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Abstract— Contention-free MAC protocols have the desired
energy-saving characteristics for wireless sensor networks by
avoiding collisions and minimizing retransmissions in the wireless
medium [2] [4] [24] [25] [26]. Most of the contention-free MAC
protocols split the channel in the time domain, by assigning each
node a time slot for use in transmission, which is unique in its
neighborhood. In such protocols, the time-multiplexed commu-
nication introduces extra delay on the packets when relayed by
intermediate nodes. In this paper, we consider the delay optimal
routing problem on sensor networks with such MAC protocols.
We propose algorithms which construct routing trees rooted at
sink nodes to route data to and from sensor nodes. First, we
consider routing with data fusion, and present our GreenWave
routing idea. We show that our algorithm significantly reduces the
end-to-end delay when compared to routing over the shortest-hop
paths. We also present a comparison of GreenWave routing over
a contention-free MAC protocol to the shortest-path routing over
the IEEE 802.11 MAC protocol, accompanied by an end-to-end
delay analysis of 802.11. As a side result, we show that there is
roughly a two-fold decrease in 802.11 performance when hidden
terminals are taken into account. Moreover, we observe that a
contention-free MAC protocol may outperform 802.11 with the
help of GreenWave routing. Second, we consider routing without
data fusion, by taking into account the effect of congestion along
the paths on the end-to-end delays. We provide a quadratic
integer programming (QIP) formulation of the problem, and
present a lower bound and a heuristic algorithm to bound the
optimal solution. Numerical results show that the results obtained
by the heuristic are close to the lower bounds.

I. I NTRODUCTION

Wireless sensor networks receive significant research focus
as advances in technology made feasible the design and
deployment of tiny sensors with radio communication capa-
bilities. Many application scenarios for sensor networks are
projected such as environment monitoring, disaster recovery,
emergency and military applications. The characteristics of a
sensor network may vary greatly according to the specific
application scenario. However most sensor networks share
some basic features. First, the lifetime of the network depends
on the limited energy available at individual sensor nodes.
Second, cheap sensor nodes are usually deployed in large
amounts. Third, the sensor devices may fail frequently due
to their low-cost nature. From the designer’s perspective these
features give rise to the issues of energy saving, scalability,
and fault-tolerance, respectively.

Medium Access Control (MAC) protocols determine how
nodes in a sensor network access the shared wireless medium,
and they play a crucial role on the overall energy utilization in
the network. Collision of radio packets in the wireless medium
has usually a destructive effect on the packets and necessitates
retransmission at the senders. Severe energy wastage may be
caused by frequent collisions in a sensor network. Many recent
work argue that contention-free MAC protocols are more
suitable for energy-limited sensor networks [2] [4] [24] [25]
[26], and they provide channel access scheduling algorithms,
mostly by using a time-multiplexed (TDMA-based) technique.
In this approach time is divided into frames and frames are
further divided into time slots. Each node is allocated a time
slot in its frame that it can use for collision-free transmission.

The collision-free transmission by the use of a TDMA-
based MAC protocol comes with the price of increased latency,
especially in multi-hop communication environments such as
sensor networks. From the source to its destination, a packet
suffers a delay at each intermediate node due to the fact that a
node has to wait for its time slot before it can relay the packet
to the next hop. However if the routing path is carefully chosen
for a source-destination pair, the delay can be minimized. The
movement of packets in a network could be regarded as vehicle
traffic in a city. Then each relaying (intermediate) node along
the packet’s route might represent an intersection. The packet
waits at relaying nodes for the allocated time slot, just as a
vehicle waits at intersections for the green light. Thegreen-
waveidea in traffic regulation is widely used in large cities to
allow continuous flow of traffic along the main routes.

Some sensor network applications utilize an energy-saving
technique, calledin-network data fusion, when packets are
being relayed (routed) by intermediate nodes. In-network
data fusion is the idea of aggregating data from multiple
sources/sessions before relaying to the next hop so that the
total communication load, hence the energy wastage, is re-
duced. However, it is not always possible to utilize this in
some sensor network applications. In this paper, we consider
both cases, and study the problem of minimizing the end-to-
end communication delays for each case. Our contributions
are two-fold. (i) First we proposeGreenWave routing, an
algorithm to construct end-to-end (sensor-to-sink) routes on
a sensor network where data are fused along the routing



paths. In order to assess the performance of this protocol, we
present an end-to-end delay analysis of IEEE 802.11 MAC
protocol (accompanied by shortest-path routing) by extending
and combining the results from previous work. As a side
result, we also demonstrate the effect of hidden terminals on
the performance of 802.11. (ii) We formulate the problem of
delay optimal routing without data fusion as a quadratic integer
programming (QIP). Then we provide a lower bound and an
efficient heuristic, bounding the optimal solution to the QIP
from above and below.

The rest of the paper is organized as follows. In the next
section, we present an overview of some previous work related
to ours. In section III, the assumptions and notations used in
this paper are given. In section IV, we consider routing with
in-network data fusion and present the GreenWave routing
algorithm. Section V is devoted to end-to-end delay analysis
of 802.11 protocol, which we use in section VI to compare the
performance of GreenWave routing. We consider the no fusion
case in section VII, in which we provide a QIP formulation, a
lower bound algorithm, and a heuristic. Section VIII concludes
the paper.

II. RELATED WORK

MAC protocols, in general, fall into two broad classes:
contention-based and contention-free.Contention-basedMAC
protocols are also known asrandom access protocols, requir-
ing no coordination among the nodes accessing the channel.
Colliding nodes back-off for a random duration and try to
access the channel later again. IEEE 802.11 [1], the current
standard for wireless networks, is also a contention-based
MAC protocol. Most of the previous work on MAC proto-
cols for wireless sensor networks are based on contention-
based access and many of those propose improvements or
modifications on the 802.11 protocol. On the other hand,
frequent retransmissions in contention-based protocols may
lead to quick depletion of the limited energy available at
sensor devices. Hence researches have currently focused on
developing distributed algorithms that schedule the channel
access among nodes in a sensor network so that collisions
are prevented before they occur [2] [4] [24] [25] [26]. These
are known as thecontention-free(CF) MAC protocols, mostly
based on a distributed implementation of the TDMA (Time
Division Multiple Access) protocol.

In [2] we proposed a scalable, distributed and asynchronous
CF MAC protocol for assigning time slots to nodes in a
sensor network, such that collisions are eliminated. A ran-
domized protocol is given in which nodes try to negotiate with
neighbors for conflict-free time slot allocation in a completely
distributed manner. Another recent work, [4], on the other
hand, uses a hierarchical structure, and the time slot allocation
is done by theleaders in clusters. DE-MAC protocol, [24],
uses the TDMA technique together with periodic listen and
sleep to avoid major sources of energy wastage. In [25],
energy-aware routing and MAC protocols are presented, which
are cluster based algorithms controlled by the gateway node
of each cluster. A self-organizing algorithm is given in [26]

to schedule the activation of links in the network, which is
a combined approach for constructing a connected network
structure and conflict-free communication schedule.

Routing protocols for multi-hop ad-hoc networks can also
be classified into two groups: proactive (table-driven) and
reactive (demand-driven). Proactive protocols maintain routing
tables to keep up-to-date routes from each node to every
other node in the network.Proactive Destination-Sequenced
Distance-Vector Routing (DSDV)[13] is a proactive algorithm
based on the Bellman-Ford algorithm [5]. Reactive protocols,
on the other hand, do not maintain routing tables, instead
routes are discovered when needed by a source node. The two
most well-known reactive routing protocols are theDynamic
Source Routing (DSR)[14] andAd-Hoc On-demand Distance-
Vector Routing (AODV)[15]. Route request and route main-
tenance are the basic operations in these protocols to explore
and maintain routes. A thorough survey of routing protocols
for wireless ad-hoc networks can be found in [16].

