TRELLIS: An Effective Algorithm for Constructing Disk-based
Suffix Trees with Suffix Links

Benjarath Phoophakdee Mohammed J. Zaki

22 February 2006

Abstract

The amount of genetic codes available to the public has just reached an important milestone
of 100 Gigabase pairs this past August. This includes a number of large and complete genome
sequences, such as the Human genome. The size of the Human genome is about 3 Gigabase
pairs. It is becoming more common now to have a DNA sequence of that scale as an input
to biological database applications. Common tasks performed on such sequences include ex-
act/approximate matching queries as well as repetitive structure finding. Suffix trees have been
widely acknowledged as an indexing data structure that performs the above tasks efficiently.
Their construction can be done quickly (in linear time) for small sequences. Unfortunately, it
has been shown difficult to construct a suffix tree for large sequences due to its infamous memory
bottleneck problem. Several efficient disk-based suffix tree algorithms have been proposed in
recent years. Many of them assume that the input sequences are uniformly distributed, which
does not apply for DNA sequences in nature. Some disregard an important suffix tree feature,
called suffiz links, required in many existing string-processing algorithms. Only two of the cur-
rently existing suffix tree methods do not exhibit these drawbacks, however, they have not been
reported to scale to the Human genome level. In this work, we propose a new disk-based suffix
tree algorithm with O(n) complexity, called TRELLIS 1. Our algorithm does not assume any
specific distribution and also maintains a partial set of suffix links, which were experimentally
shown to provide speedups over no suffix links at all. TRELLIS was able to index the Human
genome with just under 1GB of memory. Our algorithm outperforms the other two algorithms
mentioned above by orders of magnitude in construction time.

1 Introduction

Over the past several decades, a huge amount of DNA data has continuously been sequenced in
laboratories around the world. The data growth rate has been exponential [32], and just in this
past August, the public collection of DNA and RNA sequences has finally reached a very important
milestone of 100 gigabase pairs [31]. As an interesting frame of reference, “one hundred billion bases
is about equal to the number of nerve cells in a human brain and a bit less than the number of stars
in the Milky way” [31]. These huge amounts of sequences are collected from genes and genomes
from over 165,000 organisms. A single genome may be as large as billion basepairs. For example,
the human, rat, and mouse genomes are approximately 3, 2.7, and 2.5 billion bases respectively.
As a consequence of the data’s enormous size and extreme growth rate, it is critical for researchers
to have effective data structures and efficient algorithms for storing, querying, and analyzing these
sequence data.

LTRELLIS is an anagram of the bold letters in the phrase: External Suffilx TRee with Links for Long Sequences

Suffix tree is an indexing structure widely acknowledged to perform the above tasks effectively.
Its versatile data structure can be applied to solve very quickly a variety of string-based problems,
such as exact and approximate matching, exact set matching, database querying, finding the longest
common substrings of more than two strings, etc [23]. One of its most common applications in
bioinformatics is exact match detection, where later the matches serve as seeds or anchors in an
alignment program. The alignment programs that use exact matches as their anchors include
MUMmer [11, 12, 28], EMAGEN [14], AVID [3], MAVID [4], and MGA [24].

Weiner [38], McCreight [29], and Ukkonen [36] are the three classic algorithms that construct
suffix trees in linear time and space given that the trees fit entirely in the main memory. A variety
of efficient in-memory suffix tree construction algorithms were also proposed later [21, 17, 16, 37,
18]. However, these algorithms are not designed to scale as efficiently when the input sequence
is extremely large, due to the infamous memory bottleneck problem. As pointed out in [17], the
random access to the input sequence is the main bottleneck. Additionally, traditional linear time
algorithms rely on suffiz links, which are a key feature in obtaining the linear time construction of
the tree. While, during the tree construction, these algorithms traverse horizontally across the tree
via the suffix links in order to quickly propagate the changes, they must traverse vertically down
the tree to add new suffixes as well. Hence, a poor locality of reference which contributes to the
memory bottleneck problem [25].

To address the issue, several disk-based suffix tree algorithms have been proposed in the last few
years: [25, 5, 26, 33,9, 1, 34]. In Hunt et al. [25], Japp [26], Schiirmann et al. [33], and Tata et al. [34],
the authors completely abandoned the use of suffix links and sacrificed the theoretically superior
linear construction time in exchange for a better locality of reference. Unfortunately, some existing
fast string-processing algorithms, such as finding tandem repeats in linear time [22], extracting
structral motifs [7], computing matching statistics and approximate pattern matching [8], rely
heavily on suffix links and therefore are inapplicable with these disk-based suffix trees. Furthermore,
Hunt’s [25], Japp’s [26], Schiirmann’s [33], and Brown’s [5] methods assume that the input sequences
are uniformly distributed, which is not true for DNA sequences in nature. As a result, these
algorithms exhibit the data skew problem, where some paritions of the suffix tree would not fit
entirely in the main memory as expected. TOP-Q [1] and DynaCluster [9] are currently the only
existing suffix tree algorithms without the data skew problem that also maintain the suffix links.
However, neither one of them has reported to scale up to the Human genome level.

In this work, we present a novel approach to construct suffix trees on disk. Specifically, we
made the following contributions:

1. We proposed a O(n) new disk-based suffix tree construction algorithm, called TRELLIS, based
on a novel idea of constructing the tree by partitioning and merging.

2. TRELLIS introduces the use of variable-length prefizes, which solves completely the data skew
problem exhibited in several other previous disk-based suffix tree construction algorithms.

3. TRELLIS scales gracefully for large DNA sequences. Specifically, it was able to index the
Human genome in 36 hours using slightly less than 1GB of memory! To our knowledge, TDD
is the only other algorithm reported to index successfully the Human genome, however TDD
completely forgoes the suffix link structure. Therefore, TRELLIS is the first and currently
only disk-based suffix tree construction algorithm, with partial suffix links, that is capable of
handling an input DNA sequence this large.

4. TRELLIS maintains a partial set of suffix links. Although they are not the complete set, we

conducted extensive studies which show that they provide speedups in query matching over
having no suffix links at all.

5. TRELLIS is compared to the only other existing algorithms that do not exhibit the data skew
problem and also maintain the suffix link structure, TOP-Q [1] and DynaCluster [9]. These
algorithms have reported to successfully construct, with suffix links, only chromosome-scale
input sequences. Our algorithm is shown to be faster in construction time by orders of
magnitude!

2 Related Work

Let us begin this section by stating that there are also other research work on external indexing
structures, such as external suffix arrays [13] and string B-trees [19]. The focus of this work is only
on external suffix trees.

The first disk-based suffix tree construction algorithm was introduced in Hunt et al. [25]. The
authors abandoned the use of suffix links, which enable linear construction time, in exchange for a
better locality of reference. The method first calculates a set of fized-length prefixes of all the input
string’s suffixes based on the available memory, such that a suffix tree of all suffixes that begin
with any given prefix can fit entirely in the main memory. Then for each fixed-length prefix, the
method makes one pass over the string and inserts all suffixes starting with the given prefix into
the disk-based suffix tree. Hunt’s method is theoretically O(n?), where n is the size of the input
string.

In [33], the authors improved upon Hunt’s algorithm by storing the subtrees, i.e. partitions,
separately in clusters instead of all together in one suffix tree as in Hunt’s. The main improvement
is that insertions of suffixes do not start at the root of the suffix tree, but instead at the root of
the subtrees, which is at the depth of the prefix length. The authors stated that their algorithm is
suitable for the construction of large suffix trees as long as the memory size is six times as big as
the input sequence length.

Top-compressed suffix tree algorithm was introduced in [26]. The author improved upon Hunt’s
algorithm by introducing a pre-processing stage and by using parallel index construction. Top-
compressed suffix trees use a similar pre-partitioning method to Hunt’s and assume that the par-
titions are equal in size.

