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Abstract

Given the return series for a set of instruments, a trading strategy is a switching function

that transfers wealth from one instrument to another at specified times. We present efficient

algorithms for constructing (ex-post) trading strategies that are optimal with respect to the total

return, the Sterling ratio and the Sharpe ratio. Such optimal strategies are useful as benchmarks,

and for identifying the optimal trades that can be used to to teach (ex-ante) predictors within

a learning framework.

1 Introduction

A trader has in mind the task of developing a trading system that optimizes some profit criterion,

the simplest being the total return. A more conservative approach is to optimize a risk adjusted

return. Widely followed measures of risk adjusted returns are the Sterling Ratio and Sharpe Ratio.

In an enviroment where markets exhibit frequent crashes and portfolios encounter sustained periods

of losses, the Sterling ratio and the Sharpe ratio have emerged as the leading performance measures

used in the industry. Given a set of instruments, a trading strategy is a switching function that

transfers the wealth from one instrument to another. In this paper, we consider the problem of

finding optimal trading strategies, i.e., trading strategies that maximize a given optimality criterion.

In particular, we consider optimal strategies with respect to the total cumulative return, as well

as with respect to various risk adjusted measures of return (the Sterling ratio and variants of the

Sharpe ratio). A brute force approach to obtaining such optimal trading strategies would search

through the space of all possible trading strategies, keeping only the one satisfying the optimality
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criterion. Since the number of possible trading strategies grows exponentially with time, the brute

force approach leads to an exponential time algorithm1, which for all practical purposes is infeasible

– even given the pace at which computing power grows. The contribution in this work is to give

efficient (polynomial time) algorithms to compute the optimal trading strategy for various profit

objectives, and under constraints on the number of trades that can ber made.

Our motivations for constructing such optimal strategies are: (i) Knowing what the optimal

trades are, one can one can try to learn to predict good trading opportunities by using market

and/or technical indicators as features on which to base the prediction. A host of such activity

goes under the name of financial engineering. (ii) The optimal performance modulo certain trading

constraints can be used as a benchmark for real trading systems. For example, how good is a trading

system that makes ten trades with a Sterling ratio of 4 over a given time period? One natural

comparison is to benchmark this trading strategy against a Sterling-optimal trading strategy that

makes at most ten trades over the same time period. (iii) Optimal trading strategies (with or

without constraints) can be used to quantitatively rank various markets (and time scales) with

respect to their profitability according to a given criterion. So for example, one could determine

the optimal time scale on which to trade a particular market, or given a set of markets, which is the

most (risk adjusted) profit-friendly. (iv) Given a model for the behavior of a pair of instruments,

one can use the efficient algorithms presented here to construct optimal strategies using simulation.

In order to make the preceeding discussion more precise and to more accurately state our results,

lets introduce a few definitions. Assume that we have two instruments, for concreteness, a stock S

and a bond B with price histories {S0, . . . , Sn} and {B0, . . . , Bn} over n consecutive time periods,

ti, i ∈ {1, . . . , n}. Thus, for example, over time period ti, the price of stock moved from Si−1 to Si.

We denote the return sequence for the two instruments by {s1, . . . , sn} and {b1, . . . , bn} respectively:

si = log Si

Si−1
, and correspondingly, bi = log Bi

Bi−1
. We assume that one of the instruments is the

benchmark instrument, and that all the equity is held in the benchmark instrument at the begining

and end of trading. The bond is usually considered the benchmark instrument, and for illustration,

we will follow this convention. The trivial trading strategy is to simply hold onto bond for the

entire duration of the trading period. It is useful to define the excess return sequence for the stock,

ŝi = si− bi. When the benchmark instrument is the bond, the excess return as we defined it is the

conventionally used one. However, one may want to measure performances of a trading strategy

with respect to the S&P 500 as benchmark instrument, in which case the excess return would be

determined relative to the S&P 500 return sequence. The excess return sequence for the bond

is just the sequence of zeros, b̂i = 0. Conventionally, the performance of a strategy is measured

1The asymptotic running time of an algorithm is measured in terms of the input size n. If the input is a time
sequence of n price data points, then polynomial time algorithms have run time that is bounded by some polynomial
in n. Exponential time algorithms have running time greater than some exponentially growing function in n [7].
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relative to some trivial strategy, so the excess return sequence will be the basis of most of our

performance measures.

Definition 1.1 (Trading Strategy) A trading strategy T is a boolean n-dimensional vector in-

dicating where the money is at the end of time period ti:

T [i] =







1 if money is in stock at the end of ti,

0 if money is in bond at the end of ti.

We assume that T [0] = T [n] = 0, i.e., all the money begins and ends in bond. A trade is entered

at time ti if T [i] = 0 and T [i + 1] = 1. A trade is exited at time ti if T [i] = 1 and T [i + 1] = 0.

The number of trades made by a trading strategy is equal to the number of trades that are entered.

Note that we make the following assumptions regarding the trading:

A1 [All or Nothing] : The position at all times is either entirely bond or entirely stock.

A2 [No Market Impact] : Trades can be placed without affecting the quoted price.

A3 [Fractional Market] : Arbitrary amounts of stock or bond can be bougnt or sold at any time.

A4 [Long Strategies] : We assume that we can only hold long positions in stock or bond.

These assumptions are rather mild and quite accurate in most liquid markets, for example foreign

exchange. A1 implies (for example) that one can not leg into a trade. For some optimality criteria,

legging into a trade may be beneficial, however, in most circumstances, an all-or-nothing optimal

strategy can be chosen. A3 is a consequence of A1, since if all the money should be transfered

to a stock position, this may necessitate the purchase of a fractional number of shares. Note that

if T [i − 1] 6= T [i], then at the begining of time period ti, the position was transfered from one

instrument to another. Such a transfer will incur an instantaneous per unit transaction cost equal

to the bid-ask spread of the instrument being transfered into. We assume that the bid-ask spread

is some fraction (fB for bond and fS for stock) of the bid price.

We denote the equity curve for a trading strategy T by the vector ET , i.e., ET [i] is the equity

at the end of time period ti, with ET [0] = 1. Corresponding to the equity curve is the excess return

sequence rT for the trading strategy T , i.e., for i ≥ 1

rT [i] = log
ET [i]

ET [i− 1]
− bi. (1)

If we ignore the bid-ask spread, then the excess return in time period ti is given by

rT [i] = ŝiT [i] = (si − bi)T [i]. (2)

The bid-ask spread affects the return, reducing it by an amount depending on T [i − 1]. Denoting
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this transactions cost attributable to T [i] by ∆[i], we have that

∆[i] = −T [i− 1](1 − T [i])f̂B − (1− T [i− 1])T [i]f̂S , (3)

where f̂S = log(1+fS) and f̂B = log(1+fB). Thus, the bid-ask spread can be viewed as introducing

an instantaneous return of −f̂B or −f̂S whenever the position is switched. To exactly which time

period this transactions cost is applied may depend on the nature of the market, i.e., it may be

applied to rT [i], rT [i − 1] or rT [i + 1]. The nature of the results will not change significantly

for either of these options, so in our algorithms, we will generally make the choice that offers the

greatest technical simplicity. For a trading strategy T , we define the total return µ(T ), the sum of

the squared returns s2(T ), the sum of squared deviations of the returns σ2(T ) and the maximum

drawdown MDD(T ) as follows,

µ(T ) =

n
∑

i=1

rT [i], (4)

s2(T ) =
n

∑

i=1

rT [i]2, (5)

σ2(T ) =

n
∑

i=1

(

rT [i]−
1

n
µ(T )

)2

= s2(T )−
1

n
µ2(T ), (6)

MDD(T ) = max
1≤k≤l≤n

−
l

∑

i=k

rT [i]. (7)

When it is clear from the context what trading strategy we are talking about, we will generally

suppress the explicit dependence on T . The performance measures that we consider in this paper

are derived from these statistics. In particular, we are interested in the total return µ, the Sterling

ratio Strl, and variants of the Sharpe ratio, Shrp1 and Shrp2:

Strl(T ) =
µ(T )

MDD(T )
, Shrp1(T ) =

µ(T )

σ(T )
, Shrp2(T ) =

µ(T )

σ2(T )
. (8)

Shrp1 is the conventionally used Sharpe ratio. Shrp2 is a more risk averse performance measure, as

it is more sensitive to the variance in the returns. Often, Strl as we have defined it is refered to as

the Calmar ratio in the literature [11], and the Sterling ratio adds a constant (for example 10%) to

the MDD in the denominator [1]. Such a constant can easily be accomodated by our algorithms,

and so we will maintain this simpler definition for the Sterling ratio.

The contribution of this paper is efficient algorithms for computing optimal trading strategies.

We will use standard O() notation in stating our results: let n be the length of the returns sequences;

we say that the run time of an algorithm is O(f(n)) if, for some constant C, the runtime is ≤ Cf(n)
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for any possible return sequences. If f(n) is linear (quadratic), we say that the runtime is linear

(quadratic). We will establish the following results.

Theorem 1.2 (Return Optimal Trading Strategies) A total return optimal trading strategy

can be computed in linear time. Specifically,

i. Unconstrained Trading. A trading strategy Tµ can be computed in O(n) such that for any

other strategy T , µ(Tµ) ≥ µ(T ).

ii. Constrained Trading. A trading strategy T K
µ making at most K trades can be computed in

O(K · n) such that for any other strategy T K making at most K trades, µ(T K
µ ) ≥ µ(T K).

Proof: See section 2.

Theorem 1.3 (Sterling Optimal Trading Strategies) A Sterling optimal trading strategy can

be computed in near linear time. Specifically,

i. Unconstrained Trading. A trading strategy TStrl can be computed in O(n log n) such that

for any other strategy T , Strl(TStrl) ≥ Strl(T ).

ii. Constrained Trading. A trading strategy T K
Strl making at most K trades can be computed in

O(n log n) such that for any other strategy T K making at most K trades, Strl(T K
Strl) ≥ Strl(T K).

Proof: See section 3.

Theorem 1.4 (Sharpe Optimal Trading Strategies) A Sharpe optimal trading strategy can

be computed in near quadratic time. Specifically, trading strategies TShrp1
and TShrp2

can be found in

O(n2 log n) such that for any other strategy T , Strl1(TShrp1
) ≥ Strl1(T ) and Strl2(TShrp2

) ≥ Strl2(T )

Proof: See section 4.

In all cases, our proofs are constructive, and so immediately give the algorithms for performing the

desired computations. Next, we discuss the existing related work, followed by a detailed discussion

of the algorithms, along with all necessary proofs.

Related Work

The body of literature on optimal trading is so enormous that we only mention here some represen-

tative papers. All the reasearch on optimal trading falls into two broad categories. The first group

is on the more theoretical side where researchers assume that stock prices satisfy some particular

model, for example the prices are driven by a stochastic process of known form; the goal is to
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derive closed-form solutions for the optimal trading strategy, or a set of equations that the optimal

strategy must follow. We highlight some of this research below.

Lobo et al. in [16] consider the problem of single-period portfolio optimization. They consider

the maximization of the expected return subject to different types of constraints on the portfolio

(margin, diversification, budget constraints and limits on variance or shortfall risk). Under the

assumption that the return on asset i at the end of period is the random variable ai and both first

and second moments of the joint distribution of the random variables are known, this optimization

problem can be represented as a convex optimization problem and thus can be efficiently solved by

a numerical methods (eq. by Karmarkar’s interior-point method [14]).

Thompson in [24] considered the problem of maximizing the (expected) total cumulative return

of a trading strategy under the assumption that the asset price satisfies a stochastic differential

equation of the form dSt = dBt + h(Xt)dt, where Bt is a Brownian motion, h is a known function

and Xi is a Markov Chain independent of the Brownian motion. In this work, he assumes fixed

transaction costs and imposes assumptions A1, A2, A4 on the trading. He also imposes a stricter

version of our assumption A3: at any time, trader can have only 0 or 1 unit of stock. He proves that

the optimal trading strategy is the solution of a free-boundary problem, gives explicit solutions for

several functions h and provides bounds on the transaction cost above which it is optimal never to

buy the asset at all.

Pliska et al. in [4] considered the problem of an optimal investment for a continuous-time

market consisting of the usual bank account, a rolling horizon bond and a discount bond whose

maturity coincides with the planning horizon. They assume interest rates to be stochastic (driven

by a stochastic differential equation) and derive an equation satisfied by the trading strategy that

maximizes the HARA utility wealth function.

Bielecki in [3] considered the problem of maximizing the risk sensitive expected exponential

growth rate of the investor’s portfolio in a economy model consisting of a bank account and a risky

security (stock) with a stochastic interest rate. The optimal trading strategy is characterized in

terms of a nonlinear quasi-variational inequality and he developed a numerical approach to solving

this equation.

Berkelaar and Kouwenberg in [2] considered asset allocation in a mean versus downside-risk

framework. Downside-risk measures penalize only negative returns relative to a given benchmark.

Investors have a trade-off between mean and downside-risk. Closed-form solutions for the optimal

asset allocation are derived for the case where asset prices follow geometric Brownian motions with

constant interest rate.

The main drawbacks of such theoretical approaches is that their prescriptions can only be useful

to the extent that the assumed models are correct. Our work does not make any assumptions about

the price dynamics to construct ex-post optimal trading strategies. The second group of research
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which is more on the practical side is focused on exploring learning methods for the prediction

of future stock prices moves. Intelligent agents are designed by training on past data and their

performance is compared with some benchmark strategies. Our results furnish (i) optimal strategies

on which to train intelligent agents and (ii) benchmarks with which to compare their performance.

Liu in [15] consider the optimal investment policy of a constant absolute risk aversion (CARA)

investor who faces fixed and proportional transaction costs when trading multiple risky assets. He

show that when asset returns are uncorrelated, the optimal investment policy is to keep the dollar

amount invested in each risky asset between two constant levels and upon reaching either of these

thresholds, to trade to the corresponding optimal targets.

