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Abstract

We describe models and efficient algorithms for detecting groups (communities) func-

tioning in communication networks which use, intentionally or not, the surrounding

background communications to disguise their existence. We call such groups hidden

groups. To detect hidden groups we exploit the non-random nature of their communi-

cations as contrasted with the general background communications. We assume that

the main goal of the communications of a hidden group in the network is planning and

coordination of their future activity, which by the nature of planning has to involve all,

or most members of the group. The implication of this basic assumption is that the com-

munication subgraph induced by the hidden group members is connected. We describe

efficient algorithms that, under certain conditions, can detect connected subgraphs that

remain connected over time.

Our results reveal the properties of the background network activity and hidden

group communication dynamics that make detection of the hidden group easy, as well

as those that make it difficult. We differentiate between two types of hidden groups: in a

trusting (or non-secretive) hidden group, members are willing to communicate messages

to other members via non-hidden group members; in a non-trusting (or secretive) hidden

group, all information that must be passed among hidden group members cannot be

passed via non-hidden group members. We find that if the background communications

are dense or more structured, then the hidden group is harder to detect. Surprisingly,

we also find that when the hidden group is non-trusting (secretive), it is easier to

detect. We also relax our definition of a hidden group to include those groups which

persist in any subinterval of communication cycles, and present efficient algorithms and

data-types for detecting and querying these groups.

1 Introduction

The tragic events of September 11, 2001 underline the need for a tool which can be used

for detecting groups that hide their existence and functionality within a large and compli-

cated communication network, such as the Internet. Public communication forums such
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as Internet newsgroups and chatrooms are an appealing way for members of such groups

to communicate because they are easily accessed from almost anywhere in the world, and

offer the potential for camouflaging the group’s communications among the numerous back-

ground communications that are occurring during the same time frame.

In this paper, we view a communication network as a graph. The vertices (nodes) in

this graph are the individuals or actors of the network, and an edge between two vertices

represents a communication between the corresponding actors. This paper will use the

terms vertex and actor interchangeably, within the contexts of graph theory and social

networks, respectively. We assume that the communication infrastructure allows for any

two actors communicate if they so choose. The communication graph for a society at a

particular time step has an edge between two vertices (actors) if they communicated during

that time step. The communication graph evolves with time. In general, two actors do

not communicate in a deterministic fashion over time. Rather, at “random” times they

are communicating, and at other times they are not. Thus, the communication graph that

describes the communication dynamics of a network evolves with time according to some

stochastic (random) process. The question we ask is:

What properties of this randomly evolving communication graph will change if

there is a hidden group attempting to camouflage its communications by em-

bedding them into the background communications of the entire communication

network?

Our approach to the problem of reliably detecting hidden group is non-semantic. We assume

that communication within a hidden group on a public network is usually encrypted in some

way, in particular, the communication may not be in English. Furthermore, the semantic

information may be either misleading or unavailable or difficult (time-consuming) to process.

Thus, we develop a structural, rather than semantic way to differentiate between the random

evolution of a society’s communication graph when it contains a hidden group versus when

it does not. The idea behind our technique is based upon the following observation:

Normal communications in the network are voluntary and “random,” while the

communications within a hidden group are focused on achieving certain goals

(planning and/or coordination), thus by its nature are likely to be “non-random.”

Furthermore, a hidden group’s communications have to be regular and frequent

enough to ensure the succesfull outcome of the planned activity, i.e., a hidden

group communicates because it has to communicate (for planning or coordina-

tion purposes).

Thus, the hidden group communication dynamics will display, out of necessity, certain non-

random behavior that differentiates it from normal background communications. Detecting

this non-random behavior will help us establish the presence of a hidden group, as well as

identify its members.

2



The property which we use to reveal non-randomness due to the hidden group is based

on the connectivity of the communication graph. Specifically, we expect a hidden group

to display a connectivity that is more regular than the connectivity of other subsets of the

actors. Our analysis and simulations show that, for reasonable communication models of a

society, it is possible to efficiently identify the hidden group. This forces a hidden group to

face one of two outcomes, both of which are detrimental to its functioning: either continue

with its planning or coordination (non-random communication dynamics) and risk being

detected, or lower its planning or coordination activity to a level indistinguishable from the

random background communication dynamics and risk not achieving its objectives. Our

results indicate that there are three major factors that affect our ability to detect a hidden

group.

i. The background communication density in the society. A higher background communi-

cation density, which can be quantified by the average degree of an actor in the com-

munication graph, makes it more difficult to detect hidden groups. More specifically,

we observed a phase transition: a hidden group becomes significantly more difficult to

detect when the average degree exceeds ln n, where n is the number of actors in the

society. Intuitively, a higher background communication density gives more room for

the hidden group to hide.

ii. The presence of dense clusters. For a given background communication density, we

may introduce structure in the communications by forming the actors into groups that

communicate together, which results in dense communication clusters in the background

communication graph. It is more difficult to detect a hidden group when the society

communications are more structured into groups. Intuitively, the hidden group has a

certain non-randomness in its structure, and it is easier to differentiate this structure

from a random background than from a structured background.

iii. The type of hidden group. We differentiate between trusting (non-secretive) and non-

trusting (secretive) groups. Trusting groups allow messages among group members to

be delivered by non-group members, whereas non-trusting groups do not. Trusting

groups tend to be benign, while non-trusting groups are more likely to be malicious.

The surprising result is that it is easier to detect non-trusting groups; such groups

are undermined by their own paranoia. Intuitively, a trusting group is a less regular

structure, where as a non-trusting group is a more compact regular structure, which is

easier to differentiate from the random background.

The implications of our results are two-fold. First, we can identify when it is feasible to

detect hidden groups. Second, our results allow us to determine how long we must collect

communication data to ensure that a hidden group is discovered, under certain assumptions

about the rate and nature of the group’s communication.
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The outline of the remainder of the paper is as follows. In Section 2, we present the work

relevant to our field; Section 3 contains the background information on random graph. A

formal description of the hidden groups and our algorithms for detecting them are presented

in Sections 4 and 5; Section 6 contains the results of our simulations. Possible extensions

of our models are discussed in Section 6. The last section contains our conclusions and

outlines some further approaches.

2 Related Work

The study of identifying hidden groups was initiated in [14] using Hidden Markov models.

Here, our underlying methodology is based upon the theory of random graphs [3, 12]. We

also incorporate some of the prevailing social science theories, such as homophily ([15]),

by incorporating group structure into our model. A more comprehensive model of societal

evolution can be found in [11, 19]. Other simulation work in the field of computational

analysis of social and organizational systems [4, 5, 18] primarily deals with dynamic models

for social network infrastructure, rather than the dynamics of the actual communication

behavior. Our work is novel because we analyze the dynamics of communication intensities

in order to detect hidden groups.

One of the first works analyzing hidden groups is found in [9]. Here, the author studies

a number of secret societies, such as a resistance that was formed among prisoners at

Auschwitz during the Second World War. The focus, as it is in this paper, was on the

structure of such societies, and not on the content of communications. An understanding

of a hidden network comes through determining its general pattern and not the details of

its specific ties.

The September 11, 2001 terrorist plot spurred much research in the area of discovering

hidden groups. Specifically, the research was aimed at understanding the terrorist cells that

organized the hijacking. Work has been done to recreate the structure of that network and

to analyze it to provide insights on general properties that terrorist groups have. Analyzing

their communication structure provides evidence that Mohammed Atta was central to the

planning, but that a large percent of the individuals would have needed to be removed

in order to render the network inoperable [20]. In “Uncloaking Terrorist Networks” [13],

Krebs uses social network measures such as betweenness that accurately predict which

individuals were most central to the planning and coordination of the attacks. Krebs has

also observed that the network that planned September 11 attempted to hide by making

their communications sparse. This type of group is not amenable to discovery through

clustering in the traditional sense, where clusters are defined as dense subsets of the network.

While these articles provide interesting information on the history of a hidden group, our

research uses properties of hidden groups to discover their structure before a planned attack

can occur.
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There is also work being done in analyzing the theory of networked groups, and how

technology is enabling them to become more flexible and challenging to deal with. The

hierarchical structure of terrorist groups in the past is giving way to more effective network

structure [17]. Of course, the first step to understanding decentralized groups is to discover

them. This work gives some strategies to solve this problem.

3 Random Graphs as Communication Models

Social and information communication networks, such as the Internet and World Wide Web,

are usually modeled by graphs (see [16, 4, 5, 18]), where the actors of the networks (people,

IP-addresses, etc.) are represented by the vertices of the graph, and the connections between

the actors are represented by the graph edges. Since we have no a priori knowledge regarding

who communicates with whom, i.e. how the edges are distributed, it is appropriate to model

the communications using a random graph. In this paper, we study hidden group detection

in the context of two random graph models for the communication network: uniform random

graphs and random graphs with embedded groups. In describing these models, we will use

standard graph theory terminology (see [21]), and its extension to hypergraphs (see [2]). In a

hypergraph, the concept of an edge is generalized to a hyperedge which may join more than

two vertices. In addition to these two models, there are other models of random networks,

such as the small world model and the preferential attachment model [1]. However, in this

work we limited our experiments to the following models.

Random Model A simple communication model is one where com-

munications happen at random uniformly among all pairs of actors.

Such a communication model can be represented by the random

graph model developed and extensively studied by Erdős and Rényi,

[6, 7, 8, 3]. In this model, the graph is generated by a random pro-

cess in which an edge between every pair of vertices is generated independently with a

given probability p. The probability space of graphs generated by such a random process

is denoted G(n, p), or sometimes are called the Bernoulli Graphs. We will use the G(n, p)

notation throughout this paper.

Group Model The G(n, p) random graph model may not be a

suitable model for large communication networks. Actors tend to

communicate more often with certain actors and less frequently with

others. In a more realistic model, actors will belong to one or more

social groups where communication among group members is more

frequent than communication among actors that do not belong to the same group. This leads

us to the hypergraph model of the communication network, in which the actors associate
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themselves into groups. In this paper, we assume that each group is static and contains

m actors. While this is a simplification, it serves to illustrate all the essential ideas and

results without undue complication. A group of actors is represented by a hyperedge in

the graph, and an actor may belong to zero or more hyperedges. The set of all hyperedges

represents the structure of the communication network. Since groups tend to be small, it

is appropriate to model the communications within a group as a G(m,pg), where pg is the

probability within the group. We also allow communication between two actors that do not

share a group in common; we denote such communications as external. The probability

of an external communication is pe; we further assume that pe ≪ pg because intra-group

communications are much more likely than extra-group communications.

3.1 Connectivity of Random Graphs

The key idea of our algorithms is based on the following observation. For any subset of

actors in a random model network, it is very unlikely that this subset is connected during

a “long” consecutive period of time cycles, while a hidden group must stay connected (for

its operations) as long as it functions as a group. Thus, we summarize here some results

from random graph theory regarding how the connectivity of a G(n, p) depends on n and

p, [6, 7, 8, 3]. These results are mostly asymptotic in nature (with respect to n), however,

we use them as a guide that remains accurate even for moderately sized n.

Given a graph G = {V,E}, a subset S ⊆ V of the vertices is connected if there exists a

path in G between every pair of vertices in S. G can be partitioned into disjoint connected

components such that every pair of vertices from the same connected component is connected

and every pair of vertices in different connected components is not connected. The size of

a component is the number of its vertices; the size of the largest connected component is

denoted by L(G).

The remarkable discovery by Erdős and Rényi, usually termed The Double Jump, deals

with the size of the largest component, and essentially states that L(G) goes through two

phase transitions as p increases beyond a critical threshold value. All the results hold

asymptotically, with high probability, i.e., with probability tending to 1 when n→∞:

p = c
n p = lnn

n + x
n , x > 0

L(G(n, p)) =















O(ln n) 0 < c < 1

O(n2/3) c = 1

β(c)n c > 1, β(c) < 1

L(G(n, p)) = n with prob. e−e−x

Note that when x → ∞, the graph is connected with probability 1. Since our approach

is based on the tenet that a hidden group will display a higher level of connectivity than

the background communications, we will only be able to detect the hidden group if the

background is not maximally connected, i.e. if L(G) 6= n. Thus we expect our ability
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to detect the hidden group to undergo a phase transition exactly when the background

connectivity undergoes a phase transition. For p = constant or p = d ln n/n with d > 1,

the graph is asymptotically connected which will make it hard to detect the hidden group.

However, when p = constant, connectivity is exponentially more probable than when p =

d ln n/n, which will have implications on our algorithms.

4 Hidden Groups

A hidden group is a different kind of group from the normally functioning social groups

in the society that engage in “random” communications. We define a hidden group as

some subset of the actors who are planning or coordinating some activity; the hidden

group members may also be engaging in other non-planning related communications. The

hidden group may be malicious (for example some kind of terrorist group planning a terror

attack) or benign (for example a foursome planning their Sunday afternoon golf game).

So in this sense, we are liberally using the name “hidden group” in this paper to include

all groups involved in planning, though they may not be intentionally attempting to hide

their communications. The hidden group is attempting to coordinate some activity, using

the communication network to facilitate the communications between its members. Our

task here is to (1) to discover specific properties that can be used to find hidden groups;

and (2) to construct efficient algorithms that utilize those properties. The next steps such

as formulation of empirically precise models and further investigation of the properties of

hidden groups is beyond the scope of this paper.

Whether intentional or not, the normal society communications will, in general, camou-

flage the planning related activity of the hidden group. This could occur in any public forum

such as a newsgroup or chatrooms, or in private communications such as email messages or

phone conversations. However, the planning related activity is exactly the Achilles heel that

we will exploit to discover the hidden group: on account of the planning activity, the hid-

den group members need to stay “connected” with each other during each “communication

cycle.” To illustrate the general idea, consider the following time evolution of a commu-

nication graph for a hypothetical society; here, communications among the hidden group

are in bold, and each communication cycle graph represents the communications that took

place during an entire time interval. We assume that information must be communicated

among all hidden group members during one communication cycle.
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cycle 1 cycle 2 cycle 3 cycle 4

Note that the hidden group is connected in each communication cycle figures above. We

interpret this requirement that the communication subgraph for the hidden group be con-

nected as the requirement that during a single communication cycle, information must have

passed (directly or indirectly) from some hidden group member to all the others. If the

hidden group subgraph is disconnected, then there is no way that information could have

been passed from a member in one of the components to a member in the other, which

makes the planning impossible during that cycle. The information need not pass from one

hidden group member to every other directly: A message could be passed from A to C via

B, where A,B,C are all hidden group members. Strictly speaking, A and C are hidden

group members, however B need not be one. We will address this issue more formally in

the next section. A hidden group may try to hide its existence by changing its connectivity

pattern, or by throwing in “random” communications to non-hidden group members. For

example, at some times the hidden group may be connected by a tree, and at other times

by a cycle. None of these disguises changes the fact that the hidden group is connected, a

property we will exploit in our algorithms.

We make the assumption here that the hidden group remains static over the time period

when communications are collected. When a hidden is allowed to change, the situation

becomes more complex. The algorithms described here would still be useful, however, as

long as a significant subset of the group remains the same. The algorithms would likely

not detect members that joined or left the group, but would discover a “core” group of

members.

4.1 Trusting vs. Non-Trusting Hidden Groups

Hidden group members may have to pass information to each other indirectly. Suppose

that A needs to communicate with B. They may use a number of third parties to do this:

A → C1 → · · · → Ck → B. Trusting hidden groups are distinguished from non-trusting

ones by who the third parties Ci may be. In a trusting (or non-secretive) hidden group, the

third parties used in a communication may be any actor in the society; thus, the hidden

group members (A,B) trust some third-party couriers to deliver a message for them. In

doing so, the hidden group is taking the risk that the non-hidden group members Ci have

access to the information. For a malicious hidden group, such as a terrorist group, this

could be too large a risk, and so we expect that malicious hidden groups will tend to be
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non-trusting (or secretive). In a non-trusting (secretive) hidden group, all the third parties

used to deliver a communication must themselves be members of the hidden group, i.e.,

no one else is trusted. The more malicious a hidden group is, the more likely it is to be

non-trusting.

Hidden groups that are non-trusting (vs. trusting) need to maintain a higher level of

connectivity. We define three notions of connectivity as illustrated by the shaded groups in

the following figure.

(a) Internally Connected (b) Externally Connected (c) Disconnected

B

A

B

A C

B

A

A group is internally connected if a message may be passed between any two group members

without the use of outside third parties. In the terminology of Graph Theory, this means

that the subgraph induced by the group is connected. A group is externally connected if a

message may be passed between any two group members, perhaps with the use of outside

third parties. In Graph Theory terminology, this means that the group is a subset of a

connected set of vertices in the communication graph. For example, in Figure (b) above, a

message from A to B would have to use the outside third party C. A group is disconnected

if it is not externally connected. The following observations are the basis for our algorithms

for detecting hidden groups.

(i) Trusting hidden groups are externally connected in every communication cycle.

(ii) Non-trusting hidden groups are internally connected in every communication

cycle.

We can now state the idea behind our algorithm for detecting a hidden group: a group

of actors is persistent over communication cycles 1, . . . , T if it is connected in each of the

communication graphs corresponding to each cycle. The two variations of the connectivity

notion, internal or external, depend on whether we are looking for a non-trusting or trusting

hidden group. Our algorithm is intended to discover potential hidden groups by detecting

groups that are persistent over a long enough time period. An example is illustrated in

Figure 1.

A hidden group can be hidden from view if, by chance, there are many other persistent

subgroups in the society. In fact, it is likely that there will be many persistent subgroups

in the society during any given short time period. However, these groups will be short-lived

on account of the randomness of the society communication graph. Thus we expect our

algorithm to perform well over a long enough time period.
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t = 1 t = 3 t = 4t = 2
IP

EP

D

Figure 1: Internally persistent, externally persistent and non-persistent groups. The com-

munication graph during 4 communication cycles is shown. Three groups are highlighted,

IP,EP,D. One can easily verify that IP is internally persistent during these 4 commu-

nication cycles, and so is a candidate non-trusting hidden group. EP is only internally

persistent only for time periods 1 and 2. If we only observed data during this time period,

then EP would also be a candidate non-trusting hidden group. However, EP is only exter-

nally persistent for all the communication cycles, and hence can only be a candidate for a

trusting hidden group. D becomes disconnected during communication cycle 4, and hence

is not a candidate hidden group.

4.2 Detecting The Hidden Group

Our ability to detect the hidden group hinges on two things. First, we need an efficient

algorithm for identifying maximally persistent components over a time period Π. Second,

we need to ensure, with high probability, that over this time period there are no persistent

components that arise, by chance, due to the background society communications. We

will construct algorithms to efficiently identify maximal components that are persistent

over a time period Π. Given a model for the random background communications, we can

determine (through simulation) how long a time period a group of a particular size must

be persistent in order to ensure that, with high probability, this persistent component did

not arise by chance, due to background communications.

4.2.1 Algorithms

Select ∆ to be the smallest time-interval during which it is expected that information is

passed among all group members. Index the communication cycles (which are consecutive

time periods of duration ∆) by t = 1, 2, . . . , T . Thus, the duration over which data is

collected is Π = ∆ ·T . The communication data is represented by a series of communication

graphs, Gt for t = 1, 2, . . . , T . The vertex set for each communication graph is the set V of

all actors.

The input to the algorithm is the collection of communication graphs {Gt} with a

common set of actors V . The output is a partition of V into persistent components, i.e.,

components that are connected in every Gt. The notion of connected could be either external
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or internal, and so we develop two algorithms, Ext Persistent and Int Persistent.

Each algorithm develops the partition in an iterative way. If we have only one commu-

nication graph G1, then the both the externally and internally persistent components are

simply the connected components of G1. Suppose now that we have one more graph, G2.

The key observation is that two vertices, i, j are in the same external component if and

only if they are connected in both G1 and G2, i.e., they are in the same component in both

G1 and G2. Thus, the externally persistent components for the pair G1, G2 are exactly the

intersections of the connected components in G1 with those in G2. This argument clearly

generalizes to more than two graphs, and relies on the fundamental property that any subset

of an externally connected set is also externally connected. Unfortunately, the same prop-

erty does not hold for internal connectivity, i.e, a subset of an internally connected set is

not guaranteed to be internally connected. However, a minor modification of the externally

connected algorithm where one goes back and checks any sets that get decomposed leads to

the algorithm for detecting internally persistent components. (Figure 2(b)). We now give

the formal details.

Ext Persistent. Define Ct as the partitioning of Gt into connected components. Let Pt

denote the partitioning of the vertices into externally persistent components for net-

works G1, G2, . . . , Gt, for t ≥ 1. Clearly P1 = C1. Suppose that Pt has been con-

structed. We show how to construct Pt+1 from Ct+1 and Pt efficiently in time O(V ) (step

8 in Algorithm Ext Persistent in Figure 2 (a)). Suppose that Pt = {A1, A2, . . . , Ar} and

Ct+1 = {B1, B2, . . . , Bs}. We assume that each vertex x has a pointer to the set Bj ∈ Ct+1,

the connected component to which it belongs. We also assume that we have initialized an

array of size s containing shadow lists {B′
1, B

′
2, . . . , B

′
s}, all pointing to NULL. Focus on a

single element of the current externally persistent partition, Ai = {x1, x2, . . . , xm}. Now

perform a scan through Ai, and for each member x ∈ Ai, we locate the set Bj to which it

belongs and place x in the shadow list B′
j , all this in O(1). Now update x ∈ Ai to indicate

which list it is in. After this scan, Ai has been partitioned, each element of Ai belonging

to some B′
j – note that some of the B′

j may be empty. Now scan through Ai one more

time, and for each x, if x is in set B′
j, in O(1) time we can access B′

j. If B′
j is empty then

we do nothing, otherwise we empty the contents of B′
j into another set container, placing

it in Pt+1. This way, when we process another x that was stored in the same B′
j , the list

will already be empty and there will be nothing to do. It is clear that the total work done

is O(|Ai|), which includes two scans through Ai, the addition of the x’s into the shadow

lists, and the emptying of the non-empty shadow lists. Thus, the partitioning of Pt takes

O(
∑

i |Ai|) = O(V ) and the initialization of the shadow lists which only occurs once for this

entire step is O(|Ct+1|) = O(V ). The output is PT .
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(a) Externally persistent components (b) Internally persistent components

1: Ext Persistent({Gt}
T
t=1, V )

2: //Input: Graphs {Gt = (Et, V )}Tt=1.