Hunt’s static pre-partitioning method via fixed-length prefixes exhibits a few drawbacks as
discussed in detail in [9]. One of them was the difficulty in handling data skew. Since the characters
in real DNA sequences are not uniformly distributed, some partitions may fit in the memory while
some may not. Cheung et al. [9] addresses this issue via dynamic clustering.

In DynaCluster [9], the suffix tree is created one cluster (a cluster represents a group of nearby
nodes) at a time. The clusters provide a small locality, and therefore a large disk-based suffix
tree can be built using a limited size of memory. DynaCluster also drops the use of suffix links
during the tree construction to allow a better locality of reference and is shown experimentally to
be O(nlgn). An optional phase that rebuilds the suffix links after the entire tree is constructed on
disk is provided. DynaCluster is one of the only two existing algorithms that do not exhibit the
data skew problem as well as maintains the suffix links. Its construction time is reported to be
much faster than its suffix link rebuild time. The main cost of the suffix link rebuild is from its
preparation phase, which requires two full traversals of the complete disk-based suffix tree.

Recently, Bedathur et al [1] developed the TOP-Q buffer management policy for online disk-
based suffix tree construction. The TOP-Q policy takes into account the probabilistic behavior of

the suffix tree construction and retains the nodes that are more likely to be accessed during the
construction time in the buffer and evicts the rest. TOP-Q was incorporated with the Ukkonen
algorithm and resulted in a disk-based suffix tree construction algorithm that did not sacrifice
the suffix links. Since TOP-Q is based on the Ukkonen method, it is a linear time algorithm.
Additionally, TOP-Q does not assume any specific data distribution. TOP-Q and DynaCluster are
currently the only algorithms that maintain suffix links as well as do not exhibit the data skew
problem. However, they have not been reported experimentally to scale up to the Human genome
level.

Another O(n) suffix tree algorithm was introduced in [5]. The author improved upon Hunt’s
algorithm by optimizing the insertion of suffixes into partitioned suffix trees via the use of suffix
links. Although the algorithm maintains the suffix link structure, it assumes that the data can be
equally partitioned and therefore also suffers from the data skew problem.

A disk-based suffix tree construction method, called TDD, was described in [34]. Similar to
Hunt’s approach, TDD drops the use of suffix links in exchange for a much better locality of
references. It uses a Partition and Write Only Top Down method, which is based on the wot-
deager algorithm [21], combined with a specialized buffering strategy that allows better cache usage
during tree construction. Although TDD is an O(n?) algorithm, it was experimentally shown to
outperform both Hunt’s approach and TOP-Q. TDD is currently the only algorithm reported to
scale up to the Human genome level.

Lastly, as an improvement to TDD, a new disk-based suffix tree construction algorithm based on
a sort-merge paradigm was introduced in [35]. The authors discovered that the main disadvantage
of TDD is the random I/O incurred when the input string cannot reside entirely in the main
memory. As an improvement to TDD, the new algorithm separates the input string into smaller
contiguous substrings, applies TDD to build a suffix tree for each substring, and later merges all
the trees together into a complete suffix tree. Although this algorithm is more efficient than TDD,
it suffers the same drawback, which is the nonexistence of suffix links.

As an alternative to the above disk-based approaches, a linear time in-memory distributed suffix
tree algorithm was proposed in [10]. The author adapts Ukkonen’s algorithm and constructs large-
scale suffix trees using a cluster of computing nodes, where at each node a partition of suffix trees
is computed. The notion of partitions used here is similar to that in Hunt’s. The notion of sparse
suffix links is introduced here, where they denote the suffix links existing strictly within any given
partition (as opposed to in our algorithm, where the suffix links exist both within and across the
partitions). The sparse suffix links are used to enable the linear time construction of the partitions.

Our approach constructs the suffix trees by a novel partitioning and merging method based
on the Ukkonen’s algorithm. Our goals are to maintain the suffix links and avoid the data skew
problem without any complicated buffer management policy, as well as to be able to gracefully
scale to the Human genome level.

3 TRELLIS ALGORITHM

In this chapter, we present a novel disk-based suffix tree construction algorithm called TRELLIS.
TRELLIS is a three-phased algorithm. The first phase computes variable-length prefixes based on
the input string. The second phase partitions the input string into many small substrings, creates
a suffix tree for each partition, and stores them in form of prefixed suffix sub-trees. The third phase
merges the prefixed suffix sub-trees of the same prefixed together, and stored the merged prefixed
suffix trees on disk with respect to their prefixes. An overview of TRELLIS is shown in Fig. 1.

Figure 1: TRELLIS: Overview of the algorithm. The notions used here are defined in the Prelimi-
naries section.

3.1 Preliminaries

This section introduces suffix tree notions to aid the presentation of TRELLIS. Most of the notions
listed here are commonly used, however some are specific to our algorithm.

Let X denote a set of characters (or the alphabet), and let |X| denote the size of the set. Let X*
be the set of all possible strings (or sequences) that can be constructed using . Let $ ¢ X be the
terminal character, used to mark the end of a string. Let S = sgs1s2...s5,-1 be the input string
where S € ¥* and |S| = n. The i*" suffix of S is represented as S;, where S; = 8;5;118i42...5n 1.
For convenience, we append the terminal character to the string, and refer to it by s,,.

The suffix tree of the string S, denoted as Ty, stores all the suffixes of S in a tree structure,
where suffixes that share a common prefix lie on the the same path from the root of the tree. A
suffix tree has two kinds of nodes: internal and leaf nodes. An internal node in the suffix tree,
except the root, must have at least 2 children, where each edge of its children begins with a different
character. Since the terminal character is unique, each suffix differs from another in at least one
position. Thus, there as as many leaves in the suffix tree as there are suffixes, namely n + 1 leaves
(counting $ as the “empty” suffix). Each leaf node thus corresponds to a unique suffix S; and is
denoted as L;. Each node (internal or leaf), v, is associated with its depth, d(v), which is equal to
the sum of the edge lengths on the path from the root to v. Let o(v) denote the substring obtained
by traversing from the root to v, then |o(v)| = d(v). Every internal node v, with o(v) = za (where
x € ¥ and a € ¥*), has a suffiz link, sl(v) = w, that points to an internal node w such that
o(w) = a. A suffix tree T for a sample DNA sequence, S = ACGACG$ is shown in Fig. 2.

Some additional notations are introduced here to describe our disk-based suffix tree. TRELLIS
partitions the input string into several equal-length substrings (with an exception of the last one,
which maybe shorter than the others), and builds a suffix tree for each partition. Let ¢ be a
threshold value denoting the partition size, such that a suffix tree of a size-t string can be created
and reside entirely in the memory. Since the number of nodes in a suffix tree is bounded by
2n [27], where n denotes the input string size, ¢ can be any number that respects the equation
(2t x #bytes_per node) < A,,, where A,, is the available memory. Given the threshold ¢, the input

string is then split into r = [”TH] partitions of size at most t. Let R; refer to partition ¢, with

Figure 2: Suffix tree Ts for string S = “ACGACGS$”. The circles represent internal nodes, and
the squares represent leaf nodes. The leaf nodes are numbered with respect to their corresponding
suffixes

0<i<r—1.

Let P = Py, P, Ps, ..., Py_1 denote the set of variable-length prefizes (to be formalized later)
of S. The threshold ¢ is also used to determined the set of variable length prefixes P, such that the
frequency of any prefix P;, where 0 < ¢ < m — 1, occurring in S is no greater than ¢. Let sup(FP;)
denotes the support, i.e. frequency, of the prefix P;.