Zakamouline in [27] studies the optimal portfolio selection problem for a constant relative risk

averse investor who faces fixed and proportional transaction costs and maximizes expected utility

of the investor’s end-of-period wealth. The author applies the method of the Markov chain approxi-

mation to numerically solve for the optimal trading strategy. The numerical solution indicates that

the portfolio space is divided into three disjoint regions (Buy, Sell and No-Transaction), and four

boundaries describe the optimal strategy. If a portfolio lies in the Buy region, the optimal strategy

is to buy the risky asset until the portfolio reaches the lower (Buy) target boundary. Similarly, if

a portfolio lies in the Sell region, the optimal strategy is to sell the risky asset until the portfo-

lio reaches the upper (Sell) target boundary. All these boundaries are functions of the investor’s

horizon and the composition of the investor’s wealth.

Choi and Liu in [20] considered trading tasks faced by an autonomous trading agent. An au-

tonomous trading agent works as follows. First, it observes the state of the environment. According

to the environment state, the agent responds with an action, which in turn influences the current

environment state. In the next time step, the agent receives a feedback (reward or penalty) from

the environment and then perceives the next environment state. The optimal trading strategy for

the agent was constructed in terms of the agent’s expected utility (expected accumulated reward).

Cuoco et al. in [9] considered Value at Risk as a tool to measure and control the risk of the

trading portfolio. The problem of a dynamically consistent optimal porfolio choice subject to the

Value at Risk limits was formulated and they proved that the risk exposure of a trader subject to

a Value at Risk limit is always lower than that of an unconstrained trader and that the probability

of extreme losses is also decreased. They also prove that another risk measure - Tail Conditional

Expectation - is equivalent to the Value at Risk. In particular, they showed that in a dynamic

setting it is always possible to transform any given Tail Conditional Expectation limit into an

equivalent Value at Risk limit and conversely.

Dammon and Spatt in [19] explored the optimal trading and pricing of taxable securities with

asymmetric capital gains taxes and transaction costs. Under current U.S. tax law, gains on capital

assets are not taxed until the investor sells the asset and the tax rate that applies to capital gains
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and losses may be a function of the investor’s holding period. These features give investors the

incentive to time their asset sales so as to minimize the tax burden of owning taxable securities.

In this work the optimal trading strategy is derived in the presence of capital gains taxes and

transaction costs and the implications of the optimal trading strategy for asset pricing is explored.

Mihatsch and Neuneier in [17] considered problem of optimization of a risk-sensitive expected

return of a Markov Decision Problem. Based on an extended set of optimality equations, risk-

sensitive versions of various well-known reinforcement learning algorithms were formulated and

they showed that these algorithms converge with probability one under reasonable conditions.

The Sharpe ratio was introduced in [21], [22] and since then became a popular and widespread

risk-sensitive measure of a portfolio performance. Faugere et al. in [6] used Sharpe ratio as one of

performance measures to compare effectiveness of different decision-making criteria. Pedersen et al.

in [18] performed empirical comparison of many performance measurement methodologies for the

global financial services sector and documented strong evidence in support of using Sharp-Ratio

based measures. It was also pointed out that correlation of the Sterling ratio with other measures

is usually small and dips below 5% in some instances.

A number of authors associated with BARRA (a major supplier of analytic tools and databases)

have used the terms information ratio [10] or Appraisal ratio instead [25]. Goodwin in [10] considers

the relationship between the Sharpe ratio and other performance measures, compares four methods

of annualizing an information ratio, and presents the empirical evidence on the distribution of

information ratios by style, which provides a context in which to examine manager performance.

Surprisingly, there is little previous research on portfolio optimization with respect to the Sharpe

ratio or Sterling ratio, partially because of the intristic difficulty of these non-linear optimization

criteria.

Moody and Saffell in [13] presented methods for optimizing portfolios, asset allocations and

trading systems based on a direct reinforcement approach. In this approach, investment decision

making is viewed as a stochastic control problem and the need to build forecasting models is elim-

inated. An adaptive algorithm called recurrent reinforcement learning for discovering investment

policies was proposed and they demonstrated how it can be used to optimize risk-adjusted invest-

ment returns like the Sterling Ratio or Sharpe Ratio, while accounting for the effects of transaction

costs.

Liu et al. in [26] proposed a learning-based trading strategy for portfolio management, which

aims at maximizing the Sharpe Ratio by actively reallocating wealth among assets. The trading

decision is formulated as a non-linear function of the latest realized asset returns, and the function

cam be approximated by a neural network. In order to train the neural network, one requires a

Sharpe-Optimal trading strategy to provide the supervised learning method with target values. In

this work they used heuristic methods to obtain a locally Sharp-optimal trading strategy. The
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transaction cost was not taken into consideration. Our methods can be considerably useful in the

determination of target trading strategies fot such approaches.

Tasche and Tibiletti in [23] explored ways to speed up the online computation of the Sharpe

ratio of a current portfolio and how the Sharpe ratio will change if a candidate new asset will be

incorporated into the portfolio. Approximation formulae were derived that are based on certain

derivatives of the Value-at-Risk.

Hellstrom in [12] formulates an alternative formulation of the stock prediction problem based

on a statistical investigation of the stock’s ranks. In this work a single perceptron neural network

is trained to find the parameter vector that maximizes the Sharpe ratio. Due to the lack of the

Sharpe-optimal trading decisions that can be supplied as target values, a special technique for

optimization without derivatives is utilized [8].

2 Return-Optimal Trading Strategies

We use the notation [ti, tj ] to denote the set of time periods {ti, ti+1, . . . , tj}. In order to compute

the return optimal strategies, we will use a dynamic programming approach to solve a more general

problem. Specifically, we will construct the return optimal strategies for every prefix of the returns

sequence. First we consider the case when there is no restriction on the number of trades, and

then the case when the number of trades is constrained to be at most K. Although we maintain

assumptions A1-A4 for simplicity, A1, A3 and A4 can be relaxed without much additional effort.

2.1 Unconstrained Return-Optimal Trading Strategies

First we give the main definitions that we will need in the dynamic programming algorithm to

compute the optimal strategy. Consider a return-optimal strategy for the first m time periods,

[t1, tm]. Define S[m, 0] (S[m, 1]) to be a return-optimal strategy over the first m periods ending

in bond (stock) at time tm. For ` ∈ {0, 1}, let µ[m, `] denote the return of S[m, `] over [t1, tm],

i.e., µ[m, `] = µ(S[m, `]). Let Prev[m, `] denote the penultimate position of the optimal strategy

S[m, `] just before the final time period tm.

The optimal strategy S[m, `] must pass through either bond or stock at time period m − 1.

Thus, S[m, `] must be the extension of one of the optimal strategies {S[m − 1, 0],S[m − 1, 1]} by

adding the position ` at time period tm. More specifically, S[m, `] will be the extension that yields

the greatest total return. Using (2) and (3), we have that

µ({S[m− 1, 0], `}) = µ[m− 1, 0] + ŝm`− f̂S`,

µ({S[m− 1, 1], `}) = µ[m− 1, 1] + ŝm`− f̂B(1− `).
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Since µ[m, `] is the maximum of these two values, we have the following recursion,

µ[m, `] = max
{

µ[m− 1, 0] + ŝm`− f̂S`, µ[m− 1, 1] + ŝm`− f̂B(1− `)
}

.

The position of the optimal strategy S[m, `] just before time period m is given by the ending

position of the strategy that was extended. Thus,

Prev[m, `] =







0 if µ[m− 1, 0] + ŝm`− f̂S` ≥ µ[m− 1, 1] + ŝm`− f̂B(1− `),

1 otherwise.

If we already know µ[m − 1, 0] and µ[m − 1, 1], then we can compute µ[m, `] and Prev[m, `] for

` ∈ {0, 1} in constant time. Further, we have that µ[1, 0] = 0 and µ[1, 1] = ŝ1 − f̂S , and so, by a

straight forward induction, we can prove the following lemma.

Lemma 2.1 Prev[m, `] for all ` ∈ {0, 1} and m ≤ n can be computed in O(n).

The optimal strategy Tµ is exactly S[n, 0]. Prev[n, 0] gives the position at tn−1, and the optimal

way to reach Prev[n, 0] at tn−1 is given by optimal strategy S[n − 1,Prev[n, 0]]. Continuing

backward in this fashion, it is easy to verify that we can reconstruct the full strategy Tµ using the

following backward recursion:

Tµ[n] = 0,

Tµ[m] = Prev[m + 1,Tµ[m + 1]], for 1 ≤ m < n.

Thus, a single backward scan is all that is required to compute Tµ[i] for all i ∈ {1, . . . , n}, which

is linear time, and so we have proved the first part of Theorem 1.2. Further, it is clear that the

algorithm requires memory that is linear in n to store Prev[m, `]. While we have assumed that

the algorithm works with excess returns, the optimal strategy does not depend on this assumption,

thus the algorithm works correctly even with the actual return sequences. The generalization of

this algorithm to N > 2 instruments is straightforward by suitably generalizing a trading strategy.

S[m, `] retains its definition, except now ` ∈ {0, . . . , N − 1}. To compute µ[m, `] will need to take a

maximum over N terms depending on µ[m− 1, `′], and so the algirithm will have runtime O(Nn).

One concern with the unconstrained optimal strategy is that it may make too many trades. It

is thus useful to compute the optimal strategy that makes at most a given number of trades. We

discuss this next.
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2.2 Constrained Return-Optimal Strategies

We suppose that the number of trades is constrained to be at most K. It is more convenient to

consider the number of jumps k, which we define as the sum of the number of trades entered and

the number exited. For a valid trading strategy, the number of trades entered equals the number

of trades exited, so k = 2K. Analogous to S[m, `] in the previous section, we define S[m,k, `] to be

the optimal trading strategy to time period tm that makes at most k jumps ending in instrument

`. Let µ[m,k, `] be the return of strategy S[m,k, `], and let Prev[m,k, l] store the pair (k′, `′),

where `′ is the penultimate position of S[m,k, `] at tm−1 that leads to the end position `, and k′

is the number of jumps made by the optimal strategy to time period tm−1 that was extended to

S[m,k, `].

The algorithm once again follows from the observation that the the optimal strategy S[m,k, `]

must pass through either bond or stock at tm−1. A complication is that if the penultimate position

is bond and ` = 0, then at most k jumps can be used to get to thhe penultimate position, however,

if ` = 1, then only at most k−1 jumps may be used. Similarily if the penultimate position is stock.

We thus get the following recursion,

µ[m,k, 0] = max
{

µ[m− 1, k, 0], µ[m− 1, k − 1, 1] − f̂B

}

,

µ[m,k, 1] = max
{

µ[m− 1, k − 1, 0] + ŝm − f̂S, µ[m− 1, k, 1] + ŝm

}

.

This recursion is initialized with µ[m, 0, 0] = 0 and µ[m, 0, 1] = NULL for 1 ≤ m ≤ n. Once µ[m,k, `]

is computed for all m, `, then the above recursion allows us to compute µ[m,k + 1, `] is computed

for all m, `. Thus, the computation of µ[m,k, `] for 1 ≤ m ≤ n, 0 ≤ k ≤ 2K and ` ∈ {0, 1} can be

accomplished in O(nK). Once again, the strategy that was extended gives Prev[m,k, `],

Prev[m,k, 0] =







(k, 0) if µ[m− 1, k, 0] > µ[m− 1, k − 1, 1]− f̂B,

(k − 1, 1) otherwise.

Prev[m,k, 1] =







(k − 1, 0) if µ[m− 1, k − 1, 0] + ŝm − f̂S > µ[m− 1, k, 1] + ŝm,

(k, 1) otherwise.

Since computing µ[m,k, `] immediately gives Prev[m,k, `], we have the following lemma,

Lemma 2.2 Prev[m,k, `] for all ` ∈ {0, 1}, m ≤ n and k ≤ 2K can be computed in O(nK).

TK
µ is given by S[n, 2K, 0], and the full strategy can be reconstructed in a single backward scan
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using the following backward recursion (we introduce an auxilliary vector κ),

T K
µ [n] = 0,

(κ[n − 1],T K
µ [n− 1]) = Prev[n, 2K,T K

µ [n]),

(κ[m],T K
µ [m]) = Prev[m + 1, κ[m + 1],T K

µ [m + 1]), for 1 ≤ m < n− 1.

Since the algorithm needs to store Prev[m,k, `] for all m,k, the memory requirement is O(nK).

Once again, it is not hard to generalize this algorithm to work with N instruments, and the resulting

run time will be O(nNK).

3 Sterling-Optimal Trading Strategies

It will first be useful to discuss some of the MDD properties of the return-optimal strategy Tµ, as

these properties will have implications on our algorithm to determine Sterling-optimal strategies.

For a strategy T , it is useful to define the cumulative return series, CT [i] as the sum of the returns,

CT [i] =
∑i

j=1 rT [j]. Note that µ(Tµ) = CTµ [n] ≥ CT [n] = µ(T ) for any strategy T . The equity

curve is given by ET [i] = exp
(

CT [i] +
∑i

j=1 bj

)

.

First, we will upper bound MDD(Tµ), because this in turn serves as an upper bound for the

MDD of the Sterling-optimal strategy,

Lemma 3.1 MDD(TStrl) ≤MDD(Tµ).

Proof: By definition, µ(TStrl)
MDD(TStrl)

≥ µ(T )
MDD(T ) for any T . Thus, MDD(TStrl) ≤

µ(TStrl)
µ(T ) MDD(T ) for

any T . Choosing T = Tµ and noting that µ(TStrl) ≤ µ(Tµ), we obtain the desired result.

Since the cost (in terms of the cumulative return) of entering and exiting a trade is −(f̂S + f̂B), no

segment of the optimal trading strategy Tµ should lose more than this in return.

Lemma 3.2 For any i < j, CTµ [j]− CTµ [i] ≥ −(f̂S + f̂B).

Proof: Suppose, for contradiction, that for some i < j, CTµ [j]−CTµ [i] < −(f̂S + f̂B). By setting

Tµ[i+1], . . . ,Tµ[j] to be all equal to 0, it is easy to verify that the cumulative return of the strategy

must increase, which contradicts the optimality of Tµ.

For technical convenience, we will assume that the transactions cost when entering a trade is

assigned to the time period prior to the entry, and the transactions cost when exiting a trade is

assigned to the time period after the trade. Note that just prior to entering, the position is 0 and
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so it will now have a return of −f̂S, and just after exiting, the position is 0, and will now have a

return of −f̂B.

Let fsp = f̂S + f̂B. From Lemma 3.2, no segment of the optimal strategy can lose more than fsp,

and so this immediately gives an upper bound on MDD(Tµ). For the trivial strategy that makes

no trades, the MDD is 0. If a strategy makes exactly one trade, then there is a drawdown of at

least f̂S at the begining, and of at least f̂B at the end. If at least two trades are made, then there

is a drawdown of at least fsp between the exit of one trade and the entry of another, and since

the drawdown cannot exceed fsp, the MDD must therefore equal fsp. We thus have the following

lemma.

Lemma 3.3 (MDD of T µ) If Tµ makes no trades, MDD(Tµ) = 0. If Tµ makes one trade,

max{f̂S , f̂B} ≤MDD(Tµ) ≤ fsp. If Tµ makes at least two trades, MDD(Tµ) = fsp.

note that if we relax assumption A1, then by legging into a trade, it may be possible to decrease

the drawdown, in which case Lemma 3.3 would no longer be valid. We are now ready to discuss

the O(n log n) algorithms to obtain Sterling-optimal trading strategies. First we will consider

unconstrained Sterling optimal strategies, and then we will require number of trades ≤ K.

3.1 Unconstrained Sterling-Optimal Strategies

For a degenerate trading system with all returns equal to zero, we define its Sterling ratio as 1. The

only trading system with a MDD of 0 is a degenerate trading system, so with this definition, the

Sterling ratio is defined for all possible trading systems. The computation of the Sterling-optimal

trading system breaks down into three cases, according to the number of trades its makes:

Sterling-optimal that makes zero trades. Sterling Ratio is 1.

Sterling-optimal that makes one trade. The trading strategy contains a single interval of 1’s.

Sterling-optimal that makes at least two trades. Any trading system that makes at least

two trades has an MDD ≥ fsp. Since MDD(Tµ) ≤ fsp (Lemma 3.3), Tµ has the smallest

MDD among all such systems. Since it also has the highest total return, we conclude that if

the Sterling-optimal system makes at least two trades, then TStrl = Tµ.

The first case is trivially computed. The third case, i.e., the Sterling optimal strategy that makes

at least two trades can be computed in linear time using the dynamic programming algorithm to

compute Tµ. If we also compute the Sterling-optimal system that makes exactly one trade, then, we

solve our problem by taking the case with the maximum Sterling ratio. We now focus on finding

the trading strategy that makes only one trade and has greatest Sterling Ratio among all such

strategies.
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Let T be a strategy that makes exactly one trade. The trade interval is the interval of time

periods, [ti, tj] on which T = 1, i.e., the trade interval is an interval of 1’s in the trading strategy.

An elementary algorithm that considers all the O(n2) possible trade intervals, picking the best is

a quadratic time algorithm. The remainder of this section is devoted to providing an algorithm

which computes such a strategy in O(n log n) time, which will complete the proof of the first part

of Theorem 1.3. In fact the algorithm that we present is a much more general algorithm that

computes the single interval that optimizes a general class of optimality criteria. This algorithm

will be useful when we discuss the Sharpe-optimal strategy.

Consider a consecutive sequence of time periods ti, ti+1, . . . , ti+k where k ≥ 1, with all the excess

returns non-negative and the last one positive, i.e., ŝi ≥ 0, ŝi+1 ≥ 0, . . . , ŝi+k > 0.

Lemma 3.4 Either the optimal single trade interval does not intersect these time periods, or an

optimal single interval can be chosen to contain this interval.

Proof: Suppose that T [i + j] = 1 and T [i + j + 1] = 0 for some 0 ≤ j < k. Extend the trading

interval by setting T [i+ j +1] = 1, . . . ,T [i+k] = 1, which adds positive return, without increasing

the MDD, contradicting the optimality of the original interval. On the other hand, suppose that

T [i+ j] = 1 and T [i+ j−1] = 0 for some 0 < j ≤ k. Once again, by extending the trading interval,

setting T [i] = 1, . . . ,T [i+ j] = 1, we add non-negative returns, without increasing the MDD hence

this new interval is at least as good as the previous interval.

A similar result holds for a sequence of consecutive negative time periods, ti, ti+1, . . . , ti+k where

k ≥ 1, with ŝi ≤ 0, ŝi+1 ≤ 0, . . . , ŝi+k < 0. If an optimal trading interval only intersects part of

these time periods, this intersection can be removed without decreasing the Sterling ratio. Thus,

by Lemma 3.4, any sequence of time periods with all returns non-negative (non-positive) can be

condensed into a single time period, t′i = ti + · · · + ti+k, with ŝ′i = ŝi + · · · + ŝi+k. Further, this

operation can be performed in linear time on the entire excess return sequence, so from now on

we assume without loss of generality that the excess return sequence consists of alternating time

periods of strictly positive and negative excess returns. If ŝi < 0, then ti cannot be the first 1 of

a trade, since by entering one time period later, we exclude only this negative return and do not

increase the MDD. Similarily, it cannot be the last 1 of a trade.

Lemma 3.5 The first 1 and the last 1 of the optimal trade interval must occus at time periods tf

and tl for which ŝf > 0 and ŝl > 0.

The pictorial illustration of this lemma is given below where we show the cumulative return curve.

The time instants ai are the possible entry points, and the time instants bi are the possible exit

points.
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Let the alternating sequence of entry and exit points be {a1, b1, a2, b2, . . . , ak, bk} (ai are the entry

points, and bi are the exit points). Note that after the preprocessing into alternating intervals,

k ≤ dn/2 e. Notice that without loss of generality, we can throw away the first interval if it has a

negative return, as it can never be an entry point, and the last interval if it has a negative return,

for a similar reason. The optimal trade interval will be of the form (at, bt+r), r ≥ 0.

Our algorithm for finding the Sterling-optimal interval will be to consider every possible starting

point ai, and find the Sterling-optimal interval with this point as starting point (i.e. we have to

find the end point of this interval). As the algorithm proceeds, we keep track of the best entry

point (and its corresponding exit point). The entry points at are processed from right to left.

After processing a new entry point at, we will modify the alternating sequence to facilitate faster

processing of the remaining points. More specifically, we will delete the processed entry point and

add a weight to the edge between bt−1 and bt to preserve all the necessary information – we cannot

simply delete the entry point at, since we have to keep track of maximum MDD that occurs in our

activity interval. Since between bt−1 and at we have a drawdown of bt−1 − at, we need to keep this

information in an edge weight connecting bt−1 to bt. Please note that at any stage of algorithm

edge weight connecting bt−1 to bt will be equal to the MDD of the interval [bt−1, bt] and this MDD

is realized on prefix of [bt−1, bt], i.e. MDD([bt−1, bt]) = C(bt−1)−C(x), for some x ∈ [bt−1, bt] -

Invariant (*). We will show this weight attached to bt in parentheses, (wt)bt, where the value of

wt appearing in parentheses indicates the weight.

We start our backward scan at the last entry point, ak, for which there is only one pos-

sible interval (ak, bk). We update the weight wk ← bk−1 − ak, store the current best interval

(ak, bk,Strlk), and delete the possible start point ak from the sequence to give the processed se-

quence {a1, b1, ..., ak−1, bk−1, (wk)bk}. Note that (ak, bk,Strlk) is a one-step trade, but we keep it

here for simplicity. We now proceed to ak−1 and so on.

In the general case, suppose we have processed (backwards) all the entry points up to (including)

the entry point at+1, and are currently processing entry point at. The weighted exit sequence is

{a1, b1, ..., at, bt, (wt+1)bt+1, . . . , (wt+m)bt+m}. bt, . . . , bt+m are the possible exit points – note that

t + m may not equal k due to possible deletion of points which we discuss below. Assume that

{bt+1 < . . . < bt+m}: this is true after we have processed the first start point (since the sequence

consists only of one point), and we will maintain this condition by induction. If bt < bt+1, then the
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entire sequence of exit points is monotonically increasing. On the other hand, if bt ≥ bt+1, bt+1 need

not be considered as an exit point for any optimal interval with entry point at or earlier, because

by stopping earlier at bt, we do not decrease the cumulative return, nor increase the MDD. Hence,

we can delete the possible exit point bt+1. However, we must now update the weight in (wt+2)bt+2

to store the new drawdown between bt and bt+2 as follows wt+2 ← max{wt+1, wt+2 + bt − bt+1}.

Lemma 3.6 If bt ≥ bt+1, the weighted exit sequence is updated as follows:

at, bt, (wt+1)bt+1, . . . , (wt+m)bt+m → at, bt, (max{wt+1, wt+2 + bt − bt+1})bt+2, . . . , (wt+m)bt+m

The correctness of the weight updating rule above follows from the Invariant (*). Please note that

the transformation above preserves the Invariant (*).

This process is continued until the next exit point after bt is either above bt or there are no

remaining exit points after bt. In either event, the new sequence of exit points available for at is

strictly monotonically increasing (by the induction hypothesis). Observe that any deletion of a

possible exit point is a constant time operation. Further, since each deletion drops a point from the

set {b1, . . . , bk}, there can be at most k−1 such deletions during the course of the entire algorithm.

We thus have the following lemma.

Lemma 3.7 When at is processed by the algorithm, the exit points bt < bt+1 < · · · are monotoni-

cally increasing. The cost of maintaining this condition for the entire algorithm is O(k) operations.

When processing at, the weighted exit sequence is {a1, b1, ..., at, bt, (wt+1)bt+1, . . . , (wt+m)bt+m}.

Suppose that wt+2 < wt+3 < . . . < wt+m. Initially this sequence is the empty sequence and so this

condition holds, and once again, by induction we will ensure that this condition will always hold. If

wt+1 ≥ wt+2, then no optimal interval can have entry point at or earlier, and exit at bt+1, because

otherwise by exiting at bt+2, since bt+2 > bt+1 (Lemma 3.4), the MDD is not increased, however

the total return is increased. Thus if wt+1 ≥ wt+2, we can remove the possible exit point bt+1 from

the weighted exit sequence and update wt+2 ← wt+1. Please note that this transformation also

preserves the Invariant (*).

Lemma 3.8 If wt+1 ≥ wt+2, the weighted exit sequence is updated as follows:

at, bt, (wt+1)bt+1, . . . , (wt+m)bt+m → at, bt, (wt+1)bt+2, . . . , (wt+m)bt+m

We continue removing exit points in this way until either there is only one weight left in the weighted

exit sequence, or all the weights are strictly monotonically increasing (by induction).

Suppose that wt+1 ≤ f . In this case, we observe that bt cannot be the exit of an optimal interval

with entry at−r, where r ≥ 0. To see this note that if bt − at−r − f̂S < 0, then the return of this
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interval is negative and this interval cannot be an optimal interval. If bt− at−r − f̂S ≥ 0 then since

the interval already has MDD of at least f , so by continuing to bt+1, we do not increase the MDD

but strictly increase the return, hence it cannot be optimal to exit at bt.

Lemma 3.9 Let

at, bt, (wt+1)bt+1, . . . , (wt+m)bt+m

be the weighted exit sequence and let T ∈ [t, . . . , t + m] be such an index that wT < f and wT1
≥ f .

Then no Sterling-optimal interval that starts at at or earlier can exit at {bt, . . . , bT−1}.

Lemma 3.10 When at is processed by the algorithm, the weights wt+1 are monotonically increas-

ing. The cost of mainitaining this condition for the entire algorithm is O(k) operations.

We thus assume from now on that when processing entry point at, the weighted exit sequence

{a1, b1, ..., at, bt, (wt+1)bt+1, . . . , (wt+m)bt+m} with m ≥ 0 satisfies the conditions of Lemmas 3.7 and

3.10. The first available exit gives the trade interval (at, bT ). If bT − at − fsp ≤ 0, i.e., if the return

is not positive, then this cannot possibly be an optimal interval. Otherwise, the Sterling Ratio is

Strlt =
bT − at − fsp

f
,

where fsp = f̂S + f̂B and f = max{f̂S, f̂B}. Now consider the exit points bT+r, r > 0, and suppose

that bT −wT+1 < at. No trade with entry at at, exiting at bT+r with r > 0 can possibly be optimal,

since we could always enter later at bT −wT+1, exit at bT+r, and strictly increase the return without

increasing the drawdown. We are thus done with processing the entry point at, and we can proceed

to at−1 after updating weight wt and comparing
bT −at−fsp

f
with the current champion. Similarly,

if bt̄ − wt̄+1 < at for some t̄ ∈ [t, . . . , T − 1], we are done with the starting point at, and we can

proceed to at−1 after updating weight wt. We assume that at any stage of the algorithm we keep

the value of mint̄∈[t,...,T−1]bt̄−wt̄+1 and thus this check can be done in constant time for any given

point at. Thus, without loss of generality, we can assume that bT − wT+1 ≥ at and bt̄ − wt̄+1 ≥ at

for all t̄ ∈ [t, . . . , T − 1]. Since wT+1 ≥ f , we conclude that bT − at ≥ f . A trade, entering at at

and exiting at bT+r, r > 0 has total return bT+r − at − fsp. The next lemma gives the MDD.

Lemma 3.11 Assume that bT −wT+1 ≥ at and bt̄ −wt̄+1 ≥ at for all t̄ ∈ [t, . . . , T − 1]. The trade

(at, bT+r), r > 0, has MDD = wT+r.

Proof: The local maxima of the cumulative return sequence for this trade are {0, bt − at −

f̂S, , . . . , bT − at− f̂S, . . . , bT+r − at− f̂S}. Since bt̄−wt̄+1− at ≥ 0 ∀t̄ ∈ [t, . . . , T − 1], MDD of the

interval [at, bT ] is equal to f̂S.