Finally we cite here some of the existing analysis on
the IEEE 802.11 protocol, as we use it as a basis for our
performance results. There are innumerable analytic work
on the performance of 802.11 in a single-hop environment.
Among those, [7] provides a considerably simple, yet accurate
model to study the saturation throughput of 802.11 under ideal
channel conditions and without hidden terminals. Carvalho et
al. [19] generalizes this model to include the physical layer
affects, and provides a generic modelling framework for the
analytical study of medium access control (MAC) protocols for
multihop ad hoc networks, where each node can be modelled
and studied individually. The analysis of 802.11 is provided
as a case study in this work. Similarly [20] provides the
theoretical analysis of a generic Carrier Sense Multiple Access
(CSMA) protocol with collision avoidance, and the proposed
model is applied to the 802.11 protocol as a case study. In
[17], the authors claim that the IEEE 802.11 MAC protocol
is inefficient in multi-hop wireless ad-hoc networks, which
is validated through simulations. They also consider the key
changes required to adapt the IEEE 802.11 MAC protocol
for multi-hop wireless networks. Similarly [18] state that the
802.11 protocol is not intended to support wireless mobile ad
hoc networks, and by presenting several problems encountered
in TCP (transmission control protocol) connections in an IEEE
802.11 based multi-hop network, they show that the current
TCP protocol does not work well above the 802.11 MAC layer.

III. M ODEL AND ASSUMPTIONS

We study wireless sensor networks in which all sensors
have the same transmission range (or radius). The transmission
range of a node determines the set of nodes it can communicate
directly, which are also called itsneighbors.

Consider a wireless sensor network withn sensor nodes
and m sink nodes. Typicallyn is much larger thanm, and
in some casesm may be just 1. We assume thatn is known
to all nodes in the network, and each node has a unique ID.
Let S be the set of all sensor nodes in the network and letSi

denote the sensori, for i = 1..n. Similarly let R be the set



of all sink nodes in the network and letRj denote the sink
node j, for j = 1..m. Moreover letV = S ∪ R be the set
of all nodes in the network. For any nodev ∈ V , the set of
its neighbors is denoted by∆(v). A 2-neighborof nodev is
defined as a node which is at most two hops away fromv, i.e.
u is a 2-neighbor ofv if and only if u andv are neighbors of
each other or they have at least one neighbor in common. We
denote the set of 2-neighbors ofv by ∆2(v).

As stated earlier, the channel access is TDMA-based: time
is divided into frames, which are further divided intotime
slots. Let Λ denote the number of time slots in each frame,
also called theframe size. We assume that each node has the
same frame size. Each nodeu ∈ V has a time slottu and
keeps a local table (local frame),Fu, of its neighbors’ time
slots relative to its own. Ifv ∈ V is a neighbor ofu, the entry
Fu(v) is the time slot inu’s frame that coincides withtv. This
is depicted in figure 1.
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Fig. 1. The time slot of a node relative to another node’s time frame.
The valuestu andFu(v) are according to nodeu’s local clock, and
tv is according tov’s.

In this paper we consider the problem of finding delay
optimal routing paths between sensor and sink node pairs,
with the objective of minimizing the total end-to-end delay.
The proposed approach could be used for both pull (sensor to
sink) and push (sink to sensor) modes of communication [12].
However, for the clarity of presentation, we will only consider
constructing routes from sensors to sink nodes, as this is the
most common mode of communication in a sensor network.
The application of proposed ideas to the other case is quite
straightforward.

IV. ROUTING WITH DATA FUSION

In this section we focus on a sensor network scenario using
in-network data fusion, i.e. any incoming data to a node are
aggregated in some way and then relayed to the next hop.
A typical example of this scenario is a forest fire detection
application, in which the sensors report large deviations in
temperature readings. A relaying node that receive readings
from multiple sensors can then transmit the average of all
values received, instead of transmitting the individual readings.
In-network data fusion is a method of significant energy-
savings and should be employed wherever the application
scenario allows. With in-network data fusion, there is no
queueing delay since a node may receive multiple packets
from different sources in a single time frame, but it suffices
to form and send a single packet after processing all received
packets so far in the frame. Hence the amount of congestion at

relaying nodes, or the number of packets received in a single
frame, has no effect on the relaying delays. In this section we
formulate and solve this problem.

A. Problem Formulation

We first construct an auxiliarydirected graph G(V,E),
whereV = S ∪ R is the vertex set corresponding to the set
of sensor and sink nodes in the network, andE is the edge
set corresponding to the links between pairs of nodes that
are within each other’s transmission range. We use the same
notations for vertices in the graph and nodes in the network
to ease the presentation, and it will be clear from the context
which one is implied. Since we are interested in finding routes
from the sensor nodes to the sink nodes in the network, we
adapt the termssource verticesanddestination verticesin the
graph corresponding to sensor nodes and sink nodes in the
network, respectively. Hence each vertexSi ∈ S is called a
source vertex, and eachRj ∈ R is called a destination vertex
in graph G. We assume that G is strongly connected. Note
that this assumption is equivalent to the basic assumption that
the sensor network is connected.

For each link (u, v) in a sensor network, there are two
weighted (and directed) edges,(u, v) and(v, u), in the auxil-
iary graph. The weight of the directed edge(u, v) is denoted
by w(u, v) and is assigned as

w(u, v) = (Fu(v)− tu) mod Λ.

Intuitively, weightw(u, v) is the amount of delay observed
if nodev relays a packet received from nodeu. By the intrinsic
property of contention-free MAC protocols, two neighbor
nodes can not have overlapping timeslots, i.e.tu 6= Fu(v),
for any (u, v) ∈ E. Hence we have

1 ≤ w(u, v) ≤ Λ− 1

Figures 2 and 3 demonstrate a simple example network
and the corresponding auxiliary graph. A sensor network with
6 nodes is shown in figure 2. The set of sensor nodes and
sink nodes are not identified as they are irrelevant for the
construction of the auxiliary graph. The local time frame and
allocated time slot of each node is also shown, respecting their
alignment in real time. Figure 3 represents the auxiliary graph
corresponding to this network. Consider, for example, nodes
a and b in figure 2. Suppose thatb receives a packet froma
which it needs to relay to some other node. Aftera sends this
packet at its timeslotta, nodeb can not relay it immediately
after receiving it; it has to wait for its allocated time slottb.
Note thattb coincides with the time slot ina’s frame which
is three slots afterta. Hence the packet will suffer a delay of
3 time slots, which also includes the transmission time of the
packet. Therefore the weight of the directed edge(a, b) is set
to 3 in the auxiliary graph. If, on the other hand,a forwards
a packet ofb, then the delay would be−3 mod Λ = 7, since
Λ = 10 for this example. Hencew(b, a) = 7 in figure 3. Also
note thatw(u, v) + w(v, u) = Λ for any two verticesu andv
in the auxiliary graph.
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Fig. 2. An example network with 6 nodes. Transmission ranges are
shown only for nodesc, d ande, but all links are demonstrated by the
lines between neighbor nodes. On the right is the local time frames
of each node shown with their relative alignment.
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Fig. 3. The auxiliary directed graphG corresponding to the network
in Figure 2.