Let Tp, denote the suffix tree of the ith partition (R;) of S, and let T'g,,p; denote the prefixed
suffix sub-tree that consists of all suffixes from R; that begin with the prefix P;. Finally, let Tp,,
with 0 <7 < m — 1, denote the prefixed suffix tree that consists of all suffixes of S that begin with
P,

An example to demonstrate the prefixed suffix trees of prefixes AC, CG, and GA is shown in
Fig. 3. For the sake of simplicity, here we let the prefix length equals to two. In general, the prefixes
maybe of unequal length. In this example, the suffix G$ (S5) does not have its own prefixed suffix
tree because Ss is a prefix by itself and there is no string left to build a tree on.

Prefix AC Prefix CG Prefix GA

Figure 3: Prefixed suffix trees of S for prefixes of length = 2: AC, CG, and GA

3.2 Suffix Tree Partitioning
3.2.1 Traditional Fixed-length Prefix Approach and its Shortcomings

The idea of partitioning a suffix tree based on the prefixes of each suffix was originally introduced
in [25]. Their method partitions the suffix tree based on fixed-length prefixes. Two variations of

this approach were outlined. The first is to scan the input sequence once, count the number of
occurrences of each fixed-length letter pattern, and then use a bin-packing algorithm to pack each
partition with different prefixes. This approach does not assume that the input DNA sequence has
the pseudo-random nature. Therefore, while some prefixes may require exactly the memory space
of one partition, others may require less and the suffixes of such prefixes can be stored together in
only one partition. The second approach assumes the DNA sequence possesses the pseudo-random
nature. A sufficient length [is chosen such that, for each prefix of length [, its suffixes can be
stored in the same suffix tree and the tree would fit entirely in the main memory. The suffix tree
of each prefix is also called a partition. The fixed-length prefix approach was also adopted in other
disk-based suffix tree algorithms, i.e. [26] and [5].

The problems of the fixed-length prefix approach are three-fold. Firstly, it is difficult to handle
data skew due to the fact that DNA sequences in nature are not uniformly distributed. For
example, we gathered the following statistics on the Human genome (size is approximately 3GB).
The frequencies of length-1 prefixes, i.e. A, C, G, and T, are about 30%, 20%, 20%, and 30%
respectively. The frequencies of length-2 and length-3 prefixes are shown in Fig. 4 and Fig. 5.
This data show that using fixed-length prefixes would not yield equal or even close partition sizes.
Additionally, [9] demonstrates in details that using fixed-length prefixes results in a great portion of
partitions being larger than expected. Since these partitions do not fit in the memory, they require
tree node buffering which induces I/O cost. While increasing prefix length may present a quick fix
that enables every partition to fit entirely in the memory, it would result in several partitions being
smaller than necessary, and hence a waste of resources.

Frequency of Length-2 Prefixes for
Human Genome

300,000,000

as TT
250,000,000 - /
-
2 200,000,000 SAATCA m
Q ! 1 AG T T
c
$ 150,000,000 \,Z;b N\ CJ GA Mc
g \7] e
= 100,000,000 \ /
50,000,000 Voo
0 : ‘ |
0 5 10 15 20
Prefixes

Figure 4: Frequency of Length-2 Prefixes for Human Genome

Secondly, even if the uniform distribution is assumed, the computation to count the number of
occurrences of each fixed-length prefix will be very costly when the input DNA sequence is extremely
long. Since the target sequences for disk-based suffix tree algorithms are for very long sequences,
the fix-length approach will not be so applicable. For example, we conducted our experiment such
that each partition can hold up to 3 million suffixes. In order to obey the limit, the prefix length
needed was as high as ten. If we followed their second approach, we would have as many as 4'°
or 1,048,576 partitions! Even worse, many of these partitions are small enough to reside together
in the main memory but would be created separately, which is an unnecessary waste of resources.
Our result shows that 47 out of 256 length-4 prefixes would result in sufficiently small partitions

Frequency of Length-3 Prefixes for
Human Genome

120,000,000
100,000,000 I
? 80,000,000
2 60,000,000 - o .«
5
I 40,000,000 - h Mz
20,000,000 v Mu V “
O T T T T T T

0 10 20 30 40 50 60 70
Prefixes

Figure 5: Frequency of Length-3 Prefixes for Human Genome. The data points represent the
prefixes AAA, AAC, AAG, ..., TTG, TTT, ranging from left to right.

already. If we were to extend these prefixes up to length ten, the number of partitions created for
them would be 47 x 4% or 192,512 partitions! Another problem is the size of the data structure that
stores the fix-length prefixes. This data structure is of size O(4'), which can be a very big number.
For example, the sizes are 4,194,304 and 16,777,216 already when [is 11 and 12. Also, it may not
be very applicable when ¥ is larger than 4, e.g. for protein sequences or English text.

Lastly, since the DNA sequence is not uniformly distributed, the value of [must be estimated.
In [25], [was set to 3 and their experiments were done only at the chromosome level. However,
when the input sequence is as large as the Human genome, [must be a bigger number. To make sure
that every partition can reside in the memory, a high value can be chosen, e.g. 10. However, the
space complexity will be high as explained above as well as some partitions would be unnecessarily
small. On another hand, if the value chosen for [is not high enough, some partitions may not fit
entirely in the memory and a buffering scheme would be required.

3.2.2 Variable-length Prefixes

In this section we present our solution to the all of the above problems. We observed that, while
some prefixes need to be of a longer length in order for their partitions to fit in the main memory,
other prefixes can be of a shorter length. TRELLIS applies this observation into solving such
problems by extending the prefixes only as needed, hence variable-length prefizes.

A naive implementation of the approach would be as follows. First we gather the frequencies
of all length-1 prefixes, extend only the prefixes whose frequencies are greater than the threshold ¢
for another character, and continue extending in this manner until all prefixes of the current length
pass the threshold. For example, suppose sup(A) > t, then we must extend A to AA, AC, AG,
and AT, and find their supports. However, if sup(A) < t, then A becomes a valid prefix and need
not be extended. The drawback of this approach is that the input sequence requires scanning each
time a prefix is extended. A simple solution is to scan the input sequence once, and keep track of
the frequencies of all prefixes from length 1 up to some length [such that all prefixes of length [
have supports < . Using the support information gathered from this step, we can start extending
and creating the variable-length prefixes as described above. Although this technique would solve

the data skew problem, it has a major drawback such that we would have to guess for a sufficient
value of t.

With some further investigations, the following statistics in Table 1 were collected from the
Human genome. It can be observed that, as the prefix length increases, the number of prefixes
with supports > ¢ sharply decreases. In fact, there are only two of such prefixes starting at the
length equals to eight. We also discovered that when the prefix length increases, the only prefixes
most likely to have the supports greater than ¢ are precisely the ones composed of all A’s and all
T’s. They are also the two prefixes that do not pass the threshold here. This behavior can be
observed from the graphs in Fig. 4 and Fig. 5 above as well.

Prefix Length | #Possible Prefixes | #Prefixes with Support > 1, 000, 000
1 4 4
2 16 16
3 64 64
4 256 253
5 1,024 781
6 4,096 930
7 16,384 68
8 65,536 2
9 262,144 2

10 1,048,576 2
11 4,194,304 2
12 16,777,216 2
13 67,108,864 2
14 268,435,456 2
15 1,073,741,824 2
16 about 3Gb 0

Table 1: The number of prefixes with support > ¢, where ¢ is 1 million, from prefix length 1 - 16.
When t equals to 2 and 3 million, the results are also similar. Note that since 416 = 4, 294, 967, 296,
which is greater than the size of the Human genome, the possible number of prefixes of length 16
is only the size of the Human genome minus 15.