3: //Output: A partition P = {Vj} of V .

4: Use DFS to get the connected compo-

nents Ct of every Gt;

5: Set P1 = C1 and Pt = {} for t > 1;

6: for t = 2 to T do

7: for Every set A ∈ Pt−1 do

8: Obtain a partition P ′ of A by inter-

secting A with every set in Ct;

9: Place P ′ into Pt;

10: end for

11: end for

12: return PT ;

1: Int Persistent({Gt}
T
t=1, V )

2: //Input: Graphs {Gt = (Et, V )}Tt=1.

3: //Output: A partition P = {Vj} of V .

4: {Vi}
K
i=1 = Ext Persistent({Gt}

T
t=1, V )

5: if K = 1, then

6: P = {V1};

7: else

8: P = ∪K
k=1

Int Persistent({Gt(Uk)}
T
t=1, Vk);

9: end if

10: return P;

Figure 2: Algorithms for detecting persistent components.

Int Persistent. Suppose that Pext
T is the partition into externally persistent subsets. If

|Pext
T | = 1, then this is also a partition into internally persistent subsets. If |Pext

T | > 1, then

let U be one of the externally persistent subsets. Let Gt(U) be the subgraph induced by U

in Gt. From Lemmas 2, 3 and 4, it follows that any internally persistent subset that overlaps

U must be contained in U , and further it must be internally persistent with respect to the

sequence of subgraphs {Gt(U)}Tt=1. These observations lead to the recursive algorithm in

Figure 2(b).

4.2.2 Analysis

We now discuss the correctness and computational complexity of the algorithms given in

Figure 2. First we will show that Ext Persistent correctly computes the externally persistent

components. We say that a set A is a maximal persistent set (internal or external) if it is

persistent, and any other persistent set that contains at least one element of A is a subset

of A. Clearly, any two maximal persistent sets must be disjoint, which also follows from

the following lemma.

Lemma 1 If A and B are non-disjoint externally (resp. internally) persistent sets then

A ∪B is also externally (resp. internally) persistent.

Theorem 1 (Correctness of Ext Persistent) Algorithm Ext Persistent correctly partitions

the vertex set V into maximal externally connected components for the input graphs {Gt}
T
t=1.
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Proof: We show by induction on t that Pt satisfies the requirement on G1, . . . , Gt. Clearly

P1 does so for G1, which forms the induction basis. For t > 1, suppose that Pt−1 is

a partition into maximal persistent components for G1, . . . , Gt−1. Clearly Pt is a finer

partition of V obtained from Pt−1, and so it is also a partition of V . We show that every

member of Pt is externally persistent. Let A ∈ Pt. Then for some A′ ∈ Pt−1 and B ∈ Ct,

A = A′ ∩ B. If |A| = 1, then A is persistent. If |A| > 1, let i, j be any two vertices in

A. Since i, j ∈ A′, they are connected in the graphs G1, . . . , Gt−1. Since i, j ∈ B, they are

connected Gt, so i and j are connected in G1, . . . , Gt, hence A is externally persistent. To

show maximality, we show that for any i ∈ A, if some other externally persistent set X

contains i, then X ⊆ A. Indeed, if X 6⊆ A, then there exists j ∈ X with j 6∈ A. Since i, j

are connected in Gt, j ∈ B. Therefore, j 6∈ A′. Since X is persistent in G1, . . . , Gt, it is

persistent in G1, . . . , Gt−1. But X contains i ∈ A′ (since i ∈ A) and X contains j 6∈ A′, so

X 6⊆ A′, which contradicts the maximality of A′ ∈ Pt−1.

Let Et denote the number of edges in Gt, and let E denote the total number of edges in

the input, E =
∑T

t=1
Et. The size of the input is then given by E + V · T .

Theorem 2 (Complexity of Ext Persistent) The computational complexity of Algorithm

Ext Persistent is in O(E + V T ) (linear in the input size).

Proof: Computing Ct, the connected components of Gt, takes time O(V +Et). As already

discussed, to construct Pt from Pt−1 and Ct takes O(V ) time. Therefore, the entire algorithm

takes time O(
∑

t Et + V ) = O(E + V T ).

We now analyze Algorithm Int Persistent. Let Pext be the partition into maximal externally

persistent components. Clearly any internally persistent partition is also externally persis-

tent, so, by maximality of Pext, every internally persistent partition must be a subset of

one of the components in Pext. This remark also applies to a maximal internally persistent

component. Let Pint denote the partition into maximal internally persistent components.

Lemma 2 For every Aint ∈ Pint, there exists Aext ∈ Pext such that Aint ⊆ Aext.

The observation that is the basis for our recursive algorithm Int Persistent is that if U

is an internally persistent subset of the vertices for the input graphs {Gt}
T
t=1, then U is

internally persistent for the induced subgraphs {Gt(U)}Tt=1. Together with the observation

that if U ′ ⊆ U , then Gt(U
′) is a subgraph of Gt(U), we have

Lemma 3 Let Aint ∈ Pint, Aext ∈ Pext with Aint ⊆ Aext. Then Aint is maximally inter-

nally persistent for the induced subgraphs Gt(A
ext).

Combining Lemma 2 with Lemma 3, we now immediately obtain the following result.
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Lemma 4 Let Aint ∈ Pint, Aext ∈ Pext with Aint ⊆ Aext. Let Qext be a maximal externally

persistent partition of Aext for the induced subgraphs Gt(A
ext). Then, Aint ⊆ Bext for some

Bext ∈ Qext.

The direct implementation of Lemma 3 leads to our algorithm Int Persistent in Figure 2.

We need one final result that will imply the correctness of algorithm Int Persistent.

Lemma 5 Given a sequence of graphs {Ht}
T
t=1 with common vertex set U , let Aext be a

maximal externally persistent subset of U . Aext is also internally persistent if and only

if the partition of Aext into maximal externally persistent components with respect to the

induced subgraphs {Ht(A
ext)}Tt=1 has only one component. Further, in this case, Aext is

also a maximal internally persistent subset of U .

Proof: The maximality follows from the maximality of Aext, since any internally per-

sistent subset has to be a subset of a maximal externally persistent subset (Lemma 2).

Certainly if Aext is internally persistent, then the partition of Aext into maximal exter-

nally persistent components with respect to the induced subgraphs {Ht(A
ext)}Tt=1 will have

only one component (Lemma 3). Suppose the partition of Aext into maximal externally

persistent components with respect to the induced subgraphs {Ht(A
ext)}Tt=1 has only one

component. This component must be the entire set Aext, therefore every {Ht(A
ext)}Tt=1

is connected. But this is exactly the requirement for Aext to be internally persistent with

respect to {Ht}
T
t=1

Theorem 1 together with Lemmas 2, 3, 4 and 5 imply the following theorem.

Theorem 3 (Correctness of Int Persistent) Algorithm Int Persistent correctly partitions

the vertex set V into maximal internally connected components.