17



Since bT − at − f̂S ≥ 0 and since the sequence of exit points is strictly increasing,

MDD([at, bT+r]) = max(MDD([at, bT ]),MDD([bT , bT+r])) = max(f̂S,MDD([bT , bT+r)), f̂B)

where f̂B is the draw down after the last point bT+r.

Since the drawdown at any time in a trade is given by the the diffenence between the previous

maximum and the current cumulative return, MDD([bT , bT+r)) is at most maxi∈[1,r] wt+i. Since

the weights are monotonically increasing, we see that this drawdown ≤ wt+r, which is achieved in

the interval (bt+r−1, bt+r). Since wt+r ≥ f = max(f̂S, f̂B) ∀r > 0, we conclude MDD([at, bT+r]) =

wt+r.

Summary: For entry point at, the sequence of exit points bT+r, r ∈ [0,m] have cumulative

returns cr = bT+r− at− fsp and MDD’s dr = wT+r for r > 0 and d0 = f . The task is to maximize

cr/dr with respect to r. The sequences {cr} and {dr} are both strictly increasing. We now describe

a general algorithm for performing such a maximization.

3.1.1 Maximizing
cr

dr

On the two dimensional plane, consider the set of points P ′
m = {(dr, cr)}

m
r=0. Let p′ = (0, 0). Then

the slope of the line joining p to (dr, cr) is exactly the Sterling ratio of the trade (at, bt+r). Thus,

finding the optimal trade is equivalent to finding the upper-touching point from p to the convex

hull of the set of points P ′
m (see illustration below). We call p the source point.

p′

cr

dr

We get the same result if we define Pm = {(dr, bt+r)}
m
r=0, p = (0, at + fsp). Given the convex hull,

this touching line can found in time O(log A) where A is number of the points on the convex hull,

[5]. It is easy to see that A ≤ m + 1 ≤ dn/2 e. This algorithm that computes the touching point in

O(log A) requires the ability to efficiently search through the convex hull. We accomplish this by

maintaining the convex hull as a doubly linked list where each point in the convex hull maintains

O(log A) pointers to other points in the convex hull. More specifically, point i points forward to

points at position 2j in the convex hull of the points {(dr, cr)}
m
r=i, where j ≥ 1. Each point also

maintains backward pointers to any point that points forward to it. At point j, the backward

pointers specific to the convex hull starting at point i < j are maintained separatly for each i so

that constant time access to this set of pointers is possible. An array of an array of pointers suffices.

It is clear that the worst case memory requirement is O(m log m) pointers. We now discuss the main

operations we would like to be able to do on our set of points {(dr, cr)} and the point p and still
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be able to compute the upper tangent line efficiently. First we recall that the dr are monotonically

increasing. Assume that each point (dr, cr) stores all the necessary forward and backward pointers.

We also assume that the point (dr, cr) stores the pointer to the point nxt(r), which is the next point

in the convex hull if all the points d0, . . . , dr−1 were removed – note that in this case, dr becomes

leftmost, and so must be in the convex hull. We will see that these assumptions are maintained

inductively. Note that the initial convex hull with all the points is given by (d0, c0) followed by the

points pointed to by nxt(0), nxt(nxt(0)), . . .. We would like to perform the following operations on

our points and still be able to compute the upper tangent point efficiently:

(1) Translate p by some given vector v.

(2) Translate all the points in {(dr, cr)} by some given vector v.

(3) Remove the leftmost point (d0, c0).

(4) Add a new leftmost point (d−1, c−1).

Lemma 3.12 Assuming that p, {(dr, cr, nxtr)}
m
r=1 are given, all the operations in (1)-(4) above

can be accomplished in time O(log m). Further, in the event that a point is added or deleted, all

necessary pointers are maintained.

Proof: Let A = O(m) be the size of the current convex hull. For (1), we do not change the points at

all, we simply compute the new tangent point for p′ = p+v, which can be accomplished in O(log A).

(2) is equivalent to shifting p by −v. To prove (3), notice that if we remove (d0, c0), then the new

leftmost point becomes (d1, c1) and we immediately have the new convex hull nxt(1), nxt(nxt(1)), . . ..

Thus we can find the new upper tangent point in O(log A′) = O(log m), where A′ is the size of

the new convex hull. Further, deleting (d0, c0) requires first deleting the backward pointers of the

points that it points to O(log A), and then deleting the point itself, and its forward pointers (it

has no backward pointers), O(log A). To prove (4), note that when we add (d−1, c−1), nxt(−1)

is exactly the upper tangent point from p′ = (d−1, c−1) to the current convex hull. This can be

computed in O(log A). We now need to add all the necessary pointers into the data structure. For

each forward pointer we add, we will add the coresponding backward pointer as well. We need a

pointer at position 2j in the convex hull of (d−1, c−1). But this is exactly the point at position 2j−1

in the convex hull of point nxt(−1). Since nxt(−1) maintains a pointer to point 2j in its convex

hull, and this point will have a backward pointer by one step of this same convex hull, we can

construct the forward an backward pointer for point 2j in the convex hull of (d−1, c−1) in constant

time, requiring total time O(log A′) = O(log m) to construct all the new forward and backward

pointers, where A′ is the size of the new convex hull. We now construct the new upper tangent

point from p to the new convex hull of (d−1, c−1) in O(log A′) time. The entire process is therefore

O(log m).
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The algorithm that we have just described is a general purpose algorithm for efficiently maintaining

the upper tangent point to any set of points, as long as only a limited set of operations is allowed

on the set of points and the source point. We will now see that these limited operations are all

that is needed for maximizing the Sterling ratio.

Suppose that point at has been processed in the algorithm – i.e., the upper tangent point

(optimal trade with entry at at) from pt = (0, at +fsp) to Pm = {(dr, bT+r)}
m
r=0 has been computed.

Now consider the addition at−1 to construct the new weighted exit sequence. Delete the leftmost

point (d0, bT ) from the convex hull. Lets consider all posible operations that may take place. There

are several possibilities.

i. bt−1 ≥ bt. We remove (leftmost) points bt+i, i ≥ 0, until bt−1 < bt+i+1, and the new weight

w′
t+i+1 may have increased (Lemma 3.6). Deleting of points bt + i from the weighted exit

sequence doesn’t implies changes of the convex hull until t + i ≥ T . After this point, deleting

one point bT + i, i ≥ 0 from the weighted exit sequence followed by deletion of corresponding

leftmost point of the convex hull. At the very end of the sequence of deletions, we have to

update the MDD of point bt+i+1 from wt+i+1 to w′
t+i+1, this can be done by deletion of the

point (wt+i+1, bt+i+1) and addition of new point (w′
t+i+1, bt+i+1). The total number of such

removals during the entire algorithm is at most n − 1. When condition bt−1 < bt is satisfied,

proceed to the next stage.

ii. bt−1 < bt.

ii.1. wt+1 ≤ wt. We remove (leftmost) points bt+i, i ≥ 0, until wt < wt+i+1. Deleting of

points bt + i from the weighted exit sequence doesn’t implies changes of the convex hull

until t + i ≥ T . After this point, deleting one point bT + i, i ≥ 0 from the weighted

exit sequence followed by deletion of corresponding leftmost point of the convex hull. By

Lemma 3.10, the total number of such removals cannot exceed n − 1 over the course of

the entire algorithm. When condition wt < wt+1 is satisfied, proceed to the next stage.

ii.2. bt−1 < bt and wt < wt+1.

(a) f > wt. Add to the convex hull point (f, bT ).

(b) f < wt. Add to the convex hull points (wt, bt) and (f, bt−1).

The new source point is pt−1 = (0, at−1 + fsp), which just corresponds to a shift of pt, and so

once the new convex hull for the new weighted exit sequence is computed, an additional O(log n)

operations are needed to find the new upper tangent point.

The total number of removals in the entire algorithm is O(n). For each new entry point, we

have at most a constant number of additions, and since the number of entry points is O(n), we see

that the total number of additions is O(n). By Lemma 3.12, we have that each operation takes
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O(log n) in the worst case, thus the total run time is O(n log n). Collecting all the results together,

we can find the Sterling-optimal strategies making zero, one or more than one trade in O(n log n)

time, completing the proof of the first part of Theorem 1.3.

Note that by only maintaining exit points with weight at most some given constant, MDD0, i.e.,

by truncating some region of the points to the right, this algorithm is easily extended to computing

the Sterling-optimal strategy that uses exactly one trade and has an MDD ≤MDD0.

Proposition 3.13 Given MDD0, a Sterling-optimal strategy that uses exactly one trade and has

MDD ≤MDD0 can be computed in O(n log n) time.

This result will be useful when we consider constrained Sterling-optimal strategies.

3.2 Constrained Sterling-Optimal Strategies

As with the return-optimal strategies, the unconstrained sterling-optimal strategies may make too

many trades. Here, we consider the the Sterling-optimal strategy that makes at most K trades,

T K
Strl. We refer to such strategies as K-Sterling-optimal. First, we present some properties of this

strategy, before giving an efficient algorithm to compute it.

A maximal return-optimal strategy T ∗
µ is a return-optimal whose trade intervals cannot be

enlarged. Given any return-optimal strategy Tµ, in one (linear time) scan from left to right, we can

enlarge any trade intervals maximally to the right as long as they keep the same return. Similarily,

in one backward scan, we can extend all trade intervals maximally to the left. Since Tµ can be

computed in linear time, we conclude that

Lemma 3.14 A maximal return-optimal strategy T ∗
µ can be computed in linear time.

If any trade interval of a maximal return-optimal strategy is extended in either direction, then

the total return must strictly decrease. In the previous section, we gave a O(n log n) algorithm for

computing the Sterling-optimal strategy with exactly 1 trade. We also saw that if the unconstrained

Sterling-optimal strategy contains more than 1 trade, then it is T ∗
µ . Fix K, and let the number of

trades that T ∗
µ makes be K0 ≤ K. In this case T K

Strl = T ∗
µ , and we are done. Thus we only need

to consider the case that 1 < K < K0. Some important properties of T ∗
µ are summarized below.

When it is clear, We also use T ∗
µ to refer to the set of trading intervals {Ir}

K0

r=1. Let Ci =
∑i

j=1 ŝj

denote the cumulative return sequence of the excess returns.

Lemma 3.15 Let T ∗
µ be maximal return-optimal. Let I be an interval [ti, tj ].

i. If I ∈ T ∗
µ , then,

∑j
k=i ŝk − fsp ≥ 0 and MDD(I) ≤ fsp.
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ii. Suppose I does not intersect with any interval in T ∗
µ and let the return of I (

∑j
k=i ŝk) be µ(I).

Then, µ(I) ≤ fsp. If I is adjacent to some interval of T ∗
µ , then µ(I) < 0. If I is adjacent to

two intervals in T ∗
µ , then µ(I) < −fsp.

iii. Let [tl, tr] and [tl′ , tr′ ] be two consecutive trade intervals in T ∗
µ , l ≤ r < l′ ≤ r′. Then,

Cr − Cl′ > fsp, and for all r < q < l′, Cl′ < Cq < Cr.

Let {(ai, bi)} denote the local minima and maxima of {Ci}, as in the previous section. Any trade

of T ∗
µ or T K

Strl must enter (exit) at a local minimum (maximum). Further, the entry (exit) point

must be a minimum (maximum) in the trade, otherwise we can shrink the trade, strictly increasing

the return without increasing the MDD.

Lemma 3.16 Let I = [tl, tr] be a trade interval of T ∗
µ or T K

Strl. Then Cl is a local minimum, Cr is

a local maximum, and for any k, with l ≤ k ≤ r, Cl ≤ Ck ≤ Cr

We now give an important inclusion property of the T K
Strl.

Proposition 3.17 Let T ∗
µ be a maximal return-optimal trading strategy. There exists a K-Sterling-

optimal strategy T K
Strl, K > 1, with the following property: if I = [tl, tr] is any trading interval in

T K
Strl, then a prefix of I and a suffix of I are trades in the maximal return-optimal strategy T ∗

µ .

Proof: First we show that for every trading interval I∗ = [ta, tb] in T ∗
µ with I ∩ I∗ 6= ∅, one can

pick T K
Strl such that I∗ ⊆ I. Suppose to the contrary, that for some I∗, either ta < tl and tb ≥ tl or

ta ≤ tr and tb > tr. We will extend I without decreasing the Sterling ratio of T K
Strl so that I∗ ⊆ I.

Suppose ta < tl and tb ≥ tl (a similar argument holds for ta ≤ tr and tb > tr). There are two cases:

i. I∗ does not intersects any other interval of T K
Strl: Applying Lemma 3.16 to I∗, we have: Ca ≤ Cl.

Thus by extending I to [ta, tr], the return of the interval cannot decrease. Since MDD(I∗) ≤

fsp, this extension cannot increase the MDD(T K
Strl), since we already have that MDD(T K

Strl) ≥

fsp.

ii. I∗ intersects with the previous trading interval of strategy T K
Strl: ∃I

′ = [tl′ , tr′ ] ∈ T
K
Strl such that

ta ≤ tr′ < tl. Since [tr′+1, tl−1] is a subinterval of I∗,
∑l−1

j=r′+1 ŝj ≥ −fsp (Lemma 3.15). If we

merge I and I ′ by adding the interval [tr′+1, tl−1] into T K
Strl, we save on the transaction cost

of fsp, and so the total return will not decrease. We show that the MDD has not increased.

Since Cr′ is a maximum in [tl′ , tr′ ], the drawdown for all points in [tr′+1, tl] is at most fsp. Since

Cl is a minimum in [tl, tr], we conclude that the drawdown for any point in [tl, tr] is at most

max{fsp,MDD(I)}. Since MDD(T K
Strl) ≥ fsp, we conclude that this merger does not increase

the MDD.
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Note that µ(I) ≥ 0 otherwise we improve the return of T K
Strl by removing I, without increasing the

MDD, ans so T K
Strl cannot possibly be optimal. Thus, without loss of generality, we assume that

the return of I is positive. Suppose that I ∩ T ∗
µ = ∅. Then, by adding I to T ∗

µ , we strictly increase

the return, a contradiction on the optimality of T ∗
µ . Thus, every interval of T K

Strl contains at least

one interval of T ∗
µ . Now consider the maximal prefix Pmax of I that does not overlap with any

interval of T ∗
µ . Since we know that I contains some interval of T ∗

µ , we conclude that this maximal

prefix must be adjacent to some interval of T ∗
µ . By Lemma 3.15, this interval has strictly negative

return, so removing it from I strictly increase the return of T K
Strl, without increasing its MDD.

This contradicts the optimality of T K
Strl, thus, Pmax must be empty. Similarily, the maximal suffix

of I that is non-intersecting with T ∗
µ must be empty, concluding the proof.

As a result of Proposition 3.17, we assume from now on that every interval of the sterling optimal

strategy T K
Strl is prefixed and suffixed by (not necessarily distinct) intervals from a maximal return-

optimal strategy that makes K0 trades.

Lemma 3.18 If 1 < K ≤ K0 then T K
Strl can be chosen to make exactly K trades.

Proof: If K = K0, then T ∗
µ itself is K-Sterling-optimal. If K < K0, we show that if the number

of trades made is less than K, we can always add one more interval without decreasing the Sterling

ratio of the strategy. First, note that T K
Strl cannot contain all the intervals of T ∗

µ , as otherwise (by

the pigeonhole principle) at least one interval I = [tl, tr] of T K
Strl contains two consecutive intervals

I1 = [tl1 , tr1
] and I1 = [tl2 , tr2

] of T ∗
µ . The region between these two intervals has return less than

−fsp (Lemma 3.15), so breaking up I into the two intervals [tl, tr1
] and [tl2 , tr] will strictly increase

the return, without increasing the MDD, contradicting the optimality of T K
Strl. If T K

Strl does not

contain some interval of T ∗
µ , then by adding this interval, we do not decrease the return or the

MDD (Lemma 3.15), since the MDD is already ≥ fsp.

Lemmas 3.17 and 3.18 indicate how T K
Strl can be constructed: start with all the intervals of a maxi-

mal return-optimal strategy T ∗
µ and then merge some neighbouring intervals, keeping the merging

sequence that gave the best strategy. The number of possible merging sequences is exponential,

however, we will now show that an efficient greedy merging algorithm gives the correct result.

Given two consecutive non-adjacent intervals I1 = [tl1 , tr1
], I2 = [tl2 , tr2

], where I1 preceeds

I2, define the bridge B(I1, I2) = [tr1
, tl2 ] to be interval connecting I1 with I2. If I1 and I2 are

intervals in a maximal return optimal strategy, then by Lemma 3.15, the MDD of the bridge

is Cr1
− Cl2 . Since Cr1

is a maximum over the interval [tl1 , tl2 ], and Cl2 is a minimum over the

interval [tr1
, tr2

], we have that the MDD of the union of these three intervals, [tl1 , tr2
] is given by

max{MDD(I1), Cr1
− Cl2,MDD(I2)}.

For every bridge B(I1, I2), define the closure Cl(B(I1, I2)) to be the smallest interval J = [tl, tr],

in the return sequence, satisfying the following three properties.
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Cl1. Cl ≤ Cm ≤ Cr for l ≤ m ≤ r, i.e., Cl is a minimum and Cr is a maximum in [tl, tr].

Cl2. I1, I2 ⊂ J , i.e., J contains both I1 and I2.

Cl3. J is prefixed and suffixed by intervals from a maximal return-optimal strategy T ∗
µ .

Note that a bridge may not have closure. For example, if the two last intervals Il−1, Il in T ∗
µ are

such that such that the end point Il is below the end point of Il−1, then B(Il−1, Il) doesn’t have a

closure. The next lemma shows that if the closure J for a bridge exists, then not only is it unique,

but any other interval satisfying Cl1 - Cl3 contains J .

Lemma 3.19 For two intervals I1, I2, if Cl(B(I1, I2)) exists, then it is unique. Moreover, for any

other interval I satisfying Cl1 - Cl3, Cl(B(I1, I2)) ⊆ I.

Proof: Let J1 = [tl1, tr1
] and J2 = [tl2 , tr2

] satisfy Cl1 - Cl3. Without loss of generality, assume

that tl1 ≤ tl2 < tr1
≤ tr2

. By construction, J1∩J2 = [tl2, tr1
] satisfies Cl1 - Cl3. Now let Cl(B(I1, I2))

be the intersection of all intervals that satisfy Cl1 - Cl3, concluding the proof.

Suppose that bridge B and B′ are bridges in T ∗
µ and that Cl(B) contains B′. Then Cl(B) satisfies

Cl1 - Cl3 with respect to B′ and hence Cl(B) also contains Cl(B′).

Lemma 3.20 Let B and B′ be bridges in T ∗
µ . If B′ ⊂ Cl(B), then Cl(B′) ⊂ Cl(B).

Any interval in T K
Strl containing bridge B satisfies properties Cl1 - Cl3 (Lemma 3.16 & Proposition

3.17), immediately yielding the following proposition.

Proposition 3.21 Let I ∈ T K
Strl and let B be a bridge in T ∗

µ .

i. If B ⊂ I, then Cl(B) ⊂ I.

ii. If B does not have a closure, then no K-Sterling-optimal strategy can contain B.

iii. A K-Sterling-optimal strategy with more than one trading interval and no bridges of T ∗
µ has

MDD = fsp. If it contains one or more bridges Bi of T ∗
µ , then MDD = maxi MDD(Cl(Bi)).

iv. The MDD of a K-Sterling-optimal strategy with more than one trading interval can be one of

at most T + 1 possible values where T is the number of bridges between the intervals of T ∗
µ .

Proof: (i) and (ii) are immediate. (iv) follows from (iii), thus we only need to prove (iii). Let

I ∈ T K
Strl contain the consecutive bridges B1, . . . , BK , and hence their closures. From (i), it is

clear that MDD(I) ≥ maxi MDD(Cl(Bi)). It is also clear that I = ∪K
i Cl(Bi). We show, by

strong induction on K, a more general statement than we need: suppose that I = ∪K
i Cl(Bi), then
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MDD(I) ≤ maxi MDD(Cl(Bi)). If K = 1 then I = Cl(B1) and the result is trivial; suppose

it is true for up to K − 1 consecutive bridges, K > 1, and suppose that I is the union of K

closures of consecutive bridges. Consider the first closure Cl(B1). Let I = [tl, tr] and Cl(B1) =

[tl, tr′ ], tr′ ≤ tr. By definition of Cl(B1), Cr′ is a maximum over [tl, tr′ ]. Thus, MDD(I) =

max{MDD(Cl(B1)),MDD([tr′ , tr])}. If r = r′, then I = Cl(B1) and we are done. If r < r′,

then tr′+1 is the begining of some bridge Bκ. Let I ′ = ∪K
i=κCl(Bi). Then, [tr′ , tr] ⊆ I ′ and so

MDD([tr′ , tr]) ≤ MDD(I ′). But I ′ is the union of at most K − 1 closures, so by the induction

hypothesis, MDD(I ′) ≤ maxi≥κ MDD(Cl(Bi)), concluding the proof.

We will distinguish between four types of bridges. Let I1 = [tl1 , tr1
], I2 = [tl2 , tr2

] be consecutive

intervals in T ∗
µ . The bridge B = B(I1, I2) can be one of four types:

regular. Cl1 ≤ Cl2 and Cr1
≤ Cr2

, i.e., Cl(B) = [l1, r2].

right irregular. Cl1 ≤ Cl2 and Cr1
> Cr2

, i.e., Cl(B) contains the next bridge.

left irregular. Cl1 > Cl2 and Cr1
≤ Cr2

, i.e., Cl(B) contains the previous bridge.

irregular. Cr1
> Cr2

and Cl1 > Cl2 , i.e., Cl(B) contains both the next and previous bridges.

We define the weight of the bridge W (B(I1, I2)) as follows:

W (B(I1, I2)) =































Cr1
− Cl2 if B(I1, I2) is regular,

Cr1
− Cl2 if B(I1, I2) is left irregular and the previous bridge is right irregular.

Cr1
− Cl2 if B(I1, I2) is left irregular and the previous bridge is irregular.

+∞ otherwise.

The general idea behind our algorithm is to start with a maximal return-optimal strategy and

greedily merge pairs of intervals or pair of bridges according to the bridge weight, keeping track

of the best K intervals each time. When no more merging can occur, because we are down to K

intervals or all the bridge weights are ∞, we return the best K intervals we have seen so far. More

precisely, let T ∗
µ = {I1, . . . , IK0

} be a maximal return-optimal trading strategy making K0 trades.

We denote this pool of trade intervals by P0, the base pool. From pool Pi, we obtain pool Pi+1 by a

single merge according to the following rule. Let B = B(I1, I2) be the bridge with smallest weight.

If B =∞, stop (pool Pi+1 does not exist). Otherwise, there are two cases.

i. Regular merge: if B is regular, merge B with I1 and I2 to get a larger interval Inew = [tl1 , tr2
].

We now update the status (type and weight) of any neighboring bridges as follows:

• Previous bridge changes from right-irregular to regular (update type and weight).

• Previous bridge B′ changes irregular to left-irregular (update type). If the bridge previous

to B′ is right-irregular or irregular then update weight.
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• Next bridge changes from irregular to right-irregular (update type).

• Next bridge changes from left-irregular to to regular (update type and weight).

ii. Irregular merge: if B is left irregular, denoting the previous bridge B∗, merge the two bridges

and the interval between them into one bigger bridge Bnew = B∗∪I1∪B. The status of bridges

other than B have not changed. The status and weight of B may need updating.

Intervals are formed only by regular merges, so it is easy to see that intervals resulting from this

merging procedure begin at a minimum and end at a maximum. New bridges are formed by

irregular merges, and the resulting bridge must begin at a maximum and end at a minimum. The

only bridge weights that could change are those that had weights of∞. In such an event the weight

will drop, but not below the weight of the original bridge used in the merge that led to the update.

Lemma 3.22 Let bridge B with weight w be involved in a merge, and suppose that the weight of

bridge B′ is updated in the process from ∞ to u. Then, w < u.

Proof: There are two cases:

i. The bridge involved in the merge was regular, i.e., two consecutive intervals I1 = [tl1 , tr1
]

and I2 = [tl2 , tr2
] are merged with their bridge B12 = B(I1, I2) with W (B12) = w. Let the

preceeding interval be I0 = [tl0 , tr0
] and the following interval be I3 = [tl3 , tr3

] , and let the

preceeding and following bridges be B01 and B23 respectively. If B01 obtained finite weight, it

cannot be left irregular, as it would remain left irregular after the merge, and hence its weight

would still be∞. Thus, we need only consider B01 right irregular or irregular (i.e., Cr0
> Cr1

).

Its weight becomes u = Cr0
−Cl1 > Cr1

−Cl1 . Since B12 is regular, w = Cr1
−Cl2 < Cr1

−Cl1

and so w < u. If B23 obtained finite weight, then it could not be right regular or irregular as

it could not become regular or left irregular after the merge. Thus, we need only consider B23

left irregular (Cl2 > Cl3). Its weight becomes u = Cr2
− Cl3 > Cr2

− Cl2 . Since B12 is regular,

Cr1
≤ Cr2

, and so u > Cr1
− Cl2 = w.

ii. The bridge involved in the merge was left-irregular, i.e., B12 = [tr1
, tl2 ] is left irregular, and

B01 = [tr0
, tl1 ] is either right-irregular or irregular (in both cases, Cr0

> Cr1
). Let w = Cr1

−Cl2

be the weight of B12. The merged bridge is B = B01I1B12. If B has finite weight (i.e. it is

either regular or left-irregular), then its new weight is u = Cr0
− Cl2 > Cr1

− Cl2 = w. If

B is left-irregular or irregular, then it does not change the weight of any other bridge. If,

on the other hand, B became right-irregular or irregular, then it could affect the weight of

the following bridge B23, if B23 was left-irregular (Cl2 > Cl3). In this case, the weight of

B23 = [tr2
, tl3 ] becomes v = Cr2

−Cl3 > Cr2
−Cl2 . But since B12 was left-irregular, Cr2

≥ Cr1
,

and so v > Cr1
− Cl2 = w.
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The next lemma shows that if all the bridge weights become∞, any further merged pairs of intervals

can never be part of a K-Sterling-optimal strategy.

Lemma 3.23 If all the bridge weights in a pool of intervals are ∞, then any further merged pairs

of intervals from this pool can never be part of a K-Sterling-optimal strategy.

Proof: (Lemma 3.23). Let Pr be pool obtained from P0 by some sequence of merging intervals with

bridges of finite weight, and suppose that all the bridges in Pr have infinite weight. In particular,

this means that none of the bridges in Pr are regular. Denote the bridges by B1, . . . , Bm, and

consider bridge Bk. If Bk is right irregular or irregular, then all following bridges are either right

irregular or irregular since all bridges have finite weight. If a trading interval contains Bk, it must

contain Bk+1 (since Bk is right irregular or irregular), and so by induction, it must contain all the

following bridges (and their closures). But, the last bridge does not have a closure (as it is right

irregular or irregular), a contradiction. If on the other hand, Bk is left irregular, then all preceeding

bridges are left irregular as all bridges have infinite weight. If a trading interval contains Bk, it must

contain Bk−1 (since Bk is left irregular), and so by induction, it must contain all the preceeding

bridges (and their closures). But, the first bridge does not have a closure (as it is left irregular), a

contradiction. We conclude that Bk cannot be in any trading interval.

Each merge decreases the number of intervals and number of bridges by one. If we merge down

to pool PK0−K , we are left with exactly K intervals. We will show that T K
Strl can be chosen to be

the best K trades (with respect to total return) in one of these pools. Specifically, define T K
j to

be the K intervals in Pj with the highest total return. We say that a strategy is coarser than pool

Pi if the strategy can be obtained by a sequence of merges of some (or all) of the intervals in Pi.