The lesson learned here is that we can gather the frequencies of all prefixes starting from length
1 to 8 in one scan, then perform the prefix extension step. Based on the left-over length-8 prefixes
that do not pass the threshold ¢, we continue collecting the frequencies of longer prefixes (from
length 9 on) in another scan. We repeat these procedures until all prefixes pass the threshold. The
benefit of doing multiple scans are:

o At length 9, instead of detecting 262,144 prefixes and storing their frequencies during a scan,
we only need to do so for 8 prefixes. A length 10, instead doing the same for 1,048,576
prefixes, we only need to do so for 32, and so on.

e We do not have to guess the last value of prefix length because we repeat the procedures until
all extended prefixes have supports < t.

There are a couple of questions here that need to be addressed.

1. How do we know that we should collect the frequencies up to length 8 during in the first
scan?

2. When extending from length 9, to what length do we extend up to?

To answer these questions, we would like to emphasize that the goal here is to avoid unnecessary
book-keeping of prefix frequencies. As shown in Table 1, when the prefix length increases, the
number of possible prefixes at that length exponentially increases, while the number of prefixes
that would actually require an extension sharply drops. Therefore, a possible improvement would
be to update the prefix frequencies in intervals of prefix lengths.

During the first scan, we process the prefixes up to the length as large as possible in order to
save on the number of scans, given that the data structure needed to store them is of a reasonable
size. It is very important for the size of this data structure to be sufficiently small, so that 1) the
frequency updates can be performed quickly and 2) not too many unnecessary updates are possible.
Let L; be the highest prefix length after the i scan. The size of L; = 8 presents a reasonable
choice because Z§:1 47 or 87,380 is not too large and that was how we chose the value 8. (We could
very well use 7 or 9.) Since we know that the distributions of the nucleotides are not uniform, it is
likely that some of the length-L; prefixes will pass the threshold ¢ and some will not. During the
next scan, we only extend the length-L prefixes that did not pass.

Let EP; be the set of prefixes that require further extension after the first scan. We choose the
value of Ly such that the resulting size of data structure to store the prefixes of length L; 4+ 1 to
Lo or Zjﬁ;Ll E Py x |X}7 is reasonably small. To answer the second question, in this case, EP; is 2

and we chose Lo to be 12 because or Z?Zl 2 x 47 is only 360. We continued in this manner and let
L3 to be 16, and that was precisely where all variable-length prefixes obtained pass the threshold
t. The resulting set of variable-length prefixes of the human genome when ¢ equals to 1 million
ranges from prefix length 4 to 16 and there are 6400 prefixes in total.

By computing the variable-length prefixes as described in this section, we completely avoid all
of the problems established by using fixed-length prefixes.

3.2.3 Time and Space Complexity

The time required for finding variable-length prefixes can be computed as follows. Let [be the
maximum prefix length. At each index of S, [prefixes must be checked to see if they are the prefixes
being extended. If so, their frequencies must be incremented by one. Such updates require looking
up the corresponding prefix frequencies, which takes O(lg(|X|")). Therefore, the total runtime of
this step can be written as O(|S| x I x O(Ig(|X]")). Since our |¥| is 4, the runtime can be reduced
to O(|S] x 1). Since [< |S|, the runtime is O(]S]).

The space required for this step is bounded by the size of the data structure used to hold the
frequencies of the prefixes during each scan. A loose bound would be O(5':1 |). However, since
we extend the prefixes in intervals, a tighter bound would be O(3 /%S c‘m(zyi“f’i hmin,itl |EP; 1| x
|X|7)), where mazScan denotes the total number of input string scans, lpq,; denotes the maximum
prefix length during the i*” scan, linin,; denotes the minimum prefix length during the it" scan, EP;

denotes the set of prefixes that require extension after the i*” scan, and lastly let | EP,| equals to 1.

3.3 Prefixed Suffix Sub-Trees

TRELLIS divides the input string S into r = [”TH} substrings. Using the terminology defined in
the Preliminaries section, the main idea of this phase of the algorithm is to create a suffix tree Tg,
for each *" partition, such that TR, contains precisely all the suffixes of S from the it" partition.
Let’s call the trees T, suffir sub-trees because each one represents a portion of the complete suffix

10

tree of S. We adopt the Ukkonen’s algorithm [36] for creating the suffix sub-trees because of two
reasons: the efficient O(t) construction time and the availability of suffix links.

After each T, is built in the memory, it is separated further into several subtrees prior to being
stored on disk. The separation is according to the variable-length prefixes, i.e. each subtree of Ty,
contains the suffixes of S that begins with the same prefix. Let’s call these subtrees prefized suffix
sub-trees. In another words, each Tg, is first separated into Tg, p;’s, where 0 < j < m, and each
of the Tg; p;’s is written onto separate files. Therefore, by the end of each ith partition, at most m
files will be created where each file represents a T, p;. See Fig. 1 for an illustration of this step.

When a prefized suffiz sub-tree Tg,; p; is being stored, the tree is traversed in a depth-first
manner. When a node is encountered, its ID, starting and ending indexes, levels from the root,
and for internal nodes, the ID of the node that its suffix link points to, are written to the disk via
a binary file. The amounts of space needed to store an internal and a leaf node here are 20 and
16 bytes respectively. The purpose of storing the prefized suffix sub-trees in this manner is so that
they can be rebuilt in the memory later during the next phase.

An important point must be made here regarding the suffix links. In traditional Ukkonen’s
algorithm, nodes pointed to by suffix links are accessed via pointers. However, when storing the
suffix trees on disk, the pointer locations are no longer valid. We remedied the situation by storing
unique IDs of nodes that the suffix links point to instead of storing the nodes’ memory locations.
As a result, we need to be able to retrieve a node’s on-disk location given its ID. We explain how
to do this in the next section.

3.3.1 Time and Space Complexity

In this phase, TRELLIS uses the Ukkonen’s algorithm [36] to build the suffix tree and stores the
tree on disk in the depth-first manner. The Ukkonen’s method is O(n) and traversing the tree in
the DF'S manner is also O(n). Therefore, the time for this phase is O(n).

The amount of memory required during this phase equals to the amount of memory needed
for the suffix tree construction of a string of size ¢ plus the memory to store the substring of each
partition, i.e. O(t).

3.4 Suffix Trees Merging

In this phase, the prefixed suffix sub-trees of the same prefix are loaded into the memory, merged
together to form a prefixed suffix tree of that prefix, and then stored back to the disk. Specifically,
for a prefix Pj, Tg, p; and Tg, p; are first loaded into the memory, and merged together, which
creates the current merged tree. Next Tg, p; is loaded into the memory, merged with the current
merged tree, and so on. We continue in this manner for all R; such that 0 < i < r. The last
merged ftree is exactly Tp;, which is stored back onto the disk. The algorithm proceeds until all
Pj’s, 0 < j < m, are processed.

We developed a O(n) time merging algorithm that merges two suffix trees together. The
pseudocode is given in Fig. 6. We outline the merging algorithm below. When merging two suffix
sub-trees together, we simultaneously traverse the trees in a depth first manner. Starting from the
two root nodes, we merge the edges leading to their children such that the merging edges always
start with the same characters. Four possible cases may occur when merging two edges together:
1) the labels partly overlap, e.g. AGCAT and AGCGT, 2) the labels are exactly the same string,
3) the first label is the second label plus some additional characters, e.g. AGCAT and AGC, and
4) the second label is the first label plus some additional characters, e.g. AGCAT and AGCATT A.

11

In each case, we merge the overlapping parts of the labels together, update the original labels with
the left-over strings, and continue merging the edges of the updated nodes together if needed.

For example, let edge el(pl,nl) and e2(p2,n2) be the two edges to be merged. pl, nl, p2, and
n2 are the nodes in the suffix sub-trees 1 and 2 respectively. Let AGCAT and AGC be the labels
of el and e2 in that order, and thus case 3 applies here. First we merge the overlapping part of el
and e2 together, i.e. ACG, and assign this string as a label to a new node n3. We then update
nl’s label with the left-over string AT. Next we set pl as n3’s parent, and n3 as nl’s parent. Then
we check if n2 has any child starting with n1’s now leading character, A. If so, we merge such edge
with the edge from n3 to nl. Otherwise, we simply add n2’s children as n3’s children.

Input : Suffix trees 77 and To
Output : Updated merged suffix tree T}
MergeTree (11, 1»):

Node r; = T4’s root;

Node ro = T5’s root;

foreach character c € ¥ do
if ro has a child that begins with ¢ and r1 does not then
| Add that child to ry;

else if r; and ro both have a child that begins with ¢ then
| MergeNode(r{’s child, ro’s child);

Input : Nodes n1 and no

Output : Updated merged node np
MergeNode (ni, na):

S1[bl...el] = string on the incoming edge to n;
Sa[b2...e2] = string on the incoming edge to na;

if Sq[bl...i] == Sa[b2...5], where i < el and j < e2 then
Let n be a new node with a string label Sy [b1...i];
Reset the string label of n; to Si[i + 1...el];
Reset the string label of ng to Sa[j + 1...e2];
Remove n; from its parent node;

Add n as a child of n1’s parent node;

| Add n; and ng as children of n ;

else if Si[bl...el] == Sy[b2...€2] then
foreach character ¢ € ¥ do

if no has a child that begins with ¢ and ni does not then
| Add that child to nj;

else if n1 and ng both have a child that begins with ¢ then
| MergeNode(ni’s child, no’s child);

Ise if Sp[bl...i] == Sa[b2...€2], where i < el then
Let n be a new node with a string label Sy [b1...i];
Reset the string label of n; to Si[i + 1...el];
Remove n; from its parent node;
Add n; as a child of n;
foreach child C' of na do
if C begins with S;[i + 1] then
| MergeNode(ni, C);
else
| Add C as a child of n;

o

Ise if Sp[bl...el] == Sa[b2...j] where j < €2 then

Reset the string label of na to Sa[j + 1...€2];

if n1 does not have a child that begins with Sa[j + 1] then
L Add ng as a child of n;;

else
| MergeNode(ni’s child that begins with Sa[j + 1], n2);

o

Figure 6: MergeTree Algorithm

12

3.4.1 The Pattern of S Accessed during the Merge

The trees are merged based on the comparisons of edge labels. The input string S is incrementally
accessed as prefixed suffix sub-trees from more partitions are being merged. For an example, given
a prefix Pj, when Tg, p, and Tg, p, are being merged, the partitions Ry and Ry of S would be
accessed. The merged tree contains now the suffixes from partitions Ry and R; that begin with the
prefix Pj. Then Tg, p; is loaded into the memory and merged with the current merged tree of Ry
and R1. The resulting merged tree now contains the suffixes from partitions Ry, R1, and Ry that
begin with the prefix P;, and so on. Notice that during any ith merge, the substrings from Ry to
R; would be accessed. We further investigate below and found an interesting access pattern of S.

The string label of any tree edge is denoted by a pair of starting and ending indexes into S.
When 2 edges from different trees are being merged, if their string labels contain the same prefix
string, a new internal node would be created so that the un-overlapping parts of the two labels can
branch off of it. The new internal node needs to be assigned a pair of starting and ending indexes.
An important point to emphasize here is that these indexes must always be from the partition with
the lower partition number. For example, suppose the two merging edges are from Ry and R and
their string labels are ACCTA and ACCAG. The first label corresponds to index positions [10, 14]
and the second label corresponds to index positions [50, 54]. This merging requires an internal
node to be created. The new internal node would have the string label ACC with two children
nodes branching off of it. The new node would be assigned [10, 12] (as opposed to [50, 52]) as its
starting and ending indexes. The algorithm consistently assigns the new index positions to any
new internal node created during the merge in this manner.

Since all partitions of S need to be accessed during the merge, it is desirable that § is kept in
the main memory for fast access. However, it may become impractical do so when S is a very large
string. For example, the Human genome would consume about 3GB of space. A possible solution
is to create a string buffer to manage S.

With that goal in mind, we further investigate how S is accessed during the merge. In this
case S is the Human genome. The data that show the locations of S that were accessed during
the 100" iteration of suffix sub-trees merging for prefix AACG is displayed in Fig. 7. The graph
exhibits the following interesting characteristics:

Merging the First 100 Suffix Sub-trees
for Prefix AACG of the Human Genome

100

10 4
1 g\o b, : : : : {
T

0.01

% String Accessed

0 20 40 60 80 100

Partition Number

Figure 7: Percentage of S being accessed during the 100" iteration of suffix sub-trees merging for

prefix AACG

1. The partition accessed most is the last partition, i.e. Rgg.

13

2. Ry is accessed more than R, R; is accessed more than Ry, R is accessed more than Rg, and
SO on.

Note that the access patterns during other partitions are also similar to what is shown here.
The above observations can be explained as follows. During the 100" iteration, TRoy,AACG is loaded
into the memory to merge with the tree created from merging Try aacc t0 Tro,aacc- The edge
labels of Tryy, 4ace need to be compared during the merge, hence the high percentage of access.
The edge labels of the current merged tree would also be used. Due to the manner new internal
nodes are assigned indexes as described above, it is not surprising that the current merged tree
would have indexes accessed from Ry more than from R;, Ry more than Rs, and so on.

3.4.2 The String Buffer

The access pattern discovered in Fig. 7 indicates that a good buffering strategy for S should

1. Always keep the last partition in the memory, because it is accessed most.

2. As space permits, keep the first several partitions also in the memory, because they are
accessed more than subsequent partitions.

3. Have a small page, so we can store the characters fetched of other partitions not located in
the memory during the merge.

The first two items are self-explanatory. In our experiment with the Human genome, we allow
the first two hundred partitions of size three million characters each to be kept in the memory.
The amount of memory required was about 600MB, which is a reasonable amount to assume that
a modern computer would have.

When an index of a partition not available in the memory is requested though, the algorithm
must fetch the corresponding character from the disk. In fact, we found that a small number of
subsequent, characters of that index shall soon be accessed after. These characters correspond to
an edge string label. Therefore, this substring is fetched and is stored in a page. For simplicity,
we keep the page size uniformed. We observed that a page size of 1024 bytes performs well for the
human DNA. In order to determine how many pages to use, we conducted several experiments and
observed that the pattern of indexes being requested is rather random. Keeping many previous
edge labels around in the main memory does not result in fewer misses, therefore we only keep 1
page in the memory.

With the buffer replacement policy implemented, we were able to build a suffix tree of the
Human genome.

3.4.3 Storing Prefixed Suffix Trees

Each prefixed suffix tree is written to a binary file in the depth first manner. For an internal node,
the starting index, ending index, parent offset, next sibling offset, suffix link ID are stored. The
first child always follow its parent node. For a leaf node, everything but the suffix link ID is stored.

As previously stated, when the prefixed suffix sub-trees for each partition are stored, their
suffix link information are maintained via node ID. That means, when an internal node v on the
final disk-based suffix tree is read, it may have an ID of sl(v). In order to locate sl(v), we need
a mechanism that allows ID-to-file offset lookups. Therefore, during the final tree writing to the

14

disk, we store the internal node ID and file offset pairs onto the disk as well. The pairs are sorted
by ID and then written onto binary files, based on the their tree prefixes.

The total number of files for storing a disk-based suffix tree is 2m, where m is the number of
variable-length prefixes. Half of them is for the prefixed suffix trees, and the other half is for the
ID-to-file offset pairs.

Depth vs Frequency of New Internal Nodes

16000000

14000000

12000000 -
&' 10000000
§ 8000000 - L
£ 6000000

4000000 - l

2000000

O,M
1 10 100 1000
Depth

Figure 8: The number of new internal nodes created at different node depths via the merge routine

3.4.4 Time and Space Complexity

The merging algorithm traverses the suffix sub-trees in a depth first manner. Assuming that S
is available in the main memory, the algorithm performs constant operations at each step. Since
there are O(n) nodes in the suffix trees, the merging phase runs in O(n) time. Note that the time
to sort and store the ID and file offset pairs is O(lg(n)) and dominated by the O(n) bound.

For the case when S requires the buffer, the run time of this step is O(n) plus the disk 1/0
time.

The space required during this phase is O(t) plus the amount of memory allocated to the buffer
(which is a parameter value that must be set). The O(t) bound emerges from the fact that we
create a prefixed suffix sub-tree for each prefix in this phase. Since the variable-length prefixes were
created based on the threshold ¢, therefore the size of each prefixed suffix tree is bounded by O(t).

3.5 Suffix Links

Although the suffix links exist completely in the suffix trees T, created for each partition due to
the use of Ukkonen’s algorithm, they do not equal the set of suffix links if the entire suffix tree
were to be created for the full string S. New internal nodes are created during the merge routine
and these nodes do not have suffix links. We conducted an experiment to investigate the effect of
the missing suffix links using the human chromosome I and ¢ of 3 million. The number of internal
nodes created during the merge routine is collected, and displayed in Fig. 8.

The result shows that the nodes at depth approximately 20 are created with the highest fre-
quency, and also the frequency drops sharply as the depth increases. This implies that even though
there are a lot of internal nodes without any suffix link information, they are mostly at a short
distance from the root.

We further investigate the frequencies of the already existing internal nodes (the ones with suffix
links) at different depths. The result shows a very similar pattern to Fig. 8 (its graph is omitted
here). This implies that, at the depth where the newly created internal node population is very

15

dense, the already existing internal node population is very dense also. Therefore, it is likely for
a newly created node v to have a parent or a close ancestor with a suffix link. Despite the fact
that direct suffix link to sl(v) is missing, we might be able to avoid locating si(v) by beginning the
search at the root. Instead, we can traverse up from v until we hit an ancestor with a suffix link,
travel across that link, and then down to si(v). Although taking this route is slower than using the
suffix link from v directly, it should be faster than searching for sl(v) from the root itself.

Note that when locating the sl(v) node, we do not search for every characters of the string from
the root to sl(v). This is because locating s/(v) implies that string from the root to v has already
been located in the tree. Since it is a suffix tree, the string from the root to sl(v) must certainly
exist in the tree. Therefore, the skip and count [36] technique can be applied here. (Skipping and
counting means locating the right edge, skip directly to the end of the edge without comparing any
edge characters, locating the next right edge, and so on, until the search length is matched.)

New Node Depth vs #Nodes to Move up until a
Suffix Link is Found

50

40 -

30

20 4

10 /

0 T T T T

0 200 400 600 800 1000
Depth

#Nodes

Figure 9: The number of internal nodes to traverse up until we reach a node with a suffix link

To confirm our hypothesis, we collected the number of nodes to traverse up from v until we hit
an ancestor of v with a suffix link. Our findings are displayed in Fig. 9. As expected, the number
of nodes to traverse up when the depth equals to 20 is minimal, i.e. 4. This is important because
20 is the depth were most new internal nodes are created. The graph shows that the number of
nodes to traverse up increases as d(v) increases. However, this comes as a small cost because 1)
d(v) is magnitudes higher than the number of nodes to traverse up (and thus to skip and count
down) and 2) there are much fewer newly created internal nodes at higher depths.

3.5.1 The Missing Suffix Link Effect

Since the suffix links maintained by TRELLIS are incomplete, the effect of the missing suffix links
on the query time should be studied. Many algorithms, such as MUMmer [12, 28], rely on the
suffix links to speed up the search for exact matches between two (or more) strings. The idea is as
follows. Let @ = qoq1g2 - - - gn be a query and suppose ¢oqi1q2 - - . q;, 0 < i < n, is found in the suffix
tree. If i < mn, then g;11 is the first mismatched position. Let the node v be the last internal node
accessed before gyqiqo .. .q; is matched. Then gi¢o...q can be quickly located in the tree via the
suffix link, sl(v), and we then can continue finding the next match from ¢;41 on. By utilizing the
suffix links in this manner, one avoids restarting the search for the next match from the root each
time.

Since the suffix links that TRELLIS has is an incomplete set, we conducted experiments to see
if the internal nodes created during the merge phase can rely on the suffix links of their ancestor

16

nodes instead. We found that the query times via the currently existing suffix links are faster than
via no suffix links at all. The experimental results are shown in the next chapter.

4 Experimental Results

4.1 Construction Time

In this section, we present the results of an experimental evaluation of different disk-based suffix
tree construction techniques. We compare TRELLIS with DynaCluster and TOP-Q in Figure 10,
as they are the only two algorithms that both create suffix links and do not exhibit the data skew
problem.

All experiments were performed on an Intel(R) Xeon(TM) processor with 2.80GHz speed, 3GB
of main memory, and 32GB of local disk. The implementations of both DynaCluster and TOP-Q
were obtained from their respective authors. TRELLIS was written in C++ and compiled with
GNU’s g++ compiler version 3.2.2 (Red Hat Linux 3.2.2-5) with -O3 optimization flag activated.
The input sequence used was the A, C, G, T’s of the entire human chromosome I (about 220Mbps).

Suffix Tree Construction Times

2500
2000 +

1500 /.
1000 /

0 & & A—adh

0 50 100 150 200 250
Input Sequence Size (MB)

Construction Time (min)

‘—Q—TOP-Q —m— DynaCluster —a— Trellis ‘

Figure 10: TRELLIS versus DynaCluster and TOP-Q. Total run time to create a disk-based suffix
tree with suffix links

In DynaCluster, the LCA method of rebuilding the suffix links was run immediately after the
suffix trees were constructed on disk. We experimented with different sizes of LCA buffer, which
were 64MB (default), 512MB, 1GB, and 1.5GB, and observed that the latter three gave similar
results, which is about 2 6 times faster than the result of the default size. The buffer size of 512MB
gave the best total time, therefore we report its numbers. DynaCluster suffix tree construction phase
(without suffix link rebuilt) is insensitive to the amount of memory available, and thus we use the
default buffer sizes for the tree construction. The results reported for DynaCluster is the total
times to construct the trees and rebuild the suffix links. In general, the suffix tree construction
phase of DynaCluster is very fast: the time taken for rebuilding the suffix links was the major part
of the total time. DynaCluster did not finish rebuilding the suffix links for the entire chromosome.

In comparison to TOP-Q, we use a buffer pool of 1400MB for internal nodes and 600MB for
leaf nodes. (The node sizes in this implementation were 29 and 5 bytes for internal and leaf nodes
respectively.) As suggested in [1], the number of internal nodes for typical DNA sequences is 0.6 —

17

0.8 times the number of leaf nodes, and thus the memory should be allocated accordingly to achieve
the best performance possible.

TRELLIS was run with the threshold ¢ of 1 million. The maximum prefix length was six when
the input string is the entire chromosome. The memory consumed by TRELLIS was about 100MB
during its first phase, and 400MB during the suffix sub-trees merging phrase. TRELLIS was set to
keep the entire input string in the memory during the merging phase; about 220MB out of 400MB
was used to hold the input string.

As shown in the graph, TRELLIS outperforms both DynaCluster and TOP-Q for the total
construction time. TRELLIS performance shows its linear bound of O(n). The reasons why TRELLIS
performs better is mainly because it does not need to traverse the entire on-disk tree twice to rebuild
the suffix links (as in DynaCluster) and it does not require a tree node buffering scheme because
smaller suffix sub-trees are created instead of the entire suffix tree at once (as in TOP-Q).