Proof: We trace the algorithm as it outputs a component A of the internally persistent

partition. We represent this trace as, V = A0 → A1 → · · · → Ak = A → A, which

indicates that we start with V , take one of its maximal externally persistent components,

A1. We then take a maximal externally persistent component of A1 with respect to its

induced subgraphs, A2. This process continues till Ak, which is A. Finally we construct the

maximal externally persistent partition of Ak with respect to its induced subgraphs, and

this partition contains only one component, which we return as A. Note that A is the first

(and only) repetition in this sequence of sets. We say that the depth of A is k. By Lemma

5, A is internally persistent. It remains to prove maximality. We use induction on the depth

k. For any set of graphs, {Ht}, all the components output at depth 0 are maximal. This

is clear because the only possibility is that the component is the entire vertex set. Suppose

that for any set of graphs, {Ht}, all the components output at depth ≤ k are maximal.

We now consider output A of depth k + 1, and suppose that it is not maximal. Then,

there is some other internally persistent set A′ that contains i ∈ A and j 6∈ A. Therefore,

14



A′′ = A∪A′ is internally persistent (Lemma 1). Since A′′ must be a subset of some maximal

externally persistent component (Lemma 2), it must be that A′′ ⊆ A1. Therefore, we can

restrict our attention to {Ht(A1)}, since A′′ is internally persistent w.r.t. {Ht(A1)}. A will

be a depth k internally persistent component output by the algorithm with respect to the

graphs {Ht(A1)}. However, A will not be maximal (since A′ is internally persistent and

A′ 6⊆ A), which contradicts the induction hypothesis.

Theorem 4 (Complexity of Int Persistent) The computational complexity of Algorithm

Int Persistent is in O(V ·E + V 2 · T ).

Proof: The maximum depth (defined in the proof of Theorem 3) of a component is V −1,

since the maximum size of a component drops by at least 1 for every unit depth increase. In

the worst case, at every depth, the algorithm runs Ext Persistent on subsets that total the

whole set V . Since the run time of Ext Persistent is linear, summing over all these subsets

gives a total computation at a given depth of O(E + V · T ), and the bound on the depth

gives a run time of O(V ·E + V 2 · T ). The formal proof is by induction on V .

Let τ(E,V, T ) be the maximum runtime on an input with these parameters. We claim

that τ(E,V, T ) ≤ α(V ·E +V 2 ·T ), for some α. If V = 1, then the claim is trivial. Suppose

that for some V > 1, the claim holds for all smaller V , and consider any problem with

vertex set size V . If the number of maximal externally persistent components, K, is 1,

then the algorithm runs Ext Persistent once, in time ≤ β(E + V · T ). If K > 1, then the

algorithm runs Ext Persistent (≤ β(E+V ·T )); needs to compute all the induced subgraphs,

which can be done in linear time all at once for all the externally persistent components

(≤ γ(E + V · T )); and finally runs Ext Persistent on all the components. Suppose that

component k defines a problem of size E(k), V (k). Since V (k) < V , we have

τ(E,V, T ) ≤
K

∑

k=1

τ(E(k), V (k), T ) + (β + γ)(E + V T ),

≤ α
K

∑

k=1

(

V (k) · E(k) + V 2(k)T
)

+ (β + γ)(E + V T ).

Note that

∑

k

V (k) · E(k) =
∑

k

(V (k) · (E − (E − E(k))) = V ·E −
∑

k

V (k) · (E − E(k)).

Let F denote the residual edges that are not included in any E(k). Since K ≥ 2, E−E(k) ≥

E(k + 1) + F for k < K and E − E(K) ≥ E(1) + F . Since V (k) ≥ 1, we have that
∑

k V (k) · (E − E(k)) ≥
∑

k(E(k) + F ) = E + (K − 1)F ≥ E. We conclude that

∑

k

V (k) · E(k) ≤ V ·E − E.
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Because V (k) ≥ 1, the identity V 2 =
∑

k V 2(k)+
∑

i6=j V (i)·V (j) gives V 2 ≥
∑

k V 2(k)+V ,

hence
∑

k

V 2(k) ≤ V 2 − V.

Putting all this together, we find that

τ(E,V, T ) ≤ α(V · E + V 2 · T ) + (β + γ − α)(E + V · T ).

For any α > (β + γ), the claim follows by induction.

4.2.3 Statistical Significance of Persistence Components

Let h be the size of the hidden group we wish to detect. Suppose that we find a persistent

component of size ≥ h over T communication cycles. A natural question is to ask how sure

we can be that this is really a hidden group versus a persistent component that happened

to arise by chance due to the random background communications.

Let X(t) denote the size of the largest persistent component over the communication

cycles 1, . . . , t that arises due to normal societal communications. X(t) is a random variable

with some probability distribution, since the communication graph of the society follows

a random process. Given a confidence threshold, ǫ, we define the detection time τǫ(h) as

the time at which, with high probability governed by ǫ, the largest persistent component

arising by chance in the background is smaller than h, i.e.,

τǫ(h) = min{t : P [X(t) < h] ≥ 1− ǫ}.

Then, if after τǫ(h) cycles we observe a persistent component of size ≥ h, we can claim,

with a confidence 1− ǫ, that this did not arise due to the normal functioning of the society,

and hence must contain a hidden group. τǫ(h) indicates how long we have to wait in order

to detect hidden groups of size h. Another useful function is hǫ(t), which is an upper bound

for X(t), with high probability, i.e.,

hǫ(t) = min{h : P [X(t) < h] ≥ 1− ǫ}.

If, after a given time t, we observe a persistent component with size ≥ hǫ(t), then with

confidence at least 1 − ǫ, we can claim it to contain a hidden group. hǫ(t) indicates what

sizes hidden group we can detect with only t cycles of observation. The previous approaches

to detecting a hidden group assume that we know h or fix a time t at which to make a

determination. By slightly modifying the definition of hǫ(t), we can get an even stronger

hypothesis test for a hidden group. For any fixed δ > 0, define

Hǫ(t) = min{h : P [X(t) < h] ≥ 1− δ
t1+δ ǫ}.

Then one can show that if X(t) ≥ Hǫ(t) at any time, we have a hidden group with confidence

1− ǫ.
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Note that the computation of τǫ(h) and hǫ(t) constitute a pre-processing of the society’s

communication dynamics. This can be done either from a model (such as the random

graph models we have described) or from the true, observed communications over some

time period. More importantly, this can be done off-line. For a given realization of the

society dynamics, let T (h) = min{t : X(t) < h}. Some useful heuristics that aid in the

computation of τǫ(h) and hǫ(t) by simulation can be obtained by assuming that T (h) and

X(t) are approximately normally distributed, in which case,

Confidence level τǫ(h) hǫ(t)

50% E[T (h)] E[X(t)]

84.13% E[T (h)] +
√

V ar[T (h)] E[X(t)] +
√

V ar[X(t)]

97.72% E[T (h)] + 2
√

V ar[T (h)] E[X(t)] + 2
√

V ar[X(t)]

5 Experiments

In these tests, we simulate societies of sizes n = 1000 and 2000. The results for both the

random background communication model and the group background communication model

are presented in parallel. For each model, multiple time series of graphs are generated for

communication cycles t = 1, 2, . . . , T , where T = 200. Experiments were run on multiple

time series (between five and thirty), and averaged in order to obtain more statistically

reliable results. In order to estimate hǫ(t), we estimate E[X(t)] by taking the sample

average of the largest persistent component over communication cycles 1, . . . , t. Given h,

the time at which the plot of E[X(t)] drops below h indicates the time at which we can

identify a hidden group of size ≥ h.