Clearly, ∀i, Pi+1 is coarser than Pi, as Pi+1 is obtained from Pi after a single merge. Note that for

a strategy to be coarser than Pi, it need not contain every trade in Pi, however if it contains part

of any trade in Pi, then it contains the entire trade. Next, we show that after a merge, the MDD

of the remaining intervals is equal to the weight of the bridge involved in the merging.

Lemma 3.24 If pool Pi, i ≥ 1, was obtained from Pi−1 by a merge involving a bridge of weight w,

then the MDD of any interval in Pi is at most w. If the merge created a new interval (i.e., the

bridge was regular), then the MDD of the new interval is equal to w.

Proof: In pool P0, since any bridge is adjacent to two intervals of T ∗
µ , its weight is at least fsp

(Lemma 3.15). Consider sequence of pools P0, P1, . . . , Pr, where bridge Bi with weight W (Bi) was

the minimum weight bridge involved in the merge that resulted in pool Pi from from Pi−1. By

Lemma 3.22 bridges weights are non-decreasing, i.e., W (Bi) ≤W (Bi+1).
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We now use induction on the index i. For i = 1, from Lemma 3.15, every interval in P0 has

MDD at most fsp. If P1 was obtained from P0 by an irregular merge, then all intervals of P1 are

intervals of P0, with MDD at most fsp. Since W (B1) ≥ fsp, the claim holds. If the merge was

regular, then the MDD is W (B1) ≥ fsp and the MDD of all other intervals is at most fsp. Thus,

the claim holds for P1.

Suppose the claim holds for all j < i and consider pool Pi which was obtained from Pi−1 using

a merge involving Bi. By the induction hypethesis, the MDD of any interval from Pi−1 is at

most W (Bi−1) ≤ W (Bi). If Pi that was obtained by an irregular merge, every interval of Pi is an

interval of Pi−1 and thus has MDD at most W (Bi−1) ≤W (Bi). Suppose that Pi was obtained by

a regular merge – all intervals except the merged interval are intervals of Pi−1. Consider the MDD

of the new interval, which is obtained by the regular merge I1 ∪ Bi ∪ I2. Since new intervals are

created only through regular merges, it is easy to see by induction that property Cl1 holds for all

the intervals in Pi−1, in particular it holds for I1 and I2. Since Bi was regular, the MDD of the new

interval is max(MDD(I1),W (Bi),MDD(I2)). By the induction hypothesis, MDD(I1) ≤W (Bi−1)

and MDD(I2) ≤W (Bi−1), thus, max(MDD(I1),W (Bi),MDD(I2)) = W (Bi).

First, we show that if a K-Sterling-optimal strategy makes K trades, all of which are contained in

intervals of one of the pools Pi, then a K-Sterling-optimal strategy exists which is composed of the

K intervals with highest return in some pool Pj with j ≤ i.

Lemma 3.25 If K subintervals of the intervals of pool Pi are a K-Sterling-optimal strategy, then

for some j ≤ i, the K intervals with highest return of pool Pj are a K-Sterling-optimal strategy.

Proof: If Pi = P0, then the claim is trivial. Suppose that i > 0, and let T = {I1, . . . , IK} be the

K-Sterling-optimal strategy whose trades are all subintervals of intervals in Pi. Consider the set

B of all bridges in T ∗
µ that are contained in T , B = {Bi}

r
i=1. We can assume that B is not empty

because if it were, then T is composed of intervals in T ∗
µ , in which case the top K intervals (with

respect to return) in T ∗
µ are clearly optimal. Since Pi contains all the intervals in T , Pi contains

all the bridges in B. Thus, there must exist j ≤ i such that Pj contains all the bridges in B and

no pool Pk, with k < j has this property, i.e., Pj was obtained from the previous pool by a regular

merge involving a bridge B∗ which must contain some bridge Bl ∈ B. Let I be the interval in T

that contains Bl. Then, I must contain the whole bridge B∗, since if B∗ is the result of irregular

merges, one of which involved bridge Bl, then B∗ ⊂ Cl(Bl), and Cl(Bl) ⊆ I (Proposition 3.21).

Since B ⊂ I, MDD(T ) ≥ MDD(I) ≥ W (B∗). By Lemma 3.24, since B∗ was the last bridge

involved in a merge, the MDD of every interval in Pj is at most W (B∗). Since every interval of

T is a subinterval of some interval in Pj , we conclude that T is contained in at most K intervals

of Pj . Let T K
j be the top K intervals in Pj . Then, the return of T is at most the return of T K

j .

Further, MDD(T K
j ) ≤W (B∗) ≤MDD(T ), and so Strl(T K

j ) ≥ Strl(T ), concluding the proof.
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We are now ready to prove the main result, which will lead to the greedy algorithm for constructing

a K-Sterling optimal strategy.

Theorem 3.26 Let j∗ be such that Strl(T K
j∗ ) ≥ Strl(T K

j ), ∀j. Then T K
j∗ is K-Sterling optimal.

Proof: Let SK
0 be a K-Sterling-optimal strategy that makes K trades – by Lemma 3.18, such a

strategy must exist. If SK
0 has the same Sterling ratio as the trading strategy composed of the K

most profitable trades in P0, then we are done. If not, then we know from Proposition 3.17 that

SK
0 is coarser than P0. We prove the following statement for all k ≥ 1

Q(k): Suppose there exists a K-Sterling-optimal strategy SK
k−1 that makes K trades

and is coarser than Pk−1. Then either SK
k−1 is composed of K intervals of Pk, or there

exists a K-Sterling-optimal strategy SK
k that makes K trades and is coarser than Pk.

We know that Q(1) is true. Suppose that Q(k) is true for all k ≥ 1, we then prove the proposition

as follows. By an easy induction, we have that if none of the SK
j−1 are composed of K intervals in

Pj for all j ≤ m, then there is a K-Sterling-optimal strategy SK
m making exactly K trades that is

coarser than Pm. Suppose that we can construct a total of κ + 1 pools, Pi for 0 ≤ i ≤ κ ≤ K0−K.

If κ < K0 − K then all the bridge weights in Pκ are infinite. If κ = K0 − K, then any further

merging leads to fewer than K intervals. In both cases, there cannot exist a K-Sterling-optimal

strategy that is coarser than Pκ. Therefore, for some j∗ ≤ κ, the K-Sterling-optimal strategy SK
j∗−1

is composed of K intervals of Pj∗ . By Lemma 3.25, there is a K-Sterling-optimal strategy TK
Strl that

is composed of the top K intervals of some pool Pl, where l ≤ j∗.

What remains is to show that Q(k) is true for all k ≥ 1. Suppose that SK
k−1 is coarser than

Pk−1 and is not composed of K intervals in Pk. We show that there exists SK
k that is coarser than

Pk. Since SK
k−1 is coarser than Pk−1, it contains at least one bridge B in Pk−1 with finite weight

(because if it contains an infinite weight bridge, then it either contains the preceeding or following

bridge; this argument continues analogously to the proof of Lemma 3.23 until we include a bridge

of finite weight). Let I be the interval of SK
k−1 that contains B, and let Il and Ir be intervals in

Pk−1 (which are subintervals of I) connected by B. Let B∗ be the bridge in Pk−1 with minimum

weight that was involved in the merge to get Pk from Pk−1, and let I∗l and I∗r be the intervals in

Pk−1 connected by B∗. If B∗ = B then SK
k−1 is also coarser than Pk and we are done, so suppose

B∗ 6= B. There are two possibilities:

(i) B∗ is a regular bridge. If SK
k−1 does not contain I∗l or I∗r , then SK

k−1 ∩ (I∗l ∪B∗ ∪ I∗r ) = ∅ and

thus SK
k−1 itself is coarser than Pk, and can be chosen as SK

k . Suppose that SK
k−1 contains

I∗l and not I∗r (similar argument if it contains I∗r and not I∗l ). Thus some interval I ′ ∈ SK
k−1

has as a suffix I∗l . Suppose we construct SK
k by replacing interval I ′ by interval I ′ ∪B∗ ∪ I∗r .

SK
k is then coarser than Pk. Since B∗ is regular, the return of I ′ ∪ B∗ ∪ I∗r is at least
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as big as the return of I ′. I∗r is either an interval of P0 or was obtained by merging some

intervals of P0 through bridges with weight at most W (B∗) (Lemma 3.24), and so MDD(I∗r ) ≤

W (B∗). Since the maximum cumulative return for I ′ is attained at its right endpoint (Lemma

3.16) and the left endpoint of I∗r is a minimum in I∗r , we have that MDD(I ′ ∪ B∗ ∪ I∗r ) =

max{MDD(I ′),W (B∗),MDD(I∗r )} = max{MDD(I ′),W (B∗)}. Since W (B∗) ≤ W (B), we

conclude that MDD(SK
k ) ≤MDD(SK

k−1), and thus Strl(SK
k ) ≥ Strl(SK

k−1), which means that

SK
k is also K-Sterling-Optimal. Finally, suppose that SK

k−1 contains both I∗l and I∗r , and

consider the strategy SK
k obtained from SK

k−1 by removing bridge B and adding bridge B∗.

µ(SK
k ) = µ(SK

k−1) + W (B) −W (B∗) ≥ µ(SK
k−1). Since W (B) ≥ W (B∗), the MDD cannot

have increased, and so SK
k is K-Sterling-Optimal and coarser than Pk.

(ii) B∗ is an irregular bridge. Since B∗ = B(I∗l , I∗r ) has finite weight, we can conclude that B∗ is

left-irregular and the previous bridge B− = B(I∗l−1, I
∗
l ) is right-irregular or irregular. Since

SK
k−1 does not contain B∗, by Lemma 3.16, there are two possibilities: SK

k−1 does not contain

I∗l , in which case it also does not contain bridge B− and so B− and B∗ can be merged into one

bridge without influencing SK
k−1, i.e., SK

k−1 is also more coarse than Pk; or, SK
k−1 contains I∗l

as one of its intervals. In this case, since B∗ is left-irregular, µ(I∗l ) < W (B∗) ≤W (B), and so

by dropping I∗l from SK
k−1 and breaking I into two subintervals by removing B from I results

in a profit increase of W (B) − µ(I∗l ) > 0. Further, the MDD cannot increase, so the new

strategy makes K trades and has strictly greater Sterling ratio than SK
k−1, which contradicts

optimality of SK
k−1. Thus, SK

k−1 cannot contain I∗l as one of its intervals.

Thus Q(k) holds for all k ≥ 1, concluding the proof.

We are now ready to give the O(n log n) algorithm that establishes Theorem 1.3. First, we can

compute the optimal strategy that makes only one trade in O(n log n) (Section 3.1), and compare

this with the trivial strategy that makes no trades. It remains to compute the K-Sterling-optimal

strategy and pick the best. We show how to do this in O(n log n) time.

First we obtain T ∗
µ in linear time. Suppose T ∗

µ makes K0 > K trades (as otherwise T ∗
µ is our

solution). By Theorem 3.26, we only need to construct the pools P0, P1, . . ., maintaining the pool

with the optimal Sterling ratio for its top K trades, as explained in the following algorithm.

1: Set i = 0; Sort (in decreasing order) the intervals from P0 according to profit; Sort all the

bridges with finite weight in increasing order. Let Bi be the minimum weight bridge in Pi; Let

strategy Si consist of the top K intervals, and let Strlopt = Strl(Si);

2: while Pi contains at least K intervals and at least one finite weight bridge do

3: if Bi = B(Il, Ir) is regular then

4: Regular merge to obtain Pi+1: remove Il, Ir, Bi from the interval and bridge orderings, and

add back I = Il ∪Bi ∪ Ir into the interval ordering; compute µ(I) and MDD(I);
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5: Update neighboring bridge weigths and re-insert them back into the bridge ordering.

6: else if Bi = B(Il, Ir) is left-regular then

7: Irregular merge to obtain Pi+1: Let B− be the bridge left of Bi; remove Il, B−, Bi from the

interval and bridge orderings. Create the new bridge B = B− ∪ Il ∪ Bi, compute W (B)

and insert B into the bridge ordering (note that W (B) may be ∞).

8: end if

9: i← i + 1; update Strli; if Strlopt < Strli, then Strlopt ← Strli.

10: end while

The correctness of the algorithm follows from Theorem 3.26. We now analyse the run time of

an efficient implementation of the algorithm. P0 contains at most n intervals and bridges. Each

execution of the while loop reduces loop number of bridges and intervals by 1 each, so the while

loop is executed at most n/2 times. Merging two intervals is a constant time operation. The profit

of a new interval is the profit of the merged intervals minus the weight of the merging bridge (also

computable in constant time). The MDD of a new interval is the maximum of the MDD of the

merged intervals and the weight of the merging bridge (also computable in constant time). The

weight of a new bridge takes constant time to compute, and updating the weights of the neighbour

bridges is a constant time operation provided that pointers are maintained to them. These pointers

can be updated in constant time as well. Thus the run time within the while loop is dominated by

inserting into the bridge or interval orderings. At most a constant number of such such inserts into

a sorted list need to be done, and each is an O(log n) operation [7]. To efficiently implement step

9, we maintain two sorted lists of the top K intervals in the algorithm, sorted according to return

and MDD. These can be maintained in O(log K) operations. The first allows us to update the

total return of the top K intervals in constant time, and the second allows us to update the MDD

of the top K intervals (by taking the interval with largest MDD) in constant time. Thus the total

running time of the while loop is O(n log n + n log K) = O(n log n) The preprocessing (step 1) is

O(n), and so does not contribute to the asymptotic run time.

4 Sharpe Optimal Trading Strategies

Another popular measure of the portfolio’s risk-adjusted return is the Sharp Ratio. For trading

strategy T , we consider two versions of the Sharpe ratio, Shrp1 and Shrp2.