We also experimented with the entire Human genome. This experiment was conducted on a
Power MAC G5 machine with 2 CPUs with a speed of 2.7GHs and 4GB available memory. We
chose not to run this under the same cluster machine used for the above experiments because it
was a long experiment, which was better run on a dedicated machine. Also more importantly, there
was no need to compare this case with either TOP-Q or DynaCluster because neither one of them
has reported to finish successfully on the entire Human genome.

We set the threshold ¢ to 3 million. The maximum prefix length was ten. The time taken
for generating the variable-length prefixes was about 20 minutes. The time taken for phase 2 and
3 were about 8 and 28 hours respectively. The string buffer was set to hold 200 partitions. The
amount of memory consumed by the program was just under 1GB and the size of on-disk suffix tree
was about 97GB. Besides TDD [34], we are the only other algorithm reported to finish successfully
on the entire Human genome. TDD, however, completely disregards the suffix link structure and
therefore serves different purposes from TRELLIS.

Lastly, for the sake of completeness, we also experimented with our implementation of the tra-
ditional Ukkonen’s algorithm on large input DNA sequences. We found that the program consumes
about 1GB of memory already when the input sequence was only 10MB! This confirms the need of
a disk-based suffix tree algorithm.

4.2 Missing Suffix Links and Query Time

In this section, we investigate the effect of the missing suffix links on the query time. In this
experiment, a set of queries is issued and we compared their search times using the available suffix
links vs using no suffix links at all. The idea is that the node v may not have a suffix link, but we
may be able to move up for a few nodes before reaching an ancestor node of v such that it has a
suffix link and use the link to move across the tree without having to restart the search from the
root. Let’s denote such ancestor node v,. Note that if v has a suffix link, then v and v, are used
interchangeably.

For this experiment, we used a disk-based suffix tree for the human chromosome I (about
220MB), with t equals to 3 million. The queries used here are the substrings of the chromosome
itself to ensure that they would always be found in the tree. The query length is set to 100,
and 500 queries were generated from the substrings starting at the 150,000, 000" index until the
150, 000, 499" index. The experiment was conducted on the same Power MAC G5 machine. Note
that the machine’s amount of memory is irrelevant here because the search is done directly from the
disk. Note that we conducted the experiments for a variety of query lengths (1K, 10K, 100K, and
1000K) and substring starting positions (50mil, 100mil, 150mil, and 200mil), and results obtained

18

are similar to the ones shown here.

12

10

#Nodes
o

1 | 0

2 1 1 + 44

O T T T T
0 100 200 300 400 500

Query Starting Index + 150mil (Length = 100)

Figure 11: The number of internal nodes to traverse up until we reach a node with a suffix link

The experiment aims at comparing the search time of a given query g by starting the search
from the root versus from sl(v,). To obtain the first set of search times, we simply search starting
from the root. As for the second set of timings, we start searching for the first query, qg, from the
root. Once found, we look for the node v,, obtain sl(v,)’s node 1D, then look up its corresponding
file offset stored on disk previously, and move across the tree to sl(v,)’s file offset to search for the
next query, and so on. The results are shown in Figures 11, 12, and 13.

18
16 +
]

#Nodes

81 I;I [
: It ! ! I

O T T T T
0 100 200 300 400 500

Query Starting Index + 150 mil (Length = 100)

——#Nodes From Root —=—#Nodes From sl(Va)

Figure 12: The number of internal nodes to traverse down from the root vs from sl(v,) until si(v)
is reached

Fig. 11 shows the number of internal nodes to traverse up until we reaches the node v,. The
results conform with our previous discussion such that the number of nodes needed to move up is

small.
In Fig. 12, the result shows that, although the link across to sl(v) is not an immediate one,

using sl(v,) still shortens the travel distance considerably.

19

0.6

05 fs o o ., ..

Search Time (msec)

0 100 200 300 400 500
Query Starting Index + 15mil (Length = 100)

= Skip from Root e ID to Offset Lookup a Skip from sl(Va) ‘

Figure 13: The query time. Although locating sl(v) via sl(v,) is faster than from the root, we first
must locate sl(v,) by looking its offset up via the ID-to-file offset file and this is the bottleneck!

Fig. 13 shows a very interesting behavior regarding the query time. One would expect that,
by using sl(v,) to shorten the travel distance to sl(v), the query time would also be faster. Un-
fortunately, that is not yet the case because the suffix link ID-to-file offset lookup time dominates
the search time. In this experiment, the average times to look up the offset, to find the query by
skipping from the root, and to find the query by skipping from sl(v,) are 0.3, 0.2, and 0.1 msec
respectively. The graph shows that, without the offset lookup time, utilizing sl(v,) results in a
faster query time than starting the search from the root. However, that is not the case when we
include also the offset lookup time. Therefore, we can conclude from these results that:

e The bottle neck of the query time here is the file offset lookup time, not the skipping-and-
counting time from sl(v,).

e Although the suffix links populated by TRELLIS is incomplete, they still can be utilized to
speed up the search time.

Since the suffix link id-to-file offset search time is the bottleneck, an immediate remedy is to
perform a post-processing step on the suffix tree that replaces the suffix link IDs with their respective
file offsets, so there would be no need to look them up. The post-processing step requires a single
suffix tree on-disk traversal. At each internal node, if there is an available suffix link 1D, the
algorithm fetches its corresponding file offset and replaces the ID with the offset. We added this
optional preprocessing step and were able to completely eliminate the suffix ID-to-file offset lookup
time added to each query time in Fig. 13. Under the same settings that the trees were constructed
above, the additional times taken for the post-processing step were about 10 minutes and 2.5 hours
for the Human Chromosome I and the entire Human genome respectively.

In summary, we demonstrated that:

e TRELLIS outperforms TOP-Q and DynaCluster in construction time.

e TRELLIS is currently the only disk-based algorithm that both maintains the suffix links and
scales up to the Human genome level.

20

e Although the suffix links maintained by TRELLIS are partial, they are shown experimentally
to enable faster query times than without using any suffix links at all.

5 Conclustion and Future Work

In this work, we developed a novel disk-based suffix tree construction algorithm called TRELLIS.
TRELLIS builds the suffix tree based on a partitioning method via variable length prefixes and a
suffix sub-trees merging algorithm, which enables it to avoid the data skew problem exhibited in
many other disk-based suffix tree methods. In addition, it bypasses the need to use a buffering
scheme to manage suffix tree nodes during the tree construction. TRELLIS is a linear time algorithm,
given that the input string is stored in the memory, and it does not sacrifice the existence of suffix
links in the tree. TRELLIS scales gracefully when the input DNA sequence is large. In fact, we show
that a suffix tree on the entire Human genome can be built in about 36 hours, using under 1GB of
memory! TRELLIS is currently the only disk-based suffix tree algorithm with suffix links that reports
a suffix tree on an input string of this magnitude. Although the suffix links maintained are partial,
the query times using them are experimentally shown to be consistently faster than the query times
obtained without using any suffix links. TRELLIS is experimentally shown to outperform the other
existing algorithms that do not exhibit the data skew problem and also maintain the suffix links in
construction time.

As part of our future work, we plan on adapting TRELLIS to a wider range of biological input
sequences, e.g. protein sequences. In fact, a previous implementation of TRELLIS was adapted to
index successfully the entire SwissProt database [15] using under 1GB of main memory. In this case,
each protein character was translated into one of the seven state prediction values generated by
HMMSTR [6] (In other words, the alphabet size was seven.) TRELLIS was combined as a backend
to the PSIST [20] algorithm to aid in its protein indexing. Much further studies are still required in
order to optimize TRELLIS performance with different types of alphabets and/or sequence patterns.