Our objective is to minimize the end-to-end delay from each
sensor node toany sink node. More precisely, for two nodes
u and v, let δ(u, v) denote the shortest path length between
verticesu andv in graphG, where path length is defined as
the sum of the weights of all edges on that path. Then for
each source vertexSi, the objective is first to find itsclosest
destination vertexRj , which we define as the vertex satisfying

δ(Si, Rj) = min
k=1..m

δ(Si, Rk).

Then for each such(Si, Rj) pair, we want to find the shortest
path fromSi to Rj . We now present an integer programming
(IP) formulation of the problem based on a variation of
the multicommodity flow problem. We define a commodity
originating from each sensor node, destined to any one of the
sink nodes. Therefore there is a total ofn commodities. We
then try to minimize the total cost (weight) of the commodity
flows. Note that in our case, there is no edge capacity in the
auxiliary graph, therefore the flows of the commodities are
independent of each other. In other words, one can also define
n independent IP formulations to individually find shortest-
paths betweenSi, Rj pairs. Nevertheless, we formulate a
single IP consisting ofn commodities, which will also serve
as a basis for our QIP model later in section VII-A. LetXk

ij

be a decision variable such that

Xk
ij =

{
1 if (i, j) ∈ E is used for commodityk
0 otherwise

Then the optimization problem can be formulated as

minimize
∑

(i,j)∈E

∑
k∈S

Xk
ijw(i, j)

subject to ∑
j∈V

Xi
ij = 1 , ∀i ∈ S (1)∑

i∈S

∑
j∈R

Xk
ij = 1 , ∀k ∈ S (2)∑

j∈V

Xk
ij =

∑
j∈S

Xk
ji , ∀k ∈ S, i ∈ S, i 6= k (3)

Xk
ij ∈ {0, 1} , ∀(i, j) ∈ E, k ∈ S (4)

Here the first constraint states that each commodityi must
initiate from source vertexSi ∈ S. The second constraint
forces each commodity to reach a destination vertexRj ∈ R.
The third constraint is the flow conservation equation and must
be satisfied for all vertices except the source and destination
vertices of the flow. Since no flow can go through a destination
vertex as an intermediate vertex, we restrict the incoming flow
of a vertex, i.e. the right hand side of the constraint, to the
flow coming from the vertices inS. Also note that whenever
we use the termXk

ij , there is an implicit constraint oni and
j such that(i, j) ∈ E.

B. GreenWave Routing

As stated earlier, underlying this IP formulation isn inde-
pendent network flow problems (one for each source node).
By theUnimodularity Theorem[10], the LP relaxation of each
of those IPs yields an integral optimal solution, which is also
the optimal solution of that IP. Therefore each individual flow
problem can be efficiently solved. However, global information
of the sensor network is required in this approach, and this is
impractical for sensor networks.

On the other hand, given the auxiliary graphG, we ob-
serve that the problem is actually a generalization of the
single-destination shortest paths problem such that there are
multiple copies of the destination. Here we use the phrase
“single-destination shortest paths”, noting that single-source
and single-destination shortest paths problems are equivalent
since one can be converted to the other by reversing all
edge directions in the graph. We claim that we can use
a generalized version of the Bellman-Ford algorithm [5] to
construct shortest-path trees, each rooted at a destination
vertex. In this approach each sink node (destination vertex)
can be treated as a copy of the single destination. Then the
only modification needed is to allow multiple destinations in
Bellman-Ford algorithm by initializing thed values of all
destination vertices to 0, whered is the local shortest-path
estimate.

Although the only difference is in the initialization section
of Bellman-Ford algorithm, we present the complete central-
ized algorithm here for completeness (see Algorithms 1, 2, 3).
In the next section we present the correctness proof for the
generalized Bellman-Ford algorithm.

Each vertexu has a shortest-path estimated[u], which
eventually converges to the actual length of the shortest path
from u to its closest destination vertex. Also associated with
each vertexu is the variableπ[u], which keeps the parent of



Algorithm 1 INITIALIZE (S, R)
1: for i = 1..n do
2: d[Si]←∞;
3: π[Si]← NIL;
4: for j = 1..m do
5: d[Rj ] = 0;
6: π[Ri]← NIL;

Algorithm 2 RELAX (u, v, w(u, v))
1: if d[u] > d[v] + w(u, v) then
2: d[u]← d[v] + w(u, v);
3: π[u]← v;

u in the shortest path fromu to its closest destination vertex.
TheBELLMAN-FORD algorithm starts with initializing local
variablesd andπ for all vertices, and executes its main loop
n times.

1) Correctness:Although the modification in the algorithm
is brief, its effect is significant and needs a formal analysis.
In this section, we basically prove the following theorem,
which verifies the correctness of the generalized Bellman-Ford
algorithm.

Theorem 1:At the termination of the generalized Bellman-
Ford algorithm,

(i) m shortest-path trees emerge, each rooted at a distinct
destination vertexRj ∈ R, for j = 1..m,

(ii) all shortest-path trees are node-disjoint, hence eachSi ∈
S is part of a single tree, fori = 1..n,

(iii) if Si ∈ S is part of the tree rooted atRj ∈ R, then

d[Si] = δ(Si, Rj) = min
k=1..m

δ(Si, Rk).
We assume that the vertices and edges of the graph are static

during the execution time of the algorithm. Then we can show
that thed values of each node converges to the shortest-path
lengths after the main loop of Algorithm 3 is executedn times.
We will utilize an adaptation of the path relaxation property
of [5], which is presented below.

Lemma 1:Path-relaxation Property [5] : If
p = 〈v0, v1, . . . , vk〉 is a shortest path fromv0 to
vk, and the edges ofp are relaxed in the order
(vk−1, vk), (vk−2, vk−1), . . . , (v0, v1), thend[v0] = δ(v0, vk).
This property holds regardless of any other relaxation steps
that occur, even if they are intermixed with the relaxations of
the edges ofp.

We first show that the number of edges in a shortest path in
G from any source vertexSi to its closest destinationRj can

Algorithm 3 BELLMAN-FORD (G = (S ∪R,E), w)
1: INITIALIZE(S[G], R[G])
2: for i = 1..n do
3: for each edge(u, v) ∈ E[G] do
4: RELAX(u, v, w(u, v));

be at mostn. It is easy to see that a shortest path fromSi to Rj

can not go through another destination vertexRk ∈ R, simply
becauseRk would then be the closest destination vertex for
Si. On the other hand, a shortest path can not have cycles as
all edge weights inG are positive and removing the cycle from
the path would yield a shorter path. Thus, each ofn vertices
in S can be used at most once in a shortest path.

Now consider an(Si, Rj) pair such thatRj is the closest
destination forSi, and letp = 〈v0, v1, . . . , vk〉 be the shortest
path fromv0 = Si to vk = Rj . Then at the first iteration of the
main loop of Algorithm 3, the edge(vk−1, vk) will be relaxed
among all other edges. At the second iteration of the algorithm,
the edge(vk−2, vk−1) will be relaxed, and so on until the edge
(v0, v1) is relaxed at thekth iteration. Hence by lemma 1, all
edges ofp will be relaxed in order afterk iterations of the
algorithm andd[v0] will converge toδ(Si, Rj). Since we have
k ≤ n for all Ri ∈ R, all d values will converge to the desired
shortest-path lengths at the termination of the algorithm.

We now prove that the algorithm splits the graph intom
partitions, each partition being a tree rooted at a destination
vertex. First we construct a spanning subgraphG′(V,E′) of
G, whereE′ = {(u, π[u]) | u ∈ S}. ClearlyG′ has no cycles:
each edge on a cycle must satisfy the relaxation condition
of algorithm 2, and this yields a contradiction since all edge
weights are positive. Hence the graphG′ must be a forest, i.e.
a collection of trees.