Shrp1(T ) =
µ(T )

σ(T )
, Shrp2(T ) =

µ(T )

σ2(T )
. (9)
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Note that Shrp2 is more conservative in that it penalizes large variances more heavily. We introduce

a simplified Sharpe ratio (SSR) S that will be instrumental to finding the optimal strategies,

S =
µ

s2
.

It is easy to check that maximizing Shrp1 is equivalent to maximizing µ2

s2 , and that Shrp2 is given

by r̄
1

n
s2−r̄2

, where r̄ is the mean return. We will relate the maximization of Shrp1 and Shrp2 to the

maximization of S.

Let T be a trading strategy that makes K trades, with trading intervals I1, . . . , IK . Each trade

contributes a transactions cost of −fsp to the return sequence. In general, a trade contributes

f̂2
S + f̂2

B to s2. However, we will assume that fsp � 1 and so we will ignore the contribution of the

transactions cost to s2. Alternatively, we can justify this by assuming that the transactions cost is

spread finely over many time intervals. The sum over these small time intervals is finite, equal to

−fsp, however, the sum of squares over these small time intervals can be made arbitrarily small.

Define the total return and sum of squared returns for each trading interval,

µi = µ(Ii) =
∑

j∈Ii

r[j], s2
i = s2(Ii) =

∑

j∈Ii

r[j]2.

We define Ai as the contribution of trade i to the mean return, and Bi as the contribution of trade

i to the mean squared return (ignoring the effect of the transactions cost), i.e., Ai = 1
n
(µi − fsp)

and Bi = 1
n
s2
i . We define A(T ) =

∑K
k=1 Ai (note that r̄ = A(T )) and B(T ) =

∑K
k=1 Bi (note that

1
n
s2 = B(T )).

4.1 Maximizing the Simplified Sharpe Ratio S

We will need the following technical lemma, which can be proved by an easy induction.

Lemma 4.1 Let F = {a1

b1
, a2

b2
, . . . , ak

bk
} be any set of fractions satisfying bi > 0 and c

d
≤ ai

bi
≤ a

b
,

for all i, where b, d > 0. Then, c
d
≤ a1+a2+...+ak

b1+b2+...+bk
≤ a

b
. The upper (resp. lower) bound is strict if at

least one of the fractions in F is strictly upper (resp. lower) bounded by a
b

(

resp c
d

)

.

Let T ∗ be an SSR-optimal strategy making K > 1 trades with trading intervals I1, . . . , IK .

S(T ∗) =

∑K
i=1 Ai

∑K
i=1 Bi

=
A(T ∗)

B(T ∗)
,

Lemma 4.2 Ai

Bi
is a constant for every interval i, i.e., every trade is equivalent.

32



Proof: Suppose that mini
Ai

Bi
<

Aj

Bj
for some j (strict inequality), and without loss of generality,

assume that the minimum is attained for interval I1. By Lemma 4.1, if we remove I1, we get that

S(I1 ∪ · · · ∪ IK) =

∑K
i=1 Ai

∑K
i=1 Bi

<

∑K
i=2 Ai

∑K
i=2 Bi

= S(I2 ∪ · · · ∪ IK),

which contradicts the optimality of T ∗ implying that mini
Ai

Bi
=

Aj

Bj
for all j.

Corollary 4.3 An SSR-optimal trading strategy making one trade exists.

Proposition 4.4 An SSR-optimal strategy making one trade can be found in O(n log n) time.

Proof: By Corollary 4.3, we are guaranteed the existence of such a strategy. It suffices to find

the single interval I maximizing
∑

i∈I r[i]/
∑

i∈I r[i]2. Consider all intervals starting at position i

and define ck =
∑k

j=i r[j] and dk =
∑k

j=i r[j]
2. We wish to find k to maximize ck/dk. If we have

done this for position i, we now consider position i − 1. We show that the algorithm in Section

3.1.1 can be used. Trade intervals starting at i − 1 correspond to shifting all the ck by r[i − 1],

and all the dk by r[i− 1]2. Both these operations simply correspond to shifting the origin point p

to p′ = p − (r[i − 1], r[i − 1]2). We then add a new leftmost point at p. Since each update takes

O(log n), and the optimal interval for the new points can be found in O(log n), the entire algorithm

runs in O(n log n).

4.2 Maximizing Shrp2

Ignoring the fsp
2 term in the denominator changes the denominator slightly, so we introduce the

slightly different quantity Shrp2. Specifically,

Shrp2(T ) =
A(T )

d
n
fsp

2 + B(T )−A2(T )
, Shrp2(T ) =

A(T )

B(T )−A2(T )
,

where d is the number of trades in T . By the Cauchy-Schwarz inequality, for any trading strategy,
∑

r[i]2 ≥ 1
n
(
∑

i r[i])2. Since we are only interested in strategies for which A(T ) ≥ 0, we have

Lemma 4.5 For strategy T , if A(T ) > 0 then B(T )−A2(T ) > 0

We will show that maximizing Shrp2 is closely related to a constrained optimization of the SSR,

and that maximizing Shrp2 is not too far from maximizing Shrp2.

Let T ∗
µ be return optimal, with return µ(T ∗

µ ) = µ∗. For any 0 ≤ α ≤ µ∗, we define the

constrained SSR-optimal strategy Tα as the strategy with maximum SSR among all strategies with

return at least α, i.e., A(Tα) ≥ α and for all strategies T with A(T ≥ α), S(Tα) ≥ S(T ). Note that

while an SSR-optimal strategy can be chosen with one trading interval, a constrained SSR-optimal
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strategy may require more than one trading interval. We show that for some appropriate threshold

α, the constrained SSR-optimal strategy is a Shrp2-optimal strategy.

Proposition 4.6 ∃0 ≤ α ≤ µ∗ such that the constrained SSR-optimal strategy Tα is Shrp2-optimal.

Proof: Let T be any Shrp2-optimal strategy, and let α∗ = A(T ). Let Tα∗ be any constrained

SSR-optimal strategy. Then A(Tα∗) ≥ A(T ) and since S(Tα∗) ≥ S(T ), we have that

0 ≤ A(Tα∗)B(T )−A(T )B(Tα∗).

Suppose that Shrp2(Tα∗) < Shrp2(T ), then

0 ≤ A(Tα∗)B(T )−A(T )B(Tα∗) < A(Tα∗)A(T ) · (A(T )−A(Tα∗)).

Both A(Tα∗) and A(T ) are > 0, otherwise both strategies are inferior to T ∗
µ ; thus A(T ) > A(Tα∗),

which is a contradiction. Therefore Shrp2(Tα∗) ≥ Shrp2(T ) and so Tα∗ is Shrp2-optimal.

We will need the following property of any SSR-optimal interval.

Proposition 4.7 Let J be a subinterval of an SSR-optimal interval I. Then, µ(J) ≥ −fsp.

Further, if J is a prefix or suffix of I, then µ(J) > 0.

Proof: If J is a prefix or suffix of I and µ(J) ≤ 0, then deleting J from I gives at least as much

return, with smaller sum of squared returns, contradicting the SSR-optimality of I. Suppose that

I = L ∪ J ∪R where L and R are nonempty subintervals of I. If µ(J)+µ(R)
s2(J)+s2(R)

<
−fsp+µ(L)

s2(L)
, then by

Lemma 4.1,

S(I) =
−fsp + µ(L) + µ(J) + µ(R)

s2(L) + s2(J) + s2(R)
<
−fsp + µ(L)

s2(L)
= S(L) (*)

This contradicts the optimality of I, so we have

µ(J) + µ(R)

s2(J) + s2(R)
≥
−fsp + µ(L)

s2(L)
.

Now, suppose that µ(J) < −fsp. Using (*) and Lemma 4.1, we find that

S(I) ≤
µ(J) + µ(R)

s2(J) + s2(R)
<
−fsp + µ(R)

s2(J) + s2(R)
<
−fsp + µ(R)

s2(R)
= S(R),

because s2(J) > 0. This contradicts the SSR-optimality of I, so µ(J) ≥ −fsp.

We show that adding an SSR-optimal interval to any trading strategy can only improve the strategy.
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Proposition 4.8 Let I0 be any SSR-optimal interval, and let T be any trading strategy. Let

T ′ = I0 ∪ T . Then A(T ′) ≥ A(T ) and S(T ′) ≥ S(T )

Proof: If I0 is contained in some interval of T , then there is nothing to prove, so suppose that

T ∪ I0 6= T , and that T contains d ≥ 1 trades I1, . . . , Id. Note that S(T ) = A(T )/B(T ). If I0 and

T do not intersect, then T ′ = I0 ∪ T = {I0, I1, . . . , Id}. A(T ′) = A(T ) + A(I0) ≥ A(T ), because

A(I0) ≥ 0. Since I0 is SSR-optimal, S(I0) = A(I0)
B(I0) ≥

A(T )
B(T ) = S(T ), so by lemma 4.1,

S(T ′) =
A(T ′)

B(T ′)
=

A(T ) + A(I0)

B(T ) + B(I0)
≥

A(T )

B(T )
= S(T ).

Suppose that T ∩ I0 6= ∅. We can decompose T into four parts (each part could be empty):

T = S1∪S2∪ Il∪ Ir, where S1 contains intervals that do not intersect with I0, S2 contains intervals

that are contained in I0, Il is not contained in I0 but overlaps I0 on the left, and Ir is not contained

in I0 but overlaps I0 on the right. T ′ = I0 ∪ T = S1 ∪ Il ∪ I0 ∪ Ir, i.e., adding I0 combines all

the trades in {S2, Il, Ir} into one trade. Since the internal regions of I0 have return at least −fsp

and any prefix and suffix of I0 has positive return (Proposition 4.7), we see that merging any two

consecutive trades overlapping I0 decreases the number of trades by one, hence increases the return

by fsp and the added interval loses at most fsp, hence this merge can only increase A(T ). If either

Il or Ir are empty, then we are addionally adding a prefix or suffix of I0 without changing the

number of trades, which also increases A(T ), thus we see that A(T ′) ≥ A(T ).

Let’s introduce the following definitions,

A1 = A(S1) +
1

n
(µ(Il ∩ I0) + µ(Ir ∩ I0))

A2 = A(S2) +
1

n
(µ(Il ∩ I0)− fsp + µ(Ir ∩ I0)− fsp)

B1 = B(S1) +
1

n
(s2(Il ∩ I0) + s2(Ir ∩ I0))

B2 = B(S2) +
1

n
(s2(Il ∩ I0) + s2(Ir ∩ I0)),

where I0 is the complement of I0. Letting A0 = A(I0) and B0 = B(I0), we then have

S(T ) =
A1 + A2

B1 + B2
, and S(T ′) =

A1 + A0

B1 + B0
.

Note that S(S2 ∪ (Il ∩ I0) ∪ (Ir ∩ I0)) = A2

B2
, so by the optimality of I0,

A2

B2
≤ A0

B0
. We show that

1
n
µ(Il ∩ I0)

1
n
s2(Il ∩ I0)

≤
A0

B0
, and

1
n
µ(Ir ∩ I0)

1
n
s2(Ir ∩ I0)

≤
A0

B0
. (**)
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If not, then suppose (for example) that
1

n
µ(Il∩I0)

1

n
s2(Il∩I0)

> A0

B0
. Then,

S(I0 ∪ Il) =
A0 + 1

n
µ(Il ∩ I0)

B0 + 1
n
s2(Il ∩ I0)

>
A0

B0
= S(I0)

contradicting the SSR-optimality of I0. Again, by the optimality of I0, S(S1) = A(S1)
B(S2) ≤

A0

B0
=

S(I0). it also has to be sharper than strategy S1. Thus, using (**) and Lemma 4.1 we have that
A1

B1
≤ A0

B0
. Because A2 is obtained from the returns of a collection of subintervals of I0, it follows

from Proposition 4.7 that A2 ≤ A0. Now suppose that S(T ) > S(T ′), i.e.,

(A1 + A2)(B1 + B0)− (A1 + A0)(B1 + B2) > 0.

Since A2 ≤ A0, it follows that B2 ≤ B0. Rearranging terms in the equation above, we have that

A2B1 −A1B2

B0(B1 + B2)
>

A0

B0
−

A1 + A2

B1 + B2
,

≥
A2

B2
−

A1 + A2

B1 + B2
=

A2B1 −A1B2

B2(B1 + B2)
.

Since S(I0) ≥ S(T ), the first inequality shows that A2B1 −A1B2 > 0. The second inequality then

implies that B2 > B0, a contradiction.

We can now give the intuition behind our algorithm. The starting point is Proposition 4.6, which

says that it suffices to look for constrained SSR-optimal strategies. So the natural first choice is

an unconstrained SSR-optimal interval T0. Either this will be Shrp2 optimal or not. If not, it

is because it has too small a return. So our next step is to add to this interval an new interval

(possibly adjacent) with the property that the interval increases the return with smallest possible

decrease in SSR, resulting in strategy T1. We repeat this process, constructing a sequence of trading

strategies T0,T1, . . . with the property that A(Ti) > A(Ti−1), and among all other strategies T such

that A(T ) > A(Ti−1), S(Ti) ≥ S(T ). We then pick the strategy Ti∗ with maximum Shrp2 ratio

among these strategies, which will be globally sharpe optimal.

Suppose that we have a current strategy, Ti. We need to determine the next piece to add to

this so that we increase the return, with smallest possible decrease in SSR. Let Ti be composed of

the intervals I0, I1, . . . , Id. We replace each of these intervals by a special symbol, $, to signify that

these regions are already included in the strategy. We thus obtain a generalized returns sequence,

one in which some intervals are replaced by the $ symbol. A generalized trading strategy on the

generalized return sequence must be composed of trades that do not contain the $ symbol. However

trades may be adjacent to the $ symbol. A trade interval I in a generalized trading strategy can be

isolated (not adjacent to any $ symbol), extending (adjacent to one $ symbol), or bridging (adjacent
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to two $ symbols). In order to correctly account for the transactions cost, we need to change how

we compute A(I), so we introduce the new function Ā(I):

Ā(I) =



















A(I) I is isolated

A(I) +
fsp

n
I is extending

A(I) +
2fsp

n
I is bridging

The generalized simplified Sharp ratio (GSSR) for generalized strategy T = {I1, . . . , Id} is

S̄(T ) =

∑

i=1...d Ā(Ii)
∑

i=1...d B(Ii)

Similar to the notion of a maximal return optimal strategy, we introduce the notion of a maxi-

mal SSR-optimal (or GSSR-optimal) interval as one which cannot be extended in either direction

without decreasing the SSR (or GSSR).