Another goal is creating a user interface for TRELLIS. Most of the disk-based suffix tree al-
gorithms published so far only report on the theoretical aspects of the suffix trees. We believe
that, for the disk-based suffix tree to become practical and widely used in biological applications,
a well-documented and user-friendly interface must also be created.

In addition, we plan to build the complete set of suffix links via the partial set maintained
currently. As a result, query times should be improved even further.

We also plan to create a buffer to manage the suffix tree nodes during the query process.
Although it is important to have an efficient algorithm that constructs a disk-based suffix tree, it is
equally critical to be able to use the suffix tree from the disk efficiently. Buffer management policy
should help speeding up the suffix tree reads for any algorithm using the tree. Currently, there is
only one such buffer management algorithm, Stellar [2], from the authors of TOP-Q. Their buffer
policy focuses on finding maximal exact matches between a query string and the reference string
of the suffix tree. As part of our future work, we plan to create a buffer management policy that
targets a wider range of algorithms. The ideal buffer would be able to adjust itself automatically
based on the node access patterns incurred by the algorithm using the disk-based suffix tree.

Lastly, TRELLIS would be compared with other similar large-scale indexing structures, e.g.
String B-Trees [19], Suffix Arrays [13], Suffix Vectors [30], and Distributed Suffix Trees [10].

21

References

1]

[14]

[15]
[16]

Srikanta J. Bedathur and Jayant R. Haritsa. Engineering a fast online persistent suffix tree

construction. In Proceedings of the 20th International Conference on Data Engineering, pages
720 731, 2004.

Srikanta J. Bedathur and Jayant R. Haritsa. Search-optimized suffix-tree storage for biological
applications. In Proceedings of the 12th IEEE International Conference on High Performance
Computing (HiPC), pages 29-39, 2005.

Nicolas Bray, Inna, Dubchak, and Lior Pachter. AVID: A global alignment program. Genome
Res., 13(1):97 102, 2003.

Nicolas Bray and Lior Pachter. MAVID: Constrained ancestral alignment of multiple sequences.
Genome Res., 14(4):693 699, 2004.

A. L. Brown. Constructing genome scale suffix trees. In Proceedings of the 2nd APBC, pages
105-112, 2004.

Christopher Bystroff, David Baker, and Vesteinn Thorsson. HMMSTR: a hidden markov model
for local sequence-structure correlations in proteins. J. Mol. Biol., 301:173-190, 2000.

Carvalho, Freitas, Oliveira, and Sagot. Efficient extraction of structured motifs using box-
links. In Proceedings of the 11th Conference on String Processing and Information Retrieval,
volume 11, 2004.

Chang and Lawler. Sublinear approximate string matching and biological applications. AL-

GRTHMICA: Algorithmica, 12:327-344, 1994.

Cheung, Yu, and Lu. Constructing suffix tree for gigabyte sequences with megabyte memory.
IEEETKDE: IEEE Transactions on Knowledge and Data Engineering, 17, 2005.

Raphael Clifford. Distributed suffix trees. Journal of Discrete Algorithms, 3(2-4):176-197,
June 2005.

A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg. Align-
ment of whole genomes. Nucl. Acids. Res., 27(11):2369 2376, 19909.

A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for large-scale
genome alignment and comparison. Nucl. Acids. Res., 30(11):2478-2483, 2002.

Roman Dementiev, Juha Kérkkainen, Jens Mehnert, and Peter Sanders. Better external
memory suffix array construction. In Workshop on Algorithm Engineering and Ezxperiments,
2005.

Jitender S. Deogun, Jingyi Yang, and Fangrui Ma. EMAGEN: An efficient approach to multiple
whole genome alignment. In Proceedings of the 2nd APBC, pages 113-122, 2004.

ExPASy. Swiss-prot and trembl. http://www.expasy.org/sprot/, 2006.

Martin Farach, Paolo Ferragina, and S. Muthukrishnan. Overcoming the memory bottleneck
in suffix tree construction. In Proceedings of the 39th Annual Symposium on Foundations of
Computer Science, pages 174 185, 1998.

22

[17] Farach-Colton, Ferragina, and Muthukrishnan. On the sorting-complexity of suffix tree con-
struction. JACM: Journal of the ACM, 47, 2000.

[18] Martin Farach-Colton. Optimal suffix tree construction with large alphabets. In Proceedings
of the 39th Annual Symposium on Foundations of Computer Science, pages 137 143, 1997.

[19] Paolo Ferragina and Roberto Grossi. The string B-tree: a new data structure for string search
in external memory and its applications. j-J-ACM, 46(2):236 280, March 1999.

[20] Feng Gao and Mohammed Javeed Zaki. PSIST: Indexing protein structures using suffix trees.
In Proceedings of the IEEE CSB, pages 212 222, 2005.

[21] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees. In Proceedings
of the 8rd Workshop on Algorithm Engineering, pages 30 42, 1999.

[22] Gusfield and Stoye. Linear time algorithms for finding and representing all the tandem repeats
in a string. JCSS: Journal of Computer and System Sciences, 69:525 546, 2004.

[23] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

[24] Michael Hohl, Stefan Kurtz, and Enno Ohlebusch. Efficient multiple genome alignment. In
ISMB, pages 312-320, 2002.

[25] Ela Hunt, Malcolm P. Atkinson, and Robert W. Irving. A database index to large biological
sequences. In Proceedings of the 27th International Conference on Very Large Data Bases,

pages 139-148, 2001.

[26] Robert Japp. The top-compressed suffix tree. In Lachlan M. MacKinnon, Albert G. Burger,
and Philip W. Trinder, editors, Proceedings of the 21st Annual British National Conference On
Databases, volume 2, pages 68-79, Department of Computer Science, School of Mathematical
and Computer Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS,
UK, July 2004. Heriot-Watt University.

[27] Stefan Kurtz. Reducing the space requirement of suffix trees. Softw, Pract. Exper, 29(13):1149-
1171, 1999.

[28] Stefan Kurtz, Adam Phillippy, Arthur Delcher, Michael Smoot, Martin Shumway, Corina
Antonescu, and Steven Salzberg. Versatile and open software for comparing large genomes.
Genome Biology, April 24 2004.

[29] Edward M. McCreight. A space-economical suffix tree construction algorithm. JACM,
23(2):262 272, April 1976.

[30] Krisztidn Monostori, Arkady B. Zaslavsky, and Heinz W. Schmidt. Suffix vector: Space- and
time-efficient alternative to suffix trees. In Proceedings of the 25th ACSC, pages 157 165, 2002.

[31] NCBL Public collections of dna and rna sequence reach 100 gigabases.
http://www.nlm.nih.gov/news/press_releases/dna_rna_100_gig.html, 2005.

[32] NCBI. Genbank. www.ncbi.nlm.nih.gov/GenBank, 2006.

[33] Klaus-Bernd Schiirmann and Jens Stoye. Suffix tree construction and storage with limited
main memory. Technical Report 0946-7831, Universitat Bielefeld, 2003.

23

[34]

[35]

[36]

[37]

[38]

Sandeep Tata, Richard A. Hankins, and Jignesh M. Patel. Practical suffix tree construction.
In Proceedings of the 30th International Conference on Very Large Data Bases, pages 36 47,
2004.

Yuanyuan Tian, Sandeep Tata, Richard A. Hankins, and Jignesh M. Patel. Practical methods
for constructing suffix trees. VLDB, pages 281-299, 2005.

Esko Ukkonen. Constructing suffix trees on-line in linear time. In Proceedings of the IFIP 12th
World Computer Congress on Algorithms, Software, Architecture: Information Processing,
pages 484-492, 1992.

Esko Ukkonen and Juha Karkkéinen. Sparse suffix trees. In Proceedings of the 2nd Annual
Intelligence Conference on Computing and Combinatorics, pages 219-230, 1996.

P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Symposium
on Switching and Automata Theory, pages 1-11, 1973.

24