We first describe the experiments with the random model (G(n, p)). The presence

of persistently connected components depends on the connectivity of the communication

graphs over periods 1, 2, . . . , T . When the societal communication graph is connected for

almost all cycles, we expect the society to generate many large persistent components. By

the results of Erdős and Rényi described in Section 3, a phase transition from short-lived

to long-lived persistent components will occur at p = 1/n and p = ln n/n. Accordingly, we

present the results of the simulations with p = 1/n, p = c ln n/n for c = 0.9, 1.0, 1.1, and

p = 1/10 for n = 1000. The rate of decrease of E[X(t)] is shown in Figure 3. For p = 1/n,

we expect exponential or super-exponential decay in E[X(t)] (Figure 3, thin dashed line).

This is expected because L(G) is at most a fraction of n. An abrupt phase transition

occurs at p = ln n/n (Figure 3 dot-dashed line). At this point the detection time begins

to become large. For constant p (where p does not depend on n, in this case 1/10), the

graph is connected with probability tending to 1, and it becomes essentially impossible to

detect a hidden group using our approach without any additional information (Figure 3

thick dashed line). This will occur for any choice of a constant as n becomes large. That is,

for any constant p > 0, there is an integer N such that if n > N then G(n, p) is connected
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Largest Persistent Internally Connected Component, G(1000,p)
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Largest Persistent Internally Connected Component, G(2000,p)
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Figure 3: The largest internally persistent component E[X(t)] for the G(n, p) model with n =

1000, 2000. The five lines represent p = 1/n, p = c lnn/n for c = 0.9, 1.0, 1.1, and p = 1/10. Note

the transition at p = lnn/n. This transition becomes more apparent at n = 2000. When p is a

constant (i.e. does not depend on n; here we used 1/10), the graph is almost always connected. The

results were averaged over a number of runs. The sharp jumps indicate where the largest component

quickly jumped from about 0.9n to zero in different runs.

with high probability, tending to 1.

The parameters of the experiments with the group model are similar to that of the

G(n, p)-model. We pick the group size m to be equal to 20. Each group is selected inde-

pendently and uniformly from the entire set of actors; the groups may overlap; and each

actor may be a member of zero or more groups. If two members are in the same group

together, the probability that they communicate during a cycle is pg, otherwise the proba-

bility equals pe. It is intuitive that pg is significantly bigger than pe; we picked pe = 1/n, so

each actor has about one external communication per time cycle. The values of pg that we

use for the experiments are chosen to achieve a certain average number of communications

per actor, thus the effect of a change in the structure of the communication graph may be

investigated while keeping the average density of communications constant. The average

number of communications per actor (the degree of the actor in the communication graph)

is set to six in the experiments. The results do change qualitatively for different choices

of average degree. The number of groups g is chosen from {50, 100, 200}. These cases are

compared to the G(n, p) structure with an average of six communications per actor. For

the selected values of g, each actor is, on average, in 1, 2 and 4 groups, respectively. When

g is 50, an actor is, on average, in approximately one group, and the overlaps of groups are

small. However, when g is 200, each actor, on average, is in about 4 groups, so there is a

significant amount overlap between the groups. The goal of our experiments is to see the

impact of g on finding hidden groups. Note that as as g increases, any given pair of actors

tends to belong to at least one group together, so the communication graph tends toward
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Figure 4: Times of hidden group discovery for various amounts of group structure; each

group is independently generated at random and has 20 actors. In all cases, n = 1000,

degav = 6, and the group size m = 20. Note how, as the number of groups becomes large,

the behavior tends toward the G(n, p) case.

a G(n, pg) graph.

We give a detailed comparison between the society with structure (group model) and

the one without (random model) in Figure 4. The table shows T (1), which is the time after

which the size of the largest internally persistent component has dropped to 1. This is the

time at which any hidden group would be noticed, since the group would persist beyond

the time expected in our model.

We have also run similar experiments for detecting trusting groups. The results are

shown in Figure 5. As the table shows, for the corresponding non-trusting communication

model, the trusting group is much harder to detect.

6 Searching for Hidden Groups in Unknown Intervals

Until now we have assumed that the hidden group is persistent throughout all cycles

1, 2, . . . , T . Suppose, however, that the hidden group begins its planning at some cycle

i and ends planning at another cycle j, where both i and j are unknown. The goal then

19



5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Largest Persistent Connected Component, deg
av

 = 2

La
rg

es
t C

om
po

ne
nt

 S
iz

e 
as

 F
ra

ct
io

n 
of

 n

Time

Internally Connected
Externally Connected

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Largest Persistent Connected Component, deg
av

 = 6

La
rg

es
t C

om
po

ne
nt

 S
iz

e 
as

 F
ra

ct
io

n 
of

 n

Time

Internally Connected
Externally Connected

degav T (1) for trusting groups T (1) for non-trusting groups

2 28 2

6 > 100 32

Figure 5: Times of hidden group discovery for non-trusting (internally connected) hidden

groups and trusting (externally connected) hidden groups. In all cases the communication

graphs are G(n, p) with n = 1000.

is to be able to discover hidden groups which plan in any subinterval cycles [i, j] with

1 ≤ i ≤ j ≤ T . Let us denote the partition containing all hidden groups persistent in

the interval [i, j] as P(i, j). We present an algorithm efficient in both time and memory

which produces a database of all hidden groups persistent in any interval. We then discuss

possible queries on that database to extract useful information.

6.1 Unknown Interval Algorithm

One simple approach to this problem is to call the original hidden group algorithm for each

interval {Gt}
j
t=i. Since there are T (T − 1)/2 intervals, this is a time-consuming process.

This may be improved by taking into account an observation about the nature of partitions

in subintervals. Specifically, if an interval [i, j] is contained within the interval [k, l], then

the partition P(i, j) is a refinement of P(k, l). A partition A is said to be a refinement of

partition B if every set in B is either equal to a set in A or is equal to a union of two or

more sets in A. Alternatively stated, extending the interval being considered will further

break down the hidden groups which are persistent.

The resulting efficient algorithm is based on dynamic programming, where partitions for

smaller intervals are used for developing the partitions for larger intervals. The algorithm

begins by computing the hidden groups which are persistent for one time cycle, i.e. the

connected components of each graph Gi. Now assume that all hidden groups persistent
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for k cycles have been computed. Suppose we now wish to determine the hidden groups

persistent in the range [i, i + k], which contains k + 1 cycles. By our observation, we know

that the partition P(i, i + k) is a refinement of both P(i, i + k − 1) and P(i + 1, i + k).

Each of these partitions are of length k, hence they have already been computed. So we

already know that P(i, i+ k) is equal to or a refinement of the intersection of P(i, i+ k− 1)

and P(i + 1, i + k), where the intersection C of two partitions A and B is the refinement

partition of A and B that contains the minimum number of sets. The original hidden group

algorithm then possibly refines the sets in this intersection. Since these sets are often much

smaller than what would be used by the original algorithm, the procedure will complete

with fewer recursive iterations. Additionally, if the same set is found in both P(i, i + k− 1)

and P(i+1, i+k), it must be persistent in the full range [i, i+k], so it may be immediately

added to P(i, i + k).

1: Unknown Interval({Gt}
T
t=1)

2: //Input: Graphs {Gt}
T
t=1.

3: //Output: An array of partitions containing each P(i, j) for all 1 ≤ i ≤ j ≤ T .

4: Use DFS to obtain the connected components P(t, t) for every Gt.

5: for k = 1 to T − 1 do

6: for i = 1 to T − k do

7: P(i, i + k) = ∅;

8: Compute the intersection C of P(i, i + k − 1) and P(i + 1, i + k);

9: for Cj ∈ C do

10: if Cj ∈ P(i, i + k − 1) and Cj ∈ P(i + 1, i + k) then

11: P(i, i + k) = P(i, i + k) ∪ {Cj};

12: else

13: P(i, i + k) = P(i, i + k)∪ Int Persistent({Gt}
i+k
t=i , Cj);

14: end if

15: end for

16: end for

17: end for

18: return P;

6.2 Set Lattice Data Structure

The unknown interval algorithm must store the hidden groups found in each of the T (T −

1)/2 intervals. If the membership of all hidden groups is stored for all the possible intervals,

this requires Θ(|V |) space for each interval. This is due to the fact that for each interval, the

hidden groups constitute a partition of the vertices. The total space required by explicitly

storing all group memberships is therefore Θ(|V | ∗ T (T − 1)/2).

The storage required may be reduced by making use of the observation that smaller

intervals produce coarser partitions, as was used in developing the unknown interval al-
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Figure 6: (a) The structure of the base of a set lattice. The most refined partition P(1, T )

is stored in base sets, while subinterval partitions reference the sets of larger intervals. (b)

The overall structure of the set lattice data-type. The solid arrows indicate left references

while the dotted arrows indicate right references. Each arrow actually represents a group

of references from each set in the upper interval to its superset in the lower interval.

gorithm. By taking advantage of this fact, we may construct a more efficient method for

storing all partitions in a structure called a set lattice. A set lattice only stores the mem-

bership of the base partition P(1, T ), or the hidden groups which persist over the entire

time range. This base partition is the most refined partition. Each set in the partition for

a smaller interval may then be defined by the sets in an extended interval which make up

that set. For each set in the partition P(i, j), we store the partition set to which it belongs

in P(i, j − 1) in addition to the set to which it belongs in P(i + 1, j). The reference to the

set in P(i, j − 1) is called the left reference while the reference to the set in P(i + 1, j) is

called the right reference. Figure 6 shows how the references connect the sets of neighboring

partitions.

In order to build the set lattice structure incrementally, we introduce the Combine proce-
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dure. This algorithm takes as input two set lattices, representing the left and right children

of the combined lattice, along with the partition of the base lattice. In order to generate

a lattice with base interval [i, j], Combine takes as input the lattices based at [i + 1, j] and

[i, j − 1], along with the partition P(i, j), and generates the proper left and right references

from the sets in P(i, j) to the corresponding supersets in the two subintervals.

1: Combine(M,N,P)

2: //Input: Set lattices M and N , partition P.

3: //Output: Combined set lattice L.

4: L.base sets = P;

5: for Pi ∈ P do

6: Let ri.left equal rj ∈M.base refs such that Pi is a subset of Pj ∈M.base sets;

7: Let ri.right equal rj ∈ N.base refs such that Pi is a subset of Pj ∈ N.base sets;

8: end for

The pseudocode Unknown Interval Lattice describes the final version of the unknown

range algorithm optimized for both speed (using dynamic programming) and memory usage

(using the set lattice data-type).

1: Unknown Interval Lattice({Gt}
T
t=1)

2: //Input: Graphs {Gt}
T
t=1.

3: //Output: A set lattice L containing each P(i, j).

4: Use DFS to obtain the connected components P(t, t) for every Gt.

5: Lt.base sets = P(t, t) for each t.

6: Initialize each of Lt.base refs to a list of |P(t, t)| references with all left and right

fields set to nil.

7: for k = 1 to T − 1 do

8: for i = 1 to T − k do

9: P(i, i + k) = ∅;

10: Compute the intersection C of P(i, i + k − 1) and P(i + 1, i + k).

11: for Cj ∈ C do

12: if Cj ∈ P(i, i + k − 1) and Cj ∈ P(i + 1, i + k) then

13: P(i, i + k) = P(i, i + k) ∪ {Cj}

14: else

15: P(i, i + k) = P(i, i + k)∪ Int Persistent({Gt}
i+k
t=i , Cj);

16: end if

17: end for

18: L = Combine(Li, Li+1,P(i, i + k));

19: delete Li; Li = L;

20: end for

21: delete LT−k+1;

22: end for
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23: return L1;

A loop invariant at the end of each iteration of the inner loop is that Li is the set lattice

with the partition P(i, i + k) at its base. Thus, when k = T − 1 and i = 1, L1 will have the

partition P(1, T ) at its base, which is the desired set lattice.

6.3 Queries

After the set lattice is built, it is ready to be queried for more specific results. The following

queries are examples of questions which may be answered quickly.

Query 1. Given i, j, what hidden groups are in the range [i, j]?

This query simply asks for the partition P(i, j), which contains the hidden groups which

are persistent in the range [i, j]. A partition for any interval is built by starting at the base

partition and following left and/or right references, combining sets which refer to the same

coarser set in a subinterval. The algorithm In Interval describes the general procedure for

extracting the hidden groups in a particular range.

1: In Interval(L, i, j)

2: //Input: Set lattice L, integers i, j.

3: //Output: A partition P.

4: P = {Pk}
N
k=1

= L.base sets;

5: R = {rk}
N
k=1

= L.base references;

6: for y = T downto j do

7: Let R′ be the set {r′|r′ = rk.left} with duplicates removed;

8: Sr′ ← ∪rk.left=r′Pk for each r′ ∈ R′;

9: P ← {Sr′ |r
′ ∈ R′}; R← R′;

10: end for

11: for x = 1 to i do

12: Let R′ be the set {r′|r′ = rk.right} with duplicates removed;

13: Sr′ ← ∪rk.right=r′Pk for each r′ ∈ R′;

14: P ← {Sr′ |r
′ ∈ R′}; R← R′;

15: end for

16: return P;

Query 2. Given a duration t and a size h, what hidden groups are persistent for at least

t cycles and contain at least h members?

Query 3. Given t, h and an actor or set of actors A, what hidden groups contain A, have

at least h members, and last at least t intervals?
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7 Extending the Model

We have assumed that the hidden group communicates, via a connected subgraph, in a

contiguous subinterval of communication cycles. One could modify the algorithm to detect

hidden groups that plan for at least C communication cycles, without requiring the cycles

to be contiguous. Since we do not know a priori what the communication frequency of the

hidden group is, a generalization that can lead to better results is obtained by relaxing the

requirement that the entire hidden group is connected in adjacent communication cycles.

However, the hidden group should still be connected “more often” than a randomly selected

background group. More specifically, let S be a group of vertices. For ǫ ≤ 1, S is ǫ-

partially connected if some subset of S of size at least ǫ · |S| is internally connected. Partial

connectivity quantifies the notion that only some fraction of the hidden group may be

participating in the planning during a given communication cycle. We can now extend the

notion of the hidden group so that it is partially connected in many communication cycles,

possibly scattered over the entire observation range. We are thus led to the following more

general problem definition, which we formulate here as a decision problem:

Problem: Frequently Mostly Connected (FMC)

Input: A sequence of graphs {Gi(V,Ei)}
T
i=1 on the same vertex set

V ; positive integers s ≤ |V | and k ≤ T , and the fraction ǫ,

0 < ǫ ≤ 1;

Question: Is there a subset S ⊆ V with |S| ≥ s which induces an ǫ-

partially connected subgraph in at least k of the {Gi}?