Lemma 2:Each destination vertexRj has π[Rj ] =NIL
after the algorithm termination, and hence is the root of a
tree inG′.

Proof: For any vertexu in the graph,π[u] is updated
only if line 1 in the RELAX operation,d[u] > d[v]+w(u, v),
evaluates to true. Since all edge weights in the graph are
positive, this cannot evaluate to true for any outgoing edge
of the destination vertexRj , asd[Rj ] is initialized to 0 -the
minimum possible value- prior to the algorithm.

Since graphG is strongly connected, there is a path inG
from anySi ∈ S to anyRj ∈ R. Then by the path-relaxation
property, each source vertexSi will have a destination vertex
Rj as one of its ancestors inG′. Combined with lemma 2, this
states that each tree inG′ is rooted at a destination vertex.

Lemma 3:For each destination vertexRj , let Tj denote
the tree rooted atRj . Then all treesT1, T2, . . . , Tm are node-
disjoint.

Proof: Suppose that the treesTi andTj share a common
nodeu. Then there are two cases for nodeu: (i) it has two
parents -one for each tree- or (ii) it has a single parent -shared
by both trees. The first case contradicts with the fact that the
algorithm keeps only a single parent,π, for each node, hence
can not happen. Consider the second case, and letπ[u] = v.
Then there are two same cases forv: it has either two parents
or just one. The first case is again a contradiction and can
not happen. Continuing recursively in this manner, we must
reach an ancestor ofu, call it z, which is the root of one
of the trees, sayTi. Since each tree has a unique root, we
have thatz, a destination vertex, is an intermediate node in
Tj , which contradicts with lemma 2. ThereforeTi andTj are



node-disjoint.
Theorem 1 follows from Lemmas 1, 2 and 3.
2) Distributed Implementation:By implementing Green-

Wave routing as an extension of Bellman-Ford algorithm,
we can take advantage of its well studied distributed im-
plementation [6]. The idea is to have all nodes execute the
algorithm on its incident edges in parallel and communicate
their computations to their neighbors at some intervals. We
now present precisely how nodes in a sensor network would
apply the algorithm locally and in a distributed manner.
Consider nodeu, and assume that it has a virtual clockCu(t),
which is simply a counter incremented at each time slot. Then
at real timet, nodeu executes the following:

Algorithm 4 GREENWAVE(nodeu, time t)

1: if Cu(t) mod Λ = tu then
2: broadcastd[u];
3: else
4: if receivedd[v] from neighborv, such that

d[v] + w(u, v) < d[u] then
5: d[u]← d[v] + w(u, v);
6: π[u]← v;

Each node can execute this algorithm locally in every
time slot, after initializing its local variables as in the GBF
algorithm. Having a time-slotted communication paradigm
actually provides a perfect environment for the synchronous
execution of the algorithm: each node relaxes its outgoing
edges and communicates its updatedd value exactly once in
every time frame. Hence during each time period ofΛ time
slots, all links in the network would be relaxed, corresponding
to one iteration of the main loop of the centralized algorithm.
Then it would suffice for each node to execute Algorithm 4
for τ = nΛ time slots, given that they start executing the
algorithm at the same time. We assume that the nodes in the
sensor network are already synchronized by the underlying
MAC protocol, either by a physical synchronization method
such as using GPS [11], or by a virtual synchronization method
embedded in the contention-free MAC protocol, such as in
[2]. Even if there is a drift between the times the nodes start
the algorithm, each node may execute the algorithm for an
increased amount of time to offset the different starting times
at individual nodes. The value ofτ could easily be adjusted by
achieving an upper bound on the maximum difference between
the times each node starts the algorithm. We can safely assume
that τ = O(n), and the message complexity of the algorithm
is thenO(n) for each node, since each node sends only one
message for each of theτ time frames.

After nodeu is done with theGREENWAVE algorithm by
executing it forτ time slots, it forwards all incoming packets
to π[u]. It has no information as to which sink node the packets
are forwarded to, and it does not need to. With the local
information stored at each node, the packets eventually reach
the closest sink node. Here we restate our assumption on the
scenario that each sensor can report its data to any sink node
in the network.

V. IEEE 802.11 DELAY ANALYSIS

To the best of our knowledge, there is no existing
study comparing the performance of a contention-free and a
contention-based MAC protocol. Recall that the contention-
free MAC protocols have the desirable properties for an
energy-constrained sensor network, since there is no energy
waste due to collisions and retransmissions. Their drawback,
on the other hand, is increased latency and lower throughput.
We proposed GreenWave routing to alleviate this drawback,
and it is a natural step to compare the performance of the re-
sulting contention-free protocol suit with that of a contention-
based protocol, such as 802.11, and see how much we gain
by routing data alonggreen-wave paths.

To assess the delay analysis of the IEEE 802.11 MAC
protocol, we combine and extend the two analytic models
by Bianchi [7] and Wang et al. [20]. Bianchi model presents
accurate results for the 802.11 protocol DCF (distributed co-
ordination function) scheme in saturation conditions, verified
by simulation results. As in most of the existing analytic
models of 802.11, the Bianchi model considers the single hop
communication, where all considered stations are assumed to
contend against each other for channel access, i.e. there are
no hidden terminals. The Wang model, on the other hand,
considers a generic Carrier Sense Multiple Access (CSMA)
protocol with collision avoidance, and also takes the hidden
terminals into account. Both of these work provide throughput
analysis. In this section, we first extract the delay information
for both models, and then combine the results of [7] and
[20] to obtain the end-to-end delay performance of the 802.11
protocol. The results also present the significant effect of
hidden terminals on the protocol performance.

A. Bianchi Model

When a nodeu wants to access the channel, it contends with
its immediate neighbors. Moreover, ifv is a 2-hop neighbor
of u (i.e. v is a neighbor of one ofu’s neighbors), thenu
may also contend withv if the intended receiver ofu or v
receives signals from both of them. This is called the hidden
terminal problem, and is handled in 802.11 protocol by the
use of RTS/CTS (request to send/confirm to send) message
exchange.

The Bianchi model assumes that there areN contending
stations for the channel, where there are no hidden terminals.
In a multi-hop environment, if we consider the communication
link from u to v, there are|∆(u)| stationsdirectly contending
with the senderu, where∆(u) is the set of neighbors ofu.
Thus we can simply set the number of contending stations as
N = |∆(u)| in Bianchi model to obtain a lower bound for
the one-hop delay in 802.11. Note that in reality the delay
would be higher due to hidden terminals. We will investigate
this issue using the Wang model later in this section.

In the Bianchi model, the average amount of time spent on
the channel in order to observe a successful packet transmis-
sion is given as

Tcs + τ
1− Ptr

PsPtr
+ Tcc

(
1
Ps
− 1
)

(5)



where Tcs is the average time the channel is sensed busy
because of a successful transmission,Tcc is the average time
the channel is sensed busy by each station during a collision,
τ is the duration of an empty slot time,Ptr is the probability
that there is at least one transmission in the considered time
slot, and Ps is the probability that a transmission on the
channel is successful, i.e. the probability that exactly one
station transmits, conditioned on the fact that at least one
station transmits. More intuitively, the first term in (5) is the
time spent on the channel in order to successfully transmit a
packet. The second term is the amount of time the channel is
idle, per successful transmission. The third term represents
the time wasted on the channel because of collisions, per
successful transmission.

