which forms
the starting point for the Dual-Bootstrap procedure.

4 Feature Extraction

Before describing the growth and refinement procedure, we
consider the choice of image quantities to drive the align-
ment process. In contrast to recent trends, we use image
features. There are two reasons for this. First, matching
image features provides direct measurement of the geomet-
ric alignment error. This is needed to drive the growth and
model selection processes. The second reason is motivated
by the changes seen between images that must be aligned.
Much of the image texture and details may change be-
tween images — e.g. snow covering rooftops, leaves miss-
ing, textured regions falling into deep shadows — but struc-
tural outlines usually remain unchanged (Figure 5). These
outlines, large or small, can be captured by properly ex-
tracted features. Our matching and robust estimation tech-
niques exploit the consistent features between images to
drive alignment.

Two different feature types are located — corners and
face points. At each pixel, eigenvaluesλ1 < λ2 of the
gradient outer product matrixM = (∇I(x)(∇I(x)> are
computed. Potentialcornersare located at pixels where
λ1/λ2 > ta. This criterion is similar to the Harris cor-
ner detector [7]. Potentialface pointsare located at pixels
for which λ1/λ2 ≤ ta. Decision valueta has been ex-
perimentally determined as0.1, although the choice of val-
ues is not crucial. Strength is assigned to each feature as
s = trace(M) =

∑
i mii. Significantly, the features are ex-

tracted at multiple scales. Non-maximum suppression and
subpixel localization are computed at each scale separately.
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Figure 5: Examples of substantial changes between image
regions due to illumination differences, scale differences,
and changes (snow).

The next steps are designed to avoid difficulties due to
low image contrast and threshold effects. First, a very low
threshold,ts is applied to the strength — on the order of
one grey level — to eliminate plainly noise edges. Next, a
minimum number of strongest features is kept without fur-
ther testing. Then each remaining point is tested in order
of decreasing strength to ensure that it has locally largest
strength and it is not close to other features. This proce-
dure stops when a maximum number of features is found.
A minimum distance between features is set to ensure that
these are spread through the image, and this distance grows
with scale. The resulting features are calledmatchable fea-
tures. The second and final step is to extract a reduced sub-
set by increasing the spacing and strength parameters to ob-
tain a set ofdriving features(similar to those in [15]). Driv-
ing features are transformed and matched against matchable
features.

A course-scale example set of driving features is shown
in Figure 6. Features are spread throughout the image. In
effect the features represent summaries of local image struc-
ture: when a region contains substantial spatial variations
in all directions a corner is placed at the location of locally
greatest strength; when a region contains variation in one
direction, a face point is placed, again at the (subpixel) loca-
tion of locally greatest strength; when variation is insignifi-
cant, no feature is placed.

5 DB-ICP

The Dual-Bootstrap ICP (DB-ICP) algorithm begins with
an initial transformation estimate and initial matching re-
gions from the two images obtained by keypoint matching.
The algorithm iterates steps of (1) refining the current trans-
formation in the current “bootstrap” region by symmetric

Figure 6: Example intermediate resolution driving features,
which are more sparse than matchable features. Circles are
corners and line segments are face points, oriented along the
direction of greatest eigenvalue. As the resolution increases,
the feature sets become much denser, and the proportion of
face points vs. corner points increases substantially.

matching,R, (2) applying model selection to determine if
a more sophisticated model may be used, and (3) expand-
ing the region, growing inversely proportional to the uncer-
tainty of the mapping on the region boundary (Figure 7).
While the framework of this algorithm has been described
elsewhere for retinal image registration (ref omitted), many
of the details must be changed and extended to make the ap-
proach work for a wider class of images. These details are
emphasized in the remainder of this section.

5.1 Notation

The two images areIp andIq. The matchable corner and
face points arePc = {pc} andPf = {pf} from Ip and
Qc = {qc} andQf = {qf} from Iq. Points from all scales
are combined to form these sets. Driving features sets are
subsets ofPc,Pf ,Qc, andQf . The transformation of point
locationx is T(x;θ), whereθ is the parameter vector to
be estimated. An estimate iŝθ, and its covariance matrix is
Σˆθ

. The initial model computed from the keypoint match
is a similarity transformation. Model selection transitions
from similarity to affine to homography, and in some cases
to a homography plus radial-lens distortion or, in the case
of retinal images, a quadratic transformation. Finally, the
region over which the transformation is being estimated is
called the “bootstrap” region, and is denoted byR.

5.2 Refinement Within the Bootstrap Region

The transformation is refined within current bootstrap re-
gion R, ignoring everything else in the two images. The
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Figure 7: Example steps of the Dual-Bootstrap growth and refinement process. The left, center and right show the alignment
results and bootstrap region for iterations 0, 6 and 12, respectively. The rectangles outline the bootstrap region. Within the
bootstrap region, the alignment is accurate, but perhaps not outside the bootstrap region. As the bootstrap region expands,
more and more of the images are accurately aligned. The final alignment is shown in Figure 9.

current transformation is used to generate a new set of corre-
spondences, and these correspondences are used to generate
a new transformation. Unlike standard ICP, the algorithm
proceeds to model selection and region growing before se-
lecting a new set of matches.

Matching is applied fromIp to Iq and symmetrically
from Iq to Ip. A driving featurep from Ip is mapped into
Iq to producep′ = T(p; θ̂), and them = 3 closest match-
able features (of the same type) top′ are found. One of
these is selected as the best match based on a similarity
measure described below. Because the driving features are
held to stricter criteria, it is unlikely that a driving feature
will be found in one image and its corresponding match-
able feature will be missed in the other image, except when
there are substantial illumination or physical changes be-
tween images. In this case, matching of other structures
in the image must constrain the registration process. The
corner and face point correspondence sets, computed by
matching in both directions, areCc = {(pc,i,qc,i)} and
Cf = {(pf,j ,qf,j)}, respectively. Symmetric matching
provides more constraints and more numerically stable es-
timate.

The similarity measure is a weight, denotedws. For a
potential match(p′,q) between corners, the weight is the
ratio of the scales,sq andsp′ at which they are detected,
with the scale ofp′ multiplied by the scale of the transfor-
mation: ws = min(sp′/sq, sq/sp′). This biases the selec-
tion toward features at similar scales. If the match is be-
tween face points,ws is multiplied by|np′ · n|, wherenp′

is the transformed normal ofp andnq is the normal ofq.
Before defining the transformation estimation objective

function, we need to define the error distances. In particular,
these are

dc(p′,q) = ‖p′−q‖ and df (p′,q) = |(p′−q)T n|

for corners and face points, respectively, wheren is the nor-

mal atq.2 Using this, for a fixed set of matches and weights,
the transformation can be re-estimated by minimizing

E(θ; Cc, Cf ) =
∑

(pi,qi)∈Cc

ws;iwd;idc(T (pi;θ),qi))2

+
∑

(pj ,qj)∈Cf

ws;jwd;jdf (T (pj ;θ),qj))2

(1)

whereσc andσf are the robustly computed error variance
for corner points and face points. The weight,wd;i, is robust
alignment error weight. This iswd,i = w(d(p′i,qi)/σ)/σ2,
wherew is the Beaton-Tukey robust weight function,d(·) is
the distance function, andσ2 is the variance. Re-estimating
θ̂ is carried out by iteratively minimizing (1) and then re-
estimating the robust weightswd — in other words using
iteratively-reweighted least-squares (IRLS). The error vari-
ances re-estimated in the first iteration from the weighted
average of the square distances for corners and face points
separately. The objective function (1) for fixed weights may
be directly minimized as a linear regression for the affine
transformation, with the covariance matrix computed from
the scatter matrix.

When estimating a homography, or homography with ra-
dial lens distortion, the minimization is no longer analogous
to regression, and standard normalization techniques are not
effective. We use Levenberg-Marquardt minimization, and
the Jacobian of the minimization [12, Ch. 15] as the ba-
sis for approximating the covariance matrix. In particu-
lar, if Jˆθ

is the Jacobian, the covariance is approximately

Σˆθ
= ( 1

σ2 JT
ˆθ
Jˆθ

)−1. The pseudo-inverse is used when

there are constraints on the estimate that make it not full-
2The distinction between the normal distance for face points and Eu-

clidean distance for corner points is crucial. For example, if Euclidean
distances were used for face points, then there would be no apparently un-
certainty in the alignment of a line from the two images.
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rank. The approach works with the homography combined
with radial-lens distortion.

Overall, this minimization process is applied to estimate
the mapping fromIp to Iq by reversing the roles of the fea-
ture sets but keeping the correspondences, fromIq to Ip.

5.3 Model Selection Criterion

Due to the characteristics of the region growing and the for-
mation of new match sets, we only consider switching from
lower order models to high order, more sophisticated mod-
els. This must be done carefully: switching to a higher-
order model too soon causes the estimate to be distorted by
noise; switching too late causes an increase in error vari-
ancesσ2

c andσ2
f and misalignment on the bootstrap region

boundary. Model selection techniques have been studied
extensively in the literature. In our work we have found that
the earlier and quite simple yet effective Akaike Informa-
tion Criteria, with a small-sample bias adjustment as rec-
ommended in [5]:

− | Cc | log(σc)− | Cf | log(σf )−E(θ̂; Cc, Cf )+
nk

n− k − 1
,

(2)
wherek is the degrees of freedom in current model andn =
2 | Cc | + | Cf | is the effective number of constraints.

Expression (2) is evaluated for each model using fixed
match sets after IRLS is applied for each model as described
earlier. The final error distances,dc or df , of each corre-
spondence are then used to evaluate expression (2) for each
model. The model that minimizes (2) is then selected for
the next iteration of the Dual-Bootstrap.

5.4 Region Growth

Region growth depends on the uncertainty in the trans-
formation estimate, as represented by covariance matrix
Σˆθ

. In particular, expansion is inversely proportional to the
transfer error — the error in applying the estimated trans-
formation to points on the boundary of the bootstrap region.
If x is such a point location (not a feature point) andJ is
the Jacobian of transformationT with respect tôθ, evalu-
ated atx, then the error covariance of the mapping ofx is
Σx = JΣˆθ

JT . Suppose now thatx is chosen at the cen-
ter of a side of bootstrap regionR and the outward direction
(away from the center of the region) isn. Then the mapping
error variance in the outward direction isnT Σxn. Finally,
this side of the rectangle expands outward inversely propor-
tional tonT Σxn, which means that more uncertainty leads
to slower growth. This is applied independently to each side
of the rectangle.

6 Decision Criteria

Once the iterative Dual-Bootstrap procedure just described
expands to cover the apparent overlap between images
(based on the estimated transformation), and the refinement
process has converged, the final alignment must be tested
for correctness. As discussed above, if this confirms that
the transformation is correct, the images are considered to
be aligned, and the algorithm stops. Otherwise, the next
keypoint match is tested using the initial refinement and
Dual-Bootstrap procedures.

The decision criteria is composed of two parts: accu-
racy and consistency. The accuracy,τ , is measured as the
weighted average alignment error for the final match set, us-
ing the weights and distance measures defined above, and
only face points because these are more accurately posi-
tioned. Consistency,ρ, is harder to define because of dif-
ferences between image modalities and illuminations, and
because of scene changes.

The measure we use is the absolute difference in normal
directions (measured as an angle) between face point cor-
respondences(p′f,j ,qf,j), wherep′f,j is the transformed
point. We calculate a histogram,h of orientation differ-
ences in the range[0, π/2] using all face correspondences.
If the transformation is incorrect, this angle difference will
tend toward being uniformly distributed within the range;
whereas if the images are well-aligned, the histogram will
tend to have a strong peak near 0 degrees. We measure this
by computing the Bhattacharya measure betweenh and a
uniform distribution and betweenh and an exponential dis-
tribution. Denoting these distances asbu andbe, our con-
sistency measure is the ratio of distances,ρ = be/bu. Small
values ofρ correspond to well-aligned images.

We use two thresholds for each of the measures:TL <
TH for τ andPL < PH for ρ. Whenτ < TL andρ < PL,
the alignment estimate is simply accepted as correct. DB-
ICP alignment results in this case are accurate to less than
a pixel (TL = 1.0) and no substantial improvement can be
made. Whenτ > TH or ρ > PH , the estimate is apparently
incorrect and is thrown away. The algorithm then moves to
the next keypoint correspondence, as described above. Oth-
erwise the estimate is are saved and the next initial match is
considered. At the end, the estimate that has the minimum
alignment errorτ is chosen as the final estimate. If no es-
timate has bothτ < TH andρ < PL, the images are left
unregistered.

Finally, we can use the decision criteria above as a ter-
mination criteria, allowing the algorithm to quickly reject
incorrect alignments early in the process. We let the DB-
ICP loop run for 3 iterations before testing. In addition
to the measures defined above, we also include a measure
that detected extreme scale changes between images. The
thresholds used are the same for all experiments.
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7 Experiments

We have applied the keypoint matching, initial estimation
and Dual-Bootstrap algorithm just described to the 18 im-
ages pairs in our test suite. The images in the suite range in
size from676× 280 to 1504× 1000. It tries up to 100 ini-
tial rank-ordered keypoint matches before declaring that the
images can not be aligned. Although we test the Lowe key-
points based on a rank-ordering, we do not apply a threshold
on the ratio to restrict the number of matches. This is im-
portant for aligning medical images because the keypoint
matches are not distinct. Finally, for multi-modal images
involving contrast reversals, we invert the intensities of one
of the images before extracting keypoints.

The algorithm successfully aligns 15 of the 18 pairs, in-
cluding pairs from Figures 1-3 except “DNWS” from Fig-
ure 3. Example checkerboard mosaics showing the align-
ment results are shown in Figures 8 and 9. We have also
applied the new algorithm to other, easier image pairs with
universal success. Finally, when tested on image pairs
that have no overlap, the new algorithm has not yet falsely
aligned a pair. For some image pairs we achieved subpixel
accuracy by using homography with radial lens distortion
model, whereas visible misalignments are apparent when
using the homography only.

To show the significance of these results, the publically-
available code for the Autostitch keypoint matching algo-
rithm of [4] produced 1 accurately aligned pair and 4 pairs
with visible misalignments; on 13 pairs it failed altogether.
(Autostich was run with the original parameters.) None of
images in Figures 1-3 were successfully aligned.

More about the behavior of our algorithm and the causes
for the failure of the random-sampling keypoint match al-
gorithm can be understood by using studying the verified
alignment for 9 of these pairs. This alignment is used to de-
termine which matches are correct based on mapped loca-
tion, orientation, and scale. In two image pairs, there were
no correct keypoint matches that passed the threshold ratio
test. In two others, there were only three. For the remain-
ing pairs, there were sufficient numbers of correct matches,
but only 10%-22% of the overall match set. Finding a good
random sample with such a small fraction of inliers leads to
an exponential growth in the number of samples required.

By contrast, our algorithm usually succeeded with the
first correct match it tested. In most cases, the success-
ful match was among the first ten. The worst case was
the 34th match. On the challenging winter-summer pair,
we let our algorithm run on each of the correct keypoint
matches, and found that on 9 out the 11 pairs it produced an
alignment that passed the final consistency tests. In general,
the Dual-Bootstrap procedure converges in 10-20 iterations
when started from a correct match. Finally, the failures of
our algorithm may generally be attributed to initialization:

Figure 8: Checkerboard mosaics showing the accuracy of
the alignment for the GC-2 and Melanoma pairs from Fig-
ures 1 and 2.

on each of the three pairs in our test suite in which the algo-
rithm failed, a simple manual initialization in a small image
region, followed by application of the Dual-Bootstrap pro-
cedure, led to a consistent alignment.

As a last comment, our algorithm is not as expensive
as one would imagine. On the melanoma pair the cost is
about 0.25s per initial match, whereas on the larger winter-
summer pair the cost is 3.1s per initial match. Aside from
image size, the difference in the costs is primarily due to
the earlier termination criteria, which is much more effec-
tive on melanoma images. All the performance results are
measured on a Pentium IV 3.2GHz PC.

8 Summary and Conclusion

We have presented an algorithm designed to register a wide
variety of images, and analyzed it on a challenging suite of
test image pairs. The crucial properties of the algorithm in-
clude (1) keypoint matching, (2) generating and testing sim-
ilarity transformations based on a single keypoint match,
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Figure 9: Checkerboard mosaics showing the accuracy of
the alignment for the Day-Night and Winter-Summer pairs
from Figure 3.

and (3) growing and refining alignments using a combina-
tion of symmetric feature matching, robust re-estimation of
the transformation, model selection, and region growing. A
consistency test successfully determines which transforma-
tion estimates are correct and can be used to quickly elimi-
nate obviously incorrect estimates. The algorithm success-
fully aligned 15 of the 18 pairs in the challenge suite, sub-
stantially outperforming a recent algorithm based on key-
point matching alone. The algorithm routinely handles a
wide variety of much easier image pairs.

The algorithm works effectively when at least one key-
point match is correct and when there is sufficient consistent
structure between the images to drive the Dual-Bootstrap
procedure — even when much of the structure is inconsis-
tent due to physical and illumination changes or differences
in modality. The algorithm fails primarily when there is

no keypoint match to gain an initial toe-hold on the correct
alignment.

Our future work is headed in several directions. First,
we are re-addressing the initialization problem — the most
important issue for improving the performance of this al-
gorithm in particular and registration techniques in general.
Second, we are pursuing a variety of applications. Third, we
are generalizing it to a multi-image registration algorithm.
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