Our original formulation of the problem is a restriction of FMC to the case where ǫ = 1 and

k = T . In this case, we were able to give an efficient algorithm to solve the problem. For

the more general problem, strong evidence exists to indicate that there is no such efficient

algorithm:

Theorem 5 Problem FMC is NP-complete.

Proof: We show that a restriction of FMC is NP-complete. Suppose each graph Gi from

our input-sequence is a clique Ci ⊆ V , and a set V − Ci of isolated vertices. We set ǫ = 1.

We assume that s > 1. Then, it is easy to see that a set S is connected in a graph Gi iff

it is a subset of Ci (i ∈ [1, T ]). Thus, this restriction of FMC is equivalent to the problem

of determining whether there is a subset of size s that is common to at least k of the sets

{Ci}. This latter problem is known to be NP-complete ([10, page 112]). Thus we have a

reduction from an NP-complete problem to a restriction of FMC, proving that FMC is also

NP-complete.

The NP-completeness of FMC suggests that it is more prudent to search for a good

approximate algorithm, or heuristic, to solve the problem. In the absence of any additional
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information, one may employ a variety of approaches. However, it is more likely, that in any

practical situation some additional information is available, for example, it may be known

that certain (flagged) actors are part of the hidden group. In this case, one seeks to design

an algorithm which finds only those hidden groups that contain the flagged subset of the

vertices.

Further assumptions about the hidden group may significantly reduce the search. It is

reasonable to assume that some members of such a group do not vary their communications

within the group. A repeatedly occurring link highlights the actors involved in such commu-

nications. Another reasonable assumption is to limit the global pattern of communications

within the hidden group. In our current analysis, we make only the assumption that the

hidden group is connected. However, it is likely that these communications are represented

by a sparse graph (i.e. very nearly a tree), and further, that the topology of this tree is

changing very slowly with time.

8 Conclusion

Summary of Results. We introduced the notion of internally and externally connected

subsets as a way to characterize the communication pattern of a hidden group. We then

gave efficient algorithms to detect such hidden groups. Our simulations using random graph

models of society communications indicates that if the background society communications

are dense, then it is harder to detect the hidden group. In fact, a phase transition occurs

when the average vertex degree exceeds ln n, at which point hidden groups of moderate

size become hard to detect. If the hidden group is trusting, or the background society

communications are structured, the hidden group is also harder to detect.

Discussion. The experiments run in this study show that it is possible to identify persis-

tently connected groups (which may be malicious) from structural properties of the commu-

nication graph, without using the contents of communications which may be misleading or

difficult to decipher. Group identification done by an algorithm, such as the one proposed

in this paper, could be used as the initial step in narrowing down the vast communication

network to a smaller set of groups of actors. The communications among these potential

hidden groups could then be scrutinized more closely.

Our results indicate a phase transition at ln n for the average number of communications

that an actor makes in one communication cycle. For moderately sized societies, from 10,000

to 100,000 actors, this phase transition occurs at about 10; i.e., if the average number of

communications is 10 per actor per communication cycle, then it becomes hard to detect

the hidden group. Thus, depending on the type of communication, the duration of the

communication cycle may have to be made shorter to ensure that one is in the regime where

a hidden group could be detected. Such an adjustment of the duration of a communication
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cycle may not match the time scale which the hidden group ordinarily takes for a complete

information exchange among its members. However closer to the planned event, they may

need to communicate much more frequently, at which point they can be detected.

While the background communication density seems to be the dominant factor affecting

our ability to detect the hidden group, we also find that if the society already has some

structure (as with the group model), then it is harder to detect the hidden group. This result

seems somewhat intuitive. However, a surprising result is that if the hidden group tries to

hide all important communications within itself (a non-trusting group), it is more easily

detected. The surprise becomes more obvious when the non-trusting groups are thought

of as having more constrained communication patterns, and thus are able to be discovered

with an appropriate algorithm.

A major assumption of the algorithms is that the time period ∆ is known. There are

numerous options for determining the correct value. One is through an intelligence source

which may be able to, through experience with hidden groups, give an initial prediction of

how often the group is expected to communicate. Another possibility is to run the algorithm

many times with different values for ∆, examining the quality of the results obtained and

changing ∆ as appropriate. For example, if a given value of ∆ yields no groups, ∆ could

be increased until substantial results are obtained. A final method is to use an adaptive

window, where ∆ changes in each interval so as to maximize the chances of discovery.

Since the threshold density of edges for group discovery is n ln n, the next interval could be

determined by gathering the next n lnn communications from the stream of data.

There is are obvious tradeoffs between the time interval ∆, the number of intervals

T , and the intensity of the background communications p. ∆ needs to be large enough to

ensure that all members of a hidden group communicate within that time interval. However,

∆ must be small enough to ensure that the background p is not too dense (O(ln n/n)) and

that T is large enough (i.e. there are enough communication cycles to reliably detect hidden

groups).

The algorithms presented extract both malicious and benign hidden groups (i.e. all

groups that are planning in an organized way) from a large set of individuals. Given a set

of n actors, there are potentially 2n possible hidden groups. If every actor is in at most

K planning groups, then there are O(Kn) planning groups in total. Our algorithms would

identify all these groups, but this is a significant improvement from having to monitor all

the 2n possible hidden groups, which would substantially decrease the amount of group

monitoring and analysis needed. In the paper we present connectivity as one criterion for

distinguishing a malicious group from all other groups. This criterion yield false positives.

The goal of future research is to pare down the false positives by adding additional criteria,

and eliminating false negatives through relaxation of criteria where appropriate. The algo-

rithms presented here do not find hidden groups only, that is, they do not find only groups

whose intention is to hide in a communication network, but are a step toward achieving that
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goal. One way to minimize the number of false positives is to pre-filter the communications

in order to eliminate certain messages that may be assumed to be non-malicious (such as

broadcast messages with a large number of recipients).

Trusting and non-trusting hidden groups are a naming convention used to describe

externally and internally connected hidden groups. The paper does not regard one or the

other as the correct model for malicious groups; indeed, there may be some groups that use

temporary “couriers” to hide communication paths, and there may be other groups which

only use established routes. The hopeful argument is that malicious groups have to choose

one of two options, where trusting is more risky in that secrecy could be compromised,

while being non-trusting induces a structure that is more easily detected by our algorithms.

Determining which behavior a particular malicious group or malicious groups in general

exhibit could be the topic of further research.

The value T (h) that we compute in our simulations, is actually an upper bound on

the time to hidden group discovery. We assume that the hidden group is clever enough to

hide among the very “heart” of the communication network, the part that stays connected

longest. If instead, the hidden group is extracted from the large component earlier, a simple

extension of our algorithm would find the group much more quickly. Also note that this

analysis uses no semantic information whatsoever. If there is any additional information

available, such as certain individuals who should be watched, or certain type of messages,

our algorithms can be modified to yield a more efficient procedure for identification hidden

groups.

Our results are of course only as accurate as our model is valid. However, we expect

that the qualitative conclusions are robust with respect to the model. The extension of

this work will explore more robust and realistic models of communication networks. Such

models may additionally explore the notion of a conversation between two actors, where

their communication tends to persist over a certain length of time instead of being random

at every time period. Also, the groups can be made dynamic, where actors sometimes

decide to enter or leave groups depending their preference.

Finally, we relaxed the assumption that the hidden group plans continuously during a

given time period, or that every member of the hidden group participates in the planning

during every communication cycle. In this general setting, we showed that there is strong

evidence that the problem is not efficiently solvable, and one should resort to heuristics and

hints (such as likely hidden group members).
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Kutató Int. Kozël, 5:17–61, 1960.
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