Given the number of contendersN , let D(N) denote the
average delay to observe a successful transmission. We can
then expand (5) to obtain

D(N) = Tcs + τ
1− p

Np
+ Tcc

(
1− (1− p)N

Np(1− p)N−1
− 1
)

(6)

wherep is the probability that a station transmits in a randomly
chosen slot, and can be approximated as [7]

p ≈ 1
N
√

Tcc/2τ
.

Note thatp has nothing to do with the traffic generation at
a node. The Bianchi model assumes saturation conditions,
i.e. each node has always data to transmit, but has to remain
silent during back-off slots.Tcs and Tcc are constant values
dependent only on protocol specific settings, such as the length
of DIFS (distributed inter-frame space) and SIFS (short inter-
frame space) durations, andτ is the constant slot duration.
Therefore we can express the single-hop transmission delay
as a function ofN .

An important observation is thatD(N) is the average
delay untilany successful transmission is observed amongN
contenders. Hence if we consider a specific nodeu among
these contenders, it has an expected delay ofN/2 · D(N)
before it can transmit successfully. Since we setN = |∆(u)|,
we obtain the following estimateDP for the end-to-end delay
of a pathP , ignoring hidden terminals.

DP =
∑

(u,v)∈P

[
|∆(u)|

2
·D(|∆(u)|)

]
B. Wang Model

The delay bound provided by the Bianchi model may be
loose since the hidden terminals are not considered. In order to
investigate the effect of hidden terminals on the performance
of 802.11 protocol, we use a recent work by Wang et al.,
[20], which provides an analysis of generic collision avoidance
protocols in multihop wireless networks. Unlike most of
the previous work, the authors take into account the hidden
terminals in their throughput analysis. They use two separate
Markov chains, one for modelling the state of the channel
around a node, and the other for the state of the node itself.

wait

succeed

failPww

Psw=1

Pfw=1

Pws

Pwf

Fig. 4. Markov chain model for a node [20]

The channel is viewed as a circular region around the node
with a set of other contending nodes. Thechannel Markov
chain is used to compute the probability of the channel around
the node being idle, and then thenode Markov chainis used
to compute the steady state probabilities of the node being in
each of the states,wait, fail, and succeed. The two Markov
chains together generate a set of closed form expressions that
can be solved using numerical methods.

Figure 4 shows the Markov chain for a node, which is used
in [20] to obtain the throughput of a single node. Using this
Markov chain, we can extract the delay that a packet suffers
when being sent by this node.

The steady state probabilities ofwait, succeedandfail states
are given asπw, πs and πf and can be computed using the
methodology of [20]. Also, letTw, Ts andTf be the durations
of wait, succeedandfail states, respectively. The duration of a
state is the amount of time spent in that state before a transition
occurs (possibly back to itself).

Let Tws denote the time spent until the Markov chain first
visits thesucceedstate starting from thewait state. ThenTws

is the expected amount of delay observed at the node before
a successful transmission starts, which is our desired value.
Similarly let Tfs be the time spent before the Markov chain
first visits thesucceedstate starting from thefail state. We
have

Tws = PwsTw + Pww(Tw + Tws) + Pwf (Tw + Tfs)(7)

Tfs = Pfw(Tf + Tws) = Tf + Tws (8)

Plugging (8) into (7) and solving forTws, we obtain

Tws = PwsTw + Pww(Tw + Tws)
+Pwf (Tw + Tf + Tws)

Tws(1− Pww − Pwf ) = PwsTw + PwwTw

+PwfTw + PwfTf

TwsPws = Tw(Pws + Pww + Pwf ) + PwfTf

Tws =
Tw + PwfTf

Pws
(9)

Noting that πf = πwPwf and πs = πwPws from the
Markov chain, we can rewrite (9) as

Tws =
Tw + πf

πw
Tf

πs

πw

=
πwTw + πfTf

πs



The reader is referred to [20] for the detailed expressions of
πw, πs, πf andTw, Ts, Tf . However we stress here that there is
a strong dependency of these quantities on the probability that
a node transmits in a slot,p′, and the number of contenders
in the channel,N . p′ is a protocol-specific parameter and
its value depends on how the MAC protocol grants nodes
to access the channel. Note that [20] considers the carrier-
sense multiple access protocols in general, not specifically the
802.11 protocol.

Recall that using the Bianchi model, we could computep,
the probability that a node transmits in a randomly chosen slot
in the 802.11 protocol. Hence we can simply incorporate this
result into the Wang model to obtain the results for 802.11,
by settingp′ = p. The definition ofp in [7] exactly matches
that of p′ in [20], and its value is derived by the behavior of
802.11’s exponential back-off algorithm.

Since [20] models the channel as a circular region around
the sender node, we can easily extend the analysis to find the
expected end-to-end delay between two nodes. We consider
each hop as an instance of this model in which the intermediate
sender node and its neighbors compose the nodes in the
channel.

C. Numerical Results

We now provide some numerical results to demonstrate the
effect of hidden terminals on the 802.11 protocol performance.
We randomly generate networks of different sizes,n = 500 to
n = 1000 nodes. Nodes are distributed uniformly at random in
a unit area and the transmission radius is constant,r = 0.1, for
all networks. Hence the node density (a.k.a. average number
of neighbors of a node) increases as the network size becomes
larger. We present two figures showing the average node
throughput and the average end-to-end delay. Each data point
in the figures represent an averaged value over 100 random
networks of the given size. In order to investigate the end-
to-end delay values, shortest-path routing is applied to route
packets from every sensor node to the closest sink node. The
number of sink nodes is set as constant,m = 3. Other protocol
specific parameters used conform to the settings given in [20];
data packet size is100τ , and ACK, RTS, CTS packet sizes
are5τ .

Figure 5(a) shows the average node throughput versus
the average number of contending nodes. The number of
contending nodes is essentially the average node degree in
the graph corresponding to the network of given size, varied
from 500 to 1000 nodes. We observe that the throughput is
reduced by more than half with the hidden terminals taken
into account.

Similarly in Figure 5(b), there is more than two folds
increase in the end-to-end delay when hidden terminals are
considered. The effect of hidden terminals on the end-to-end
delay also increases as the network gets denser. The values on
they-axis are expressed inτ units, i.e. the number of slot times
elapsed before the packet arrives from source to destination.
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(a) Node throughput vs. Number of contending nodes.
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(b) End-to-end delay vs. Network size.

Fig. 5. The effect of hidden terminals on the 802.11 protocol.
Bianchi represents the analysis ignoring the hidden terminals, and
Wangrepresents the analysis with hidden terminals.

VI. GREENWAVE ROUTING PERFORMANCEANALYSIS

In this section we present the performance effect of routing
over the green-wave pathsfrom sensors to sinks. We also
compare contention-free protocols to the contention-based
802.11 protocol using the results from the previous section.
We observe that by the existence of GreenWave routing,
contention-free MAC protocols may surpass the 802.11 MAC
protocol with respect to end-to-end delay and throughput.

Let us first introduce some notations and assumptions that
we will make use of in this section. We denote by SH the
shortest-hop routing algorithm, which simply routes packets
over minimum-hop paths. Note that this can be achieved
by simply setting each edge weight to 1 in the generalized
Bellman-Ford algorithm. We let CF represent some given
contention-free MAC protocol. We are not interested in how
this underlying MAC protocol works, i.e. how it allocates
a time slot for each node. Instead, given a frame size, we
randomly generate time slots for all nodes in the network
respecting the no-conflict requirement. The frame size and the
allocation of time slots to the nodes collectively represent a
given CF MAC protocol.



Note that contention-free time slot allocation in a sensor
network is equivalent to the distance-2 vertex coloring in a
graph. Because of the hidden terminal problem, nodes in a
network that are within two hops distance can not be assigned
the same time slot, just as 2-distant vertices in a graph can
not be assigned the same color. Hence the smallest possible
frame size can not be determined efficiently, since the coloring
problem is NP-hard. However, a simple upper bound on the
minimum frame size is the maximum 2-neighborhood size,
∆2, in the network, meaning that any frame size larger than
∆2 is feasible. In obtaining the results of this section, we
calculate∆2 in the given graph, and set this value as the
frame size in the CF MAC protocol. Hence our basic aim is
to investigate the CF MAC protocols at their limits.

We compare three different approaches in this section, each
of which represents a combination of a MAC and a routing
protocol.

• CF + GW — Our GreenWave routing protocol on top of
a contention-free MAC protocol.

• CF + SH — The shortest-hop routing protocol on top of
a contention-free MAC protocol.

• IEEE 802.11 + SH— The shortest-hop routing proto-
col on top of the contention-based IEEE 802.11 MAC
protocol.

Performance metric— Given a sensor network, for each
protocol suit we compute the end-to-end delay of the path
from each sensor to its closest sink. We then average the delay
over all such paths to get the performance of the protocol on
the given network. Throughout this section, each data point
(the delay or throughput value) is an averaged value over 100
random networks. We assume saturation conditions, i.e. each
node has always data to send.

We present performance results calculated on random sensor
networks. The random networks are generated by a random
geometric graph model: nodes are scattered in a unit area,
uniformly at random, and a pair of nodes that are at mostr
units apart from each other are connected (set as neighbors
in the network), where0 < r < 1 is the transmission
radius. We also ensure that each randomly generated network
is connected. For all networks studied in this section, we set
the number of sink nodes as three. Hencen and r uniquely
define a class of network topologies on which we present the
results.

An extra parameter needed for the contention-free MAC
protocols is theslot time, or the duration of each time slot.
Note that theslot time in 802.11 is very small as its only
role is to transform the continuous time line into discrete time
steps. For a CF MAC protocol, each time slot should be long
enough for a packet to be transmitted over the channel. Since
we use the packet size100τ in our numerical results, the slot
size for the CF MAC protocol is set as100τ .

Figure 6 demonstrates the average end-to-end delay figures
for all three approaches. In order to see the effect of node
density, we keep the transmission radius fixed,r = 0.1, and
increase the network size from 500 nodes to 1000 nodes. We
first observe that GreenWave routing significantly decreases
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Fig. 6. Average end-to-end delay versus network size. Transmission radius
is fixed, r = 0.1, for all network sizes.
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Fig. 7. Average node throughput versus network size. Transmission radius
is fixed, r = 0.1, for all network sizes.

the average end-to-end delay for a contention-free MAC
protocol, more than half, when compared to using shortest-
hop routing on top of the CF MAC. More interestingly, the
performance of CF+GW is better than 802.11+SH although
the CF+SP scheme is always surpassed by 802.11+SH. The
end-to-end-delay savings by the GreenWave routing increases
with higher density of nodes in the network.

We also investigate the average throughput of nodes in the
network for each approach under discussion. For this purpose,
instead of the end-to-end delays, we compute the average
single-hop delay for the same set of random networks. Let
D denote the average single-hop delay, andχ the packet
size in the network. Then, under saturation conditions, the
average throughput of a node can be stated asχ/D. Figure 7
demonstrates the results for the same set of networks used for
Figure 6.

As expected, a contention-free protocol by itself always
performs poorly against the contention-based protocol with
respect to communication delays or throughput regardless
of the network size and density. However, by the help of
GreenWave routing, contention-free protocols may become



preferable especially as the network size and density grows.
Given that many sensor network scenarios project thousands
of densely deployed nodes, CF+GW protocol suits seem more
suitable for sensor networks with in-network data fusion.

VII. ROUTING WITHOUT DATA FUSION

In some scenarios, in-network data fusion may not be
available such that the relaying node forwards each single
packet it receives as is. Then the delay observed on a packet
is greatly affected by how many other packets the relaying
node receives in that time frame. In other words, the flow of
different commodities may have strong effects on each other’s
end-to-end delays. Let us first demonstrate this effect by a
simple example.
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S1

S2

S3

T0

T1 S0 S1 S2

T0

S3

T1

5 2 1 4 6

Fig. 8. A small sample network. Local time slots of nodes are shown
on the left. The delay on each link(u, v) is calculated byw(u, v) =
(Fu(v)− tu) mod Λ, and the resulting routing tree is shown on the
right. The dashed arrow only shows thatS2 andT1 are neighbors.

Consider the simple example in figure 8, where there are
four sensor nodes and two relaying nodes. To illustrate the
idea, assume for now that the four sensors are the only data
producers and the relaying nodes just forward their data. The
local allocated time slots for each node are also shown on the
left. If the link weights are assigned simply by the formula
w(u, v) = (Fu(v)− tu) mod Λ, then three nodes report their
data throughT0 and only one node toT1 as a result of the
algorithm. However, if in-network data fusion is not applicable
and if all three nodesS0, S1, S2 have packets to transmit in
the same time frame, thenT0 will have three packets to relay,
where it can only send one at a time. Therefore the effective
delay on these packets will be higher than the ones shown on
the right in figure 8. If we assume that each node transmits a
packet in every time frame, and thatT0 transmits the packets
one by one in the order they were received, then in the steady
state the delays forS0, S1, S2 will all go up by 2Λ as shown
on the left in figure 9. On the other hand,S2 is also a neighbor
of T1 and thusT1 could relay its packets as well. The graph
on the right hand side of figure 9 shows the effective delays
if S2 joins the tree ofT1 instead ofT0. Note that the total
delay -total link cost- on the right is less than the one on
the left, hence is preferable. In this section, we try to model
this modified problem by taking into account the interaction
among different flows in the network.

A. Problem Formulation

We now formalize the interaction among different flows
and formally define the modified problem. Suppose that we
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Fig. 9. The two possible solutions to the example of figure 8, this
time taking into account the interaction among different flows for
calculating delays. The routing tree on the right yields a lower total
delay and hence is preferable.

are given arouting graph which is formed by the union
of n paths, from each source vertex to some destination
vertex. Each path in the routing graph defines the flow of
the commodity originating from a unique source vertex. We
define thecongestionon vertexv as the number of different
commodities (paths) going throughv, and denote it byCv.
Hence the corresponding nodev relays the packets ofCv
different nodes, which we call thedescendantsof v. Note
that v also “relays” its own traffic, hence a total ofCv + 1
distinct commodities are leaving out ofv, i.e. v hasCv + 1
descendants. Assume that each node senses an event (hence
transmits) in each time frame with probabilityp. The fixed
probability p may be considered as an averaged quantity that
reflects a possibly bursty traffic generation in the long term.
This approach has been extensively applied before to make the
theoretical modeling tractable [20] [21] [22] [23].p also serves
as a tuning parameter in our model to represent sensor network
scenarios with different event frequencies –hence different
traffic loads.

Consider an edge(u, v) on the routing graph. Assume that
some commodityk is active on(u, v) at some instant. We want
to find theeffective delayon commodityk incurred by the link
(u, v) by taking into account (i) the time slots ofu andv, and
(ii) other commodities that are relayed byv. With probability
(1 − p)Cv , none of the other descendants ofv transmits in
this frame, and the delay incurred by the link(u, v) is then
just w(u, v). Similarly, with probabilityCvp(1− p)Cv−1, only
one of the other descendants ofv transmits in this frame, and
in this case the delay foru goes up tow(u, v) + Λ. Note
that the packet of commodityk may be the first one to be
relayed byv, but in the steady state, if two nodes are sending
packets andv is relaying them alternatingly, then both of
them sufferΛ amount of extra delay. Considering all possible
cases, we can calculate the expected value of the delay when
v relays a packet fromu, for some given commodity. Let
w′(u, v) be the effective delay on edge(u, v). Then –using
E[X] =

∑
xP{X = x}– we can compute the expected value

of w′(u, v) as follows

E[w′(u, v)] =
Cv∑
i=0

[
(w(u, v) + iΛ)

(
Cv
i

)
pi(1− p)Cv−i

]



= w(u, v) ·
Cv∑
i=0

[(
Cv
i

)
pi(1− p)Cv−i

]

+Λ ·
Cv∑
i=0

[
i

(
Cv
i

)
pi(1− p)Cv−i

]
= w(u, v) + pCvΛ (10)

The last step follows from the fact that the first summation
is the sum of all probabilities for a random variableX that
follows a binomial distribution,b(i; Cv, p), and the second
summation is the expected value ofX, which equalspCv.

For convenience of presentation, we call the first term in
(10), w(u, v), the static costand the second term,pCvΛ, the
congestion cost. Instead of assigning this cumulative cost as
a whole to the edge, we attribute the static cost to the edge,
(u, v), and the congestion cost to vertexv. Hence the cost of
vertex v is pCvΛ. This approach will allow us to model the
problem more neatly and help us to derive lower bounds.

We use the multi-commodity flow approach as in section
IV-A to mathematically express the congestion on a vertex
and the total cost of a path, and then formulate the modified
problem as a minimization problem using the same notation.
Recall thatXk

uv is the variable that equals 1 when commodity
k goes through edge(u, v). Then we can expressCv as

Cv =
∑
k∈S

∑
u∈S

Xk
uv.

The cost of a path is the sum of the costs of all edges and
vertices along the path. We can then express the cost of a path
Pk, corresponding to commodityk as

Zk =
∑

(u,v)∈E

[
Xk

uv (w(u, v) + pΛCv)
]
. (11)

The objective is to minimize the total cost of all flow paths,
each corresponding to a commodity originating from a source
vertex, i.e. to minimize

∑
k∈S Zk. In its open form, we have

the optimization problem

minimize
∑
k∈S

∑
(u,v)∈E

[
Xk

uv

(
w(u, v) + pΛ

∑
l∈S

∑
u∈S

X l
uv

)]

subject to constraints (1), (2), (3) and (4). This is aquadratic
integer programming(QIP) problem, with a quadratic objec-
tive function and linear constraints. We can solve this opti-
mization problem using the QIP solver of the commercially
available CPLEX optimizer, but only trivially small networks
can be efficiently solved with this approach.

B. Lower Bound

We now try to derive a lower bound for this minimization
problem. Our approach is based on considering the static costs
and the congestion costs independently. We first derive a lower
bound,LC , on the summation of the congestion costs over all
paths, then a lower boundLW on the sum of the static costs
over all paths. Note that minimizing the static costs can be
efficiently solved as we showed earlier. Hence we just need to

find LC . Then the total cost for all paths, the objective function
value, can not be lower thanLW + LC .

The congestion cost of pathPk can be extracted from (11)
–by setting all edge weights to 0– as

pΛ
∑

(u,v)∈E

(Xk
uvCv).

We can safely ignore the constant multiplierpΛ in deriving
a lower bound on the overallcongestion cost, LC , in order to
make the presentation clearer. Then the overall lower bound
can be expressed asLW + pΛLC . In the rest of this section
the congestion cost of a path should be considered this way
–omitting the constant termpΛ.

First we observe that each commodity has to terminate at
one of m destination vertices. Hence there is always a total
of n flows coming into the set of destination vertices. Let
ni denote the number of sensors reporting to sinki, hence
the congestionon sink i is ni. Then the congestion cost of
each path coming intoi is at leastni, and the total congestion
cost of theseni paths is at leastn2

i . Summing over all sink
nodes, we get

∑m
i=1 n2

i . Clearly, this summation is minimized
whenni = n/m. Hence a simple lower bound on the overall
congestion cost isLC = n2/m. This bound holds regardless of
the network topology, and is tight when the network graph is
complete. However we can efficiently improve it considering
the given topology of a network.

Given the graphG corresponding to a network topology,
we first find the shortest path lengths from all sources to their
closest destinations, using the hop count as the distance metric.
Let S(i) denote the set of vertices with shortest hop distance
i to any one of the destination vertices, and letn(i) = |S(i)|.
HenceS(i) = {u ∈ S | δu = i}, whereδu is the shortest hop
distance fromu to the closest destination vertex. Also letδ be
the largest of these shortest hop distances, i.e.δ = maxu∈S δu.
Initially, we apply the same strategy on the destination vertices
as we did for the general lower bound. Then we remove all
destination vertices and their incident edges fromG. We then
set all vertices inS(1) as the new destination vertices. Note that
all paths corresponding to then−n(1) remaining nodes (those
that are at least two hops away from any sink node) have to
terminate at one of these new destination vertices. Following
our original idea, the additional congestion cost introduced at
this level is at least(n − n(1))2/n(1). We then remove all
vertices inS(1) from the graph and apply the same idea for
nodes inS(2) and so on until all vertices in the graph are
removed. Adding the cost values at each level, we obtain the
overall congestion cost

LC =
δ∑

i=0

(∑δ
j=i+1 n(i)

)2

n(i)
. (12)

Next we consider only the static costs of paths by setting
the congestion on each node to 0. This can be efficiently
solved by the generalized Bellman-Ford algorithm to obtain
LW . Then the overall lower bound is simplyLW + pΛLC .



The lower bound algorithm is neatly presented as a pseudo-
code in Algorithm 5.

Algorithm 5 LBOUND (G = (S ∪R, E), w, p, Λ)

1: ∀u ∈ S, find δu = shortest hop distance fromu to the closest
destination vertex.

2: δ = maxu∈S δu

3: n(0) = m;
4: for i = 1..δ do
5: S(i) = {u ∈ S | δu = i}
6: n(i) = |S(i)|
7: LC = 0
8: nrest = n
9: for i = 1..δ do

10: LC = LC + bn2
rest/n(i−1)c

11: nrest = nrest − n(i)

12: find LW by applying generalized Bellman-Ford onG with static
costs as edge weights.

13: return LW + pΛLC

C. Heuristics

In this section, we present a novel heuristic to find good
suboptimal solutions to the QIP problem presented in section
VII-A. Given an instance of the problem, letOPT denote
the optimal solution to this QIP. Note that any valid routing
scheme (that connects each sensor node to some sink node) is
a heuristic, and the result of the heuristic provides an upper
bound onOPT . Hence, as a first step, our original GW routing
algorithm can be considered as a simple heuristic for this
problem. However GW does not take congestion into account
and hence may perform very poorly –especially when the
traffic is heavy (p is large) and thus congestion has larger
effects on the delay.

Recall that the end-to-end delay of a communication path
has two main factors (i) static costs and (ii) congestion
cost. Minimizing the congestion cost requires (a) distribut-
ing/balancing the load among nearby nodes and (b) minimiz-
ing the hop distance from sensors to the sinks. The intuition
behind these observations were presented when obtaining the
lower bound. Our objective is to devise a heuristic algorithm
which is extends the idea of GreenWave routing so that it takes
these observations into account.

It is easiest to explain our new heuristic as an extension
of the distributed Bellman-Ford (DBF) algorithm, although it
can be implemented more efficiently otherwise. Recall that
each node has a shortest distance estimate to some sink node,
d, and a parent node,π, as the next hop on its routing path.
Initially each sinkv hasdv = 0, πv = v and each sensoru has
du = ∞, πu = NIL. In addition, we introduce acongestion
counterassociated with each node, which is a measure of the
congestion on this node. Note that it’s value does not reflect the
exact quantity of the congestion at a node as we defined earlier,
but it serves as our heuristic tool to minimize congestion costs
along constructed paths in the routing graph.

Nodes communicate their shortest path estimates iteratively
to update their paths to the sinks. In the original DBF
algorithm, nodev broadcasts a message to announce its current

shortest path estimate. All neighbors ofv then receive the same
value dv and each neighboru such thatdu > dv + w(u, v)
updatesdu and setsπu ← v. We modify this part of the
algorithm as follows. Nodeu broadcasts a message requesting
the shortest path estimates from its neighbors. Upon receiving
this messagev replies u with the updated costdv + (cv +
1) ∗ p ∗Λ, wherecv is thecongestion counterof v, initialized
to 0. If u indeed setsπu ← v then v incrementscv by 1. It
is worth noting that even ifu updates its parent to another
relaying node later in the execution of the algorithm, the
congestion counter atv is never decremented. This ensures
that the cost are monotonically increasing and the algorithm is
guaranteed to converge, with loop-free paths. Adding the term
(cv + 1) ∗ p ∗Λ when reporting the shortest path estimate has
the effect of balancing the congestion among nearby nodes;
each time a node selectsv as its parent, the cost (shortest path
estimate) ofv effectively increases and future requests from
other nodes to route over nodev is discouraged. The multiplier
pΛ serves to adjust the trade-off between static and congestion
costs.

v

u x y z

1 2 3

2

5

Fig. 10. Demonstration of a problematic case mentioned in the
heuristic. At this snapshot of the scenario,cv = 3 andcy = 0.

On the other hand, consider the scenario in Figure 10. There
are 3 nodesu,x andy reporting tov, and a fourth node,z, is
about to decide betweeny andv. Suppose thaty has selected
v as its parent in the first order, hence its local estimate is
dy = 3 + dv + pΛ. Sincecv = 3 and cy = 0 in the snapshot
of Figure 10,z computes the distance5 + dv + 4pΛ through
v and2 + dy + pΛ = 5 + dv + 2pΛ throughy, thus selectsy
to report its data. However this introduces extra congestion on
nodey, and increases the overall cost. Note that data flow from
z will eventually reachv and the congestion onv is the same
in any case. Hence we need to remedy the heuristic to favor
shorter hop paths following the observation (ii-b) we made
in the beginning of this section. To achieve this effect, when
nodev reports itsdv value it also considers the parent’s current
congestion counter as well as its own counter. This way, the
congestion information disseminates to the lower levels along
the routing paths. In effect, every time the congestion counter
of node v is incremented, thechildren of v increment their
congestion counters as well1. Hence with this modification,
in Figure 10, nodez computes the cost of path throughy as
2+dy +4pΛ = 5+dv +5pΛ, and selectv as its parent instead
of u.

At each round of the algorithm, each node requests distance

1In a practical distributed implementation, nodes synchronize the conges-
tion value with the parent only when they report their distance estimate, hence
a single increment operation never needs to spread to all descendants.



TABLE I

COMPARISON OF THE OPTIMALQIP SOLUTION THE RESULTS OF THE

HEURISTICS AND LOWER BOUND(LB).

p LB OPT HR1 HR0
0 42.76 42.76 42.76 42.76
0.1 79.44 88.42 94.64 97.06
0.3 152.80 171.42 190.12 205.66
0.5 226.16 253.06 287.64 314.26
0.7 299.52 334.54 384.70 422.86
1.0 409.56 456.70 536.54 585.76

estimates from neighbors and reports its local distance estimate
as described above. The algorithm terminates after a round
in which there is no update on the distance estimate of any
node. The upper bound on the number of rounds isn, as in
the Bellman-Ford algorithm, since no shortest path length is
larger thann. The computational complexity of the heuristic
differs from that of Bellman-Ford by just a constant factor.

D. Numerical Results

In this section we test the quality of the lower bound
and the heuristic algorithm. We refer to our original GW
routing algorithm (which assumes data fusion, hence ignores
contention) asHeuristic0, or HR0, and the new heuristic
proposed in the previous section asHeuristic1, or HR1.

For the results of theheuristic0andheuristic1, we compute
the objective function value of the QIP over the paths returned
by these algorithms. Each data point in Table I and Figure 11
represents the results averaged over 100 random networks.

For very small networks, with 10 sensor nodes and single
sink node, we find the optimal solutions to the QIP using
the CPLEX optimization software. Table I presents the results
obtained, by varying the probabilityp. Note that whenp =
0 the problem reduces to the weighted shortest path routing
problem and all algorithms return the same result. We observe
that the lower bound (LB) is close to the optimal solution, and
the heuristic1 performs better than heuristic0, as desired.

For larger networks, we compare the solutions returned by
the lower bound,heuristic0 and heuristic1. It is also clear
from this figure thatheuristic1(improved GreenWave routing)
performs quite better thanheuristic0 (original GreenWave
routing), reducing the gap between the lower and upper
bounds for the optimal solution. The lower bound and heuristic
(upper bound) algorithms may be used to efficiently bound
the optimal solution and measure the performance of a routing
protocol proposed for sensor networks without in-network data
fusion2.

VIII. C ONCLUSION

We presented efficient routing schemes for wireless sensor
networks with contention-free MAC protocols. Two cases were
considered; routing with in-network data fusion, and without

2All Matlab source codes used for this work are available online at the first
author’s web site.
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Fig. 11. Comparisons of the solutions by the heuristic and the GreenWave
algorithm to the lower bound on larger networks. Transmission radiusr and
the probabilityp are both fixed at0.1 for all network sizes.

data fusion. The case with fusion makes the problem easier
since there is no queueing delays, hence the intersection
of paths (congestion) does not affect the end-to-end delays
observed. We presentedGreenWave routing, a distributed and
scalable protocol for wireless sensor networks that forms end-
to-end routes from sensors to sinks, based on an underlying
TDMA-based MAC protocol. By computational results on
random sensor networks, we showed that GreenWave routing
significantly decreases the communication delay, and thus
increases the throughput of the network under saturation
conditions. Moreover, we present an important result that
contention-free MAC protocols may perform better than the
contention-based 802.11 protocol, when accompanied by our
GreenWave routing algorithm. Recall that the contention-
free MAC protocols have already the desirable properties
for an energy-constrained sensor network, since there is no
energy waste due to collisions and retransmissions. Hence
having their delay and throughput performance even just as
comparable to the 802.11 protocol makes them much more
attractive for use in sensor networks. We believe this work will
encourage further study on designing efficient contention-free
MAC protocols for multi-hop wireless networks.

On the other hand, if in-network data fusion is not available,
then the problem becomes harder since we should take into
account the interaction among the flows from different sources.
We formulated this problem as a QIP, which is expressed as
a combined minimization of thestatic costs, as defined for
the fusion case, and thecongestion costs, which depends on
the interaction among different flows (routes). Since the QIP
can not be efficiently solve for large networks, we provided
a lower bound and a new heuristic algorithm to bound the
optimal solution from above and below.
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