We now define generalized return sequences {R0, R1, . . .} as follows. R0 is just the original

returns sequence. Let Ii be a maximal GSSR-optimal interval for Ri. We obtain the generalized

sequence Ri+1 by replacing Ii ⊂ Ri with the symbol $. We define any set of generalized sequences

obtained in this way as monotone. We also refer to a member of a monotone set as monotone.

Let R0, R1, . . . , Rk be a monotone sequence of gerenalized returns sequences, and let I0, I1, . . . , Ik

be the maximal GSSR-optimal intervals corresponding to each sequence. By construction, Ii is a

maximal GSSR-optimal interval for Ri. We have defined Ā so that the SSR of the union of these

intervals in R0 is given by

SR0
(I0 ∪ I1 ∪ · · · ∪ Ik) =

∑d
i=1 ĀRi

(Ii)
∑d

i=1 B(Ii)
,

where the subscript Ri indicates on which generalized return sequence the quantity is computed.

Lemma 4.9 S̄Ri
(Ii) ≥ S̄Ri+1

(Ii+1)

Proof: Suppose that S̄Ri
(Ii) < S̄Ri+1

(Ii+1), and let $i be the symbol that replaced Ii in Ri to

obtain Ri+1. If Ii+1 is not adjacent with $i, then Ii is not GSSR-optimal in Ri, a contradiction. If

Ii+1 is adjacent with $i, then Ii ∪ Ii+1 has higher GSSR (by Lemma 4.1), so once again Ii is not

GSSR-optimal in Ri.

Now an easy induction, using Lemmas 4.1 and 4.9 gives,

Corollary 4.10 SR0
(I0 ∪ I1 ∪ · · · ∪ Ik) ≥ S̄Rk

(Ik) for any k.
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Analogous to Propositions 4.4, 4.7, 4.8, we have the following three propositions. Their proofs are

almost identical, so we omit them.

Proposition 4.11 A GSSR-optimal strategy making one trade exists, and all maximal GSSR-

optimal trades can be found in O(NlogN) time.

Proposition 4.12 Let J be a subinterval of any GSSR-optimal interval I. Then µ(J) ≥ −fsp. If

J is a prefix or suffix of I that is not adjacent with the symbol ”$”, then µ(J) > 0.

Proposition 4.13 Let I0 be any GSSR-optimal interval, and let T be any generalized trading

strategy. Let T ′ = I0 ∪ T . Then, Ā(T ′) ≥ Ā(T ) and S̄(T ′) ≥ S̄(T ).

We now give the main result that will lead to the final algorithm to obtain the Shrp2-optimal strat-

egy. Its essential content is that given a monotone set of generalized returns sequences, R0, R1, . . .,

with corresponding GSSR-optimal intervals I0, I1, . . ., for some k, T = I0 ∪ I1 ∪ · · · ∪ Ik is Shrp2

optimal. We will need some preliminary results.

Proposition 4.14 For some k, T ∗ = I0 ∪ I1 ∪ · · · ∪ Ik is Shrp2-optimal., where Ii are the GSSR-

optimal intervals corresponding to a monotone set of generalized returns sequences.

Proof: First we show that there exists a Shrp2-optimal strategy T0 that contains I0. Indeed,

let T be any Shrp2-optimal strategy, and consider T0 = I0 ∪ T . By the Proposition 4.8, we have

S(T0) ≥ S(T ) and A(T0) ≥ A(T ) ≥ 0. Then,

Shrp2(T0)− Shrp2(T ) =
A(T0)A(T )(A(T0)−A(T )) + B(T0)B(T )(S(T0)− S(T ))

(B(T0)−A2(T0))(B(T )−A2(T ))
≥ 0,

thus, T0 is Shrp2-optimal.

Let Tk be a Shrp2-optimal strategy that contains I0 ∪ · · · ∪ Ik. We know that T0 exists. If

Tk = I0 ∪ · · · ∪ Ik, then we are done. If , Tk = I0 ∪ · · · ∪ Ik ∪ T
′, with T ′ 6= ∅, then we show that

there must exist a Shrp2-optimal strategy Tk+1 which contains I0 ∪ · · · ∪ Ik+1, i.e., there is some

other T ′′ ⊇ Ik+1 such that Tk+1 = I0 ∪ · · · ∪ Ik ∪T
′′ is Shrp2-optimal. The proposition then follows

by an easy induction.

Let T ′′ = T ′ ∪ Ik+1. Then, ĀRk+1
(T ′′) ≥ ĀRk+1

(T ′) and S̄Rk+1
(T ′′) ≥ S̄Rk+1

(T ′) (Proposition

4.13). By Corollary 4.10 and the GSSR-optimality of Ik+1, we have that

S(I0 ∪ . . . ∪ Ik) ≥ S̄Rk+1
(Ik+1) ≥ S̄Rk+1

(T ′′) ≥ S̄Rk+1
(T ′)

From now on, we will drop the Rk+1 subscript. Let A = A(I0 ∪ . . . ∪ Ik), B = B(I0 ∪ . . . ∪ Ik),

A′ = Ā(T ′), B′ = B(T ′), A′′ = Ā(T ′′) and B′′ = B(T ′′). Let Shrp2 = Shrp2(I0 ∪ . . . ∪ Ik),
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Shrp
′

2 = Shrp2(I0 ∪ . . . ∪ Ik ∪ T
′) and Shrp

′′

2 = Shrp2(I0 ∪ . . . ∪ Ik ∪ T
′′). Thus,

Shrp2 =
A

B −A2
, Shrp

′

2 =
A + A′

B + B′ − (A + A′)2
, and Shrp

′′

2 =
A + A′′

B + B′′ − (A + A′′)2
.

Let A′′ = α′′A and A′ = α′A, where α′′ ≥ α′ > 0. Then, by direct computation, one obtains

Shrp
′

2 =
A

B + A2 + α′

1+α′ (
B′

α′ −B −A2)
, and Shrp

′′

2 =
A

B + A2 + α′′

1+α′′ (
B′′

α′′ −B −A2)
,

Since Shrp
′

2 > Shrp2, we conclude that B′

α′ − B − A2 < 0. Since S̄(T ′′) ≥ S̄(T ′), we have that
B′

α′ ≥
B′′

α′′ , and since α′′ ≥ α′ > 0, α′′

1+α′′ ≥
α′

1+α′ > 0, therefore

α′′

1 + α′′

(

B′′

α′′
−B −A2

)

≤
α′

1 + α′

(

B′

α′
−B −A2

)

< 0,

and so Shrp
′′

2 ≥ Shrp
′

2, concluding the proof.

By Proposition 4.14, a Shrp2-optimal trading strategy can be obtained by constructing the strategies

Tk, and then picking the one with the maximum value for Shrp2. The next proposition shows that

this can be done in O(N2logN) time.

Proposition 4.15 A Shrp2-optimal trading strategy can be found in time O(n2logn).

Proof: Ii can be obtained in O(n log n) time (Proposition 4.11). Since there are at most n such

intervals (since each must be non-empty), obtaining all the intervals is in O(n2 log n).

Given the intervals, a single scan can be used to obtain the k for which Tk is Shrp2-optimal.

One can improve the runtime to O(n2) if O(n2) memory is available, however, we do not discuss

the details.

4.2.1 Approximation Ratio

We have given an algorithm that obtains a Shrp2-optimal strategy. A modification to the algorithm

constructs the hierarchy Ti and pick the one with the highest one with value of Shrp2. Suppose we

have a Shrp2-optimal strategy T and let T ∗ be a Shrp2-optimal strategy. Then by Proposition 4.6,

it must be that A(T ∗) > A(T ) and that S(T ∗) ≤ S(T ). Since Shrp2(T ) ≥ Shrp2(T
∗), we have that

A∗(B − A2) − A(B∗ − A∗2) ≤ 0, where A = A(T ), A∗ = A(T ∗), B = B(T ), B∗ = B(T ∗). We can

evaluate Shrp2(T
∗)− Shrp2(T ) to obtain

0 ≤ Shrp2(T
∗)− Shrp2(T ) ≤ Shrp∗2 ·

d
n
fsp

2

d
n
fsp

2 + B −A2
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When B −A2 = O(1), which is usually the case, we see that this is a very accurate approximation

(since fsp � 1).

4.3 Maximizing Shrp1

Once again, we introduce the slightly different quantity Shrp1,

Shrp1(T ) =
A(T )

√

d
n
fsp

2 + B(T )−A2(T )
, Shrp1(T ) =

A(T )
√

B(T )−A2(T )
.

We will optimize Shrp1(T ). Since maximizing Shrp1(T ) is equivalent to minimizing 1/Shrp
2
1(T ) the

problem reduces to maximizing

Q(T ) =
A2(T )

B(T )

The entire algorithm is analogous to that for maximizing Shrp2 in the previous section, we only

need to prove the analogs of Propositions 4.6 and 4.14.

Proposition 4.16 ∃0 ≤ α ≤ µ∗ such that the constrained SSR-optimal strategy Tα is Q-optimal.

Proof: Let T be Shrp1-optimal, and let α∗ = A(T ). Let Tα∗ be a corresponding constrained

SSR-optimal strategy. A(Tα∗) ≥ A(T ) and A(Tα∗ )
B(Tα∗ ) ≥

A(T )
B(T ) . Multiplying these two inequalities gives

that A2(Tα∗ )
B(Tα∗ ) ≥

A2(T )
B(T ) , i.e. Tα∗ is also Q-optimal.

Proposition 4.17 For some k, T ∗ = I0∪I1∪· · ·∪Ik is Q-optimal., where Ii are the GSSR-optimal

intervals corresponding to a monotone set of generalized returns sequences.

Proof: The proof is very similar to tho proof of Proposition 4.14. Let T be Q-optimal, and let

T0 = I0 ∪ T . Then A(T0) ≥ A(T ) and S(T0) ≥ S(T ). Multiplying these two inequalities give that

Q(T0) ≥ Q(T ), or that T0 is also Q-optimal.

Let Tk be a Q-optimal strategy that contains I0 ∪ · · · ∪ Ik. Introduce T ′,T ′′ = Ik+1 ∪ T
′

as in the proof of Proposition 4.14. Let Q = Q(I0 ∪ . . . ∪ Ik), Q′ = Q(I0 ∪ . . . ∪ Ik ∪ T
′) and

Q′′ = Q(I0 ∪ . . . ∪ Ik ∪ T
′′),

Q =
A2

B
, Q′ =

(A + A′)2

B + B′
, and Q′′ =

(A + A′′)2

B + B′′
.

Following exactly the same logic as in the proof to Proposition 4.14, we only need to show that

Q′′ ≥ Q′. Let A′′ = α′′A and A′ = α′A, where α′′ ≥ α′ > 0. A′′

B′′ ≥
A′

B′ implies that B′′

α′′ ≤
B′

α′ , and so
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B′′

α′′(α′′+2) ≤
B′

α′(α′+1) . By direct computation, one obtains

Q′ =
A2

B +
(

1− 1
(1+α′)2

) (

B′

α′(α′+2) −B
) , Q′′ =

A2

B +
(

1− 1
(1+α′′)2

)(

B′′

α′′(α′′+2) −B
) .

Since Q′ > Q, it must be that B′

α′(α′+2) − B < 0. Since α′′ ≥ α′, 1 − 1
(1+α′′)2

≥ 1 − 1
(1+α′)2

, so we

have that

(

1−
1

(1 + α′′)2

)(

B′′

α′(α′′ + 2)
−B

)

≤

(

1−
1

(1 + α′)2

)(

B′

α′(α′ + 2)
−B

)

< 0,

which implies that Q′′ ≥ Q′.

4.3.1 Approximation Ratio

Once again, a modification to the algorithm constructs the hierarchy Ti and picks the one with

the highest one with value of Shrp1. Suppose we have a Shrp1-optimal strategy T and let T ∗ be a

Shrp1-optimal strategy. By direct computation, and using the fact that Shrp1(T ) ≥ Shrp1(T
∗) =⇒

A∗2B −A2B∗ ≤ 0, we get

0 ≤ Shrp2
1(T

∗)− Shrp2
1(T ) ≤ Shrp2

1(T
∗)

dfsp
2

n

dfsp
2

n
+ B

which gives an approximation ratio of
√

1−O(fsp
2) when B = O(1).

5 Discusion

Our main goal was to provide the theoretical basis for the computation of a posteriori optimal

trading strategies, with respect to various criteria. The highlights of our contributions are that

return and MDD-optimal strategies can be computed very efficiently, even with constraints on

the number of trades. Sharpe optimal strategies prove to be much tougher to compute. However,

for slightly modified notions of the Sharpe ratio, where one ignores the impact of bid-ask spread

squared we can compute the optimal strategy efficiently. This is a reasonable approach since in

most cases, the bid-ask spread is ∼ 10−4. We also show that this modified optimal strategy is not

far from optimal with respect to the unmodified Sharpe ratio.

We have introduced a new technique for optimizing quotients over intervals of a sequence.

This technique is based on relating the problem to convex set operations, and for our purposes

has direct application to optimizing the MDD, the simplified Sharpe ratio (SSR), which is an
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integral component in optimizing the Sharpe ratio, and the Downside Deviation Ratio (DDR).

This technique may be of more general use in optimizing other financially important criteria.

A natural open problem is whether Sharpe optimal strategies can be computed under constraints

on the number of trades. We suspect that the monotone hierarchy we created with respect to the

SSR has an important role to play, but the result has been elusive. Other directions of future

research include the implementation of the algorithms in various markets to obtain, compare and

learn from the optimal trading strategy.
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