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Abstract. Automatic distributed garbage collection (GC) gives abstrac-
tion to grid application development, promoting code quality and im-
proving resource management. Unreachability of active objects or actors
from the root set is not a sufficient condition to collect actor garbage,
making passive object GC algorithms unsafe when directly used on actor
systems. In practical actor languages, all actors have references to the
root set since they can interact with users, e.g., through standard input
or output streams. Based on this observation, we introduce pseudo roots:
a dynamic set of actors that can be viewed as the root set. Pseudo roots
use protected (undeletable) references to ensure that no actors are erro-
neously collected even with messages in transit. Following this idea, we
introduce a new direction of actor GC, and demonstrate it by developing
a distributed GC framework. The framework can thus be used for auto-
matic life time management of mobile reactive processes with unordered
asynchronous communication. This report is an extended version of [42].
It provides more information about how we built a distributed garbage
collector with the help of the pseudo root approach. It also shows exper-
imental results for local GC.

1 Introduction

Large applications running on the grid, or on the internet, require runtime recon-
figurability for better performance, e.g., relocating application sub-components
to improve locality without affecting the semantics of the distributed system.
A runtime reconfigurable distributed system can be easily defined by the actor
model of computation [3, 13]. The actor model provides a unit of encapsulation
for a thread of control along with internal state. An actor is either unblocked or
blocked. It is unblocked if it is processing a message or has messages in its mes-
sage box, and it is blocked otherwise. Communication between actors is purely
asynchronous: non-blocking and non-First-In-First-Out (non-FIFO). However,
communication is guaranteed: all messages are eventually and fairly delivered.
In response to an incoming message, an actor can use its thread of control to
modify its encapsulated internal state, send messages to other actors, create
actors, or migrate to another host.
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Fig. 1. An actor is a reactive entity which communicates with others by asynchronous
non-FIFO messages. In response to an incoming message, it can use its thread of control
to 1) modify its internal state, 2) send messages to other actors, 3) create actors, or 4)
migrate to another host.



Many programming languages have partial or total support for actor seman-
tics, such as SALSA [38], ABCL [46], THAL [18], Erlang [4], E [1], and Nomadic
Pict [44]. Some libraries also support actor creation and use in standard object-
oriented languages, such as the Actor Foundry [28] for Java, Broadway [35] for
C++, and Actalk [8] for Smalltalk. In designing these languages or systems,
memory reuse becomes an important issue to support dynamic data structures
— such as linked lists. Automatic garbage collection is the key to enable memory
reuse and to reduce programmers’ efforts on their error-prone manual memory
management.

The problem of distributed garbage collection (GC) is difficult because of: 1)
information distribution, 2) lack of a global clock, 3) concurrent activities, and
4) possible failures of the network or computing nodes. These factors complicate
detection of a consistent global state of a distributed system. Comparing to
object-oriented systems, a pure actor system demands automatic GC as well,
even more, because of its distributed, mobile, and resource-consuming nature.
Actor GC is traditionally considered as a harder problem than passive object
GC because of two additional difficulties to overcome:

1. Simply following the references from the root set of actors does not work
in the actor GC model. Figure 2 explains the difference between the actor
garbage collection model and the passive object GC model.

2. Unordered asynchronous message delivery complicates the actor garbage col-
lection problem. Most existing algorithms cannot tolerate out-of-order mes-
sages.
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Fig. 2. Actor 3, 4, and 8 are live because they can potentially send messages to the
root. Object 3, 4, and 8 are garbage because they are not reachable from the root.

Previous distributed GC algorithms (including actor GC algorithms) rely
on First-In-First-Out (FIFO) communication which simplifies detection of a
consistent global state. A distributed object GC algorithm either adopts: 1) a
lightweight reference counting/listing approach which cannot collect distributed
mutually referenced data structures (cycles), 2) a trace-based approach which
requires a consistent state of a distributed system, or 3) a hybrid approach [2].



In actor-oriented programming languages, an actor must be able to access
resources which are encapsulated in service actors. To access a resource, an actor
requires a reference to it. This implies that actors keep persistent references to
some special service actors — such as the file system service and the standard
output service. Furthermore, an actor can explicitly create references to public
services. For instance, an actor can dynamically convert a string into a reference
to communicate with a service actor, analogous to accessing a web service by a
web browser using a URL.

Actor mobility is another new challenge to overcome. The concept of in-
transit actors complicates the design of actor communication — locality of actors
can change, which means even simulated FIFO communication with message re-
delivery is impractical, or at least limits concurrency by unnecessarily waiting
for message redelivery. FIFO communication is an assumption of existing dis-
tributed GC algorithms. For instance, distributed reference counting algorithms
demand FIFO communication to ensure that a reference-deletion system mes-
sage does not precede any application messages.

This research differs from previous actor GC models by introducing: 1) asyn-
chronous, unordered message delivery of both application messages and system
messages, 2) resource access rights, and 3) actor mobility.

Outline of This Paper

The remainder of the paper is organized as follows: In Section 2 we give the def-
inition of garbage actors. In Section 3 we propose the pseudo root approach —
a mobile actor garbage collection model for distributed actor-oriented program-
ming languages. In Section 4 we present an implementation for the proposed
actor garbage collection model. In Section 5 we provide a concurrent, snapshot-
based global actor garbage collector to collect distributed cyclic garbage. In Sec-
tion 6 we show the experimental results. In Section 7 we discuss related work.
Section 8 contains concluding remarks and future work.

2 Garbage in Actor Systems

The definition of actor garbage comes from the idea of whether an actor is
doing meaningful computation. Meaningful computation is defined as having
the ability to communicate with any of the root actors, that is, to access any
resource or public service. The widely used definition of live actors is described
in [17]. Conceptually, an actor is live if it is a root or it can either potentially:
1) receive messages from the root actors or 2) send messages to the root actors.
The set of actor garbage is then defined as the complement of the set of live
actors. To formally describe our new actor GC model, we introduce the following
definitions:

– Blocked actor: An actor is blocked if it has no pending messages in its
message box, nor any message being processed. Otherwise it is unblocked.



– Reference: A reference indicates an address of an actor. Actor A can only
send messages to Actor B if A has a reference pointing to B.

– Inverse reference: An inverse reference is a conceptual reference in the
counter-direction of an existing reference.

– Acquaintance: Let Actor A have a reference pointing to Actor B. B is an
acquaintance of A, and A is an inverse acquaintance of B.

– Root actor: An actor is a root actor if it encapsulates a resource, or if it is
a public service — such as I/O devices, web services, and databases.

The original definition of live actors is denotational because it uses the con-
cept of “potential” message delivery and reception. To make it more operational,
we use the term “potentially live” [10] to define live actors.

– Potentially live actors:
• Every unblocked actor and root actor is potentially live.
• Every acquaintance of a potentially live actor is potentially live.

– Live actors:
• A root actor is live.
• Every acquaintance of a live actor is live.
• Every potentially live, inverse acquaintance of a live actor is live.

3 The Pseudo Root Approach

The pseudo root approach is based on the live unblocked actor principle — a
principle which says every unblocked actor should be treated as a live actor. Ev-
ery practical actor programming language design abides by this principle. With
the principle, we integrate message delivery and reference passing into refer-
ence graph representation — sender pseudo roots and protected references. The
pseudo root approach together with imprecise inverse reference listing enables
the use of unordered, asynchronous communication.

The Live Unblocked Actor Principle Without program analysis techniques,
the ability of an actor to access resources provided by an actor-oriented program-
ming language implies explicit reference creation to access service actors. The
ability to access local service actors (e.g. the standard output) and explicit refer-
ence creation to public service actors make the following statement true: “every
actor has persistent references to root actors”. This statement is important be-
cause it changes the meaning of actor GC, making actor GC similar to passive
object GC. It leads to the live unblocked actor principle, which says every un-
blocked actor is live. The live unblocked actor principle is easy to prove. Since
each unblocked actor is: 1) an inverse acquaintance of the root actors and 2)
defined as potentially live, it is live according to the definition of actor GC.

With the live unblocked actor principle, every unblocked actor can be viewed
as a root. Liveness of blocked actors depends on the transitive reachability from
unblocked actors and root actors. If a blocked actor is transitively reachable



from an unblocked actor or a root actor, it is defined as potentially live. With
persistent root references, such potentially live, blocked actors are live because
they are inverse acquaintances of some root actors. This idea leads to the core
concept of pseudo root actor GC.
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Fig. 3. The left side of the figure shows a possible race condition of mutation and
message passing. The right side of the figure illustrates both kinds of sender pseudo
root actors.

Pseudo Root Actor Garbage Collection The pseudo root actor GC starts
actor garbage collection by identifying some live (not necessarily root) or even
garbage actors as pseudo roots. There are three kinds of pseudo root actors: 1)
root actors, 2) unblocked actors, and 3) sender pseudo root actors. The sender
pseudo root actor refers to an actor which has sent a message and the mes-
sage has not yet been received. The goal of sender pseudo roots is to prevent
erroneous garbage collection of actors, either targets of in-transit messages or
whose references are part of in-transit messages. A sender pseudo root always
contains at least one protected reference — a reference that has been used to
deliver messages which are currently in transit, or a reference to represent an
actor referenced by an in-transit message — which we call an in-transit refer-
ence. A protected reference cannot be deleted until the message sender knows
the in-transit messages have been received correctly.

Asynchronous communication introduces the following problem (see the left
side of Figure 3): application messages from Actor A to Actor B can be in transit,
but the reference held by Actor A can be removed. Stage 3 shows that Actor
B and C are likely to be erroneously reclaimed, while Stage 4 shows that all
of the actors are possibly erroneously reclaimed. Our solution is to temporarily
keep the reference to Actor B undeleted and identify Actor A as live (Case 1
of the right side of Figure 3). This approach guarantees liveness of Actor B by
tracing from Actor A. Actor A is named the sender pseudo root because it has
an in-transit message to Actor B and it is not a real root. Furthermore, it can



be garbage but cannot be collected. The reference from A to B is protected and
A is considered live until A knows that the in-transit message is delivered.

To prevent erroneous GC, actors pointed by in-transit references must un-
conditionally remain live until the receiver receives the message. A similar solu-
tion can be re-used to guarantee the liveness of the referenced actor: the sender
becomes a sender pseudo root and keeps the reference to the referenced actor
undeleted (Case 2).

Using pseudo roots, the persistent references to roots can be ignored. Fig-
ure 4 illustrates an example of the mapping of pseudo root actor GC. We can
now safely ignore: 1) dynamic creation of references to public services and 2)
persistent references to local services.
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Fig. 4. An example of pseudo root actor garbage collection which maps the real state
of the given system to a pseudo root actor reference graph.

Imprecise Inverse Reference Listing In a distributed environment, an inter-
node referenced actor must be considered live from the perspective of local GC.
To know whether an actor is inter-node referenced, each actor should main-
tain inverse references to indicate if it is inter-node referenced. This approach
usually refers to reference listing. Maintaining precise inverse references in an
asynchronous way is performance-expensive. Fortunately, imprecise inverse ref-
erences are acceptable if all inter-node referenced actors can be identified as live
— inter-node referenced actors can be pseudo root actors (global pseudo roots),
or transtively reachable from some local pseudo root actors to guarantee their
liveness.



4 Implementation of the Pseudo Root Approach

To implement the proposed pseudo root approach, we propose the actor garbage
detection protocol. The actor garbage detection protocol, implemented as part of
the SALSA programming language [38, 45], consists of four sub-protocols — the
asynchronous ACK protocol, the reference passing protocol, the migration proto-
col, and the reference deletion protocol. Messages are divided into two categories
— the application messages which require asynchronous acknowledgements, and
the system messages that will not trigger any asynchronous acknowledgement.
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Fig. 5. The actor garbage detection sub-protocols.

The Asynchronous ACK Protocol The asynchronous ACK protocol is
designed to help identifying sender pseudo roots. Each reference maintains a
counter, count, for expected acknowledgements. A reference can be deleted only
if its expected acknowledgement count is zero. An actor is a sender pseudo root if
the total expected acknowledgements of its references are greater than zero. The
protocol is shown in the left upper part of Figure 5, in which actor sender sends
a message to actor receiver. The event handler OnSend is triggered when an
application message is sent; the event handler OnReceive is invoked when a mes-
sage is received. If a message to receive requires an acknowledgement, the event
handler OnReceive will generate an acknowledgement to the message sender.



The message handler ACK is asynchronously executed by an actor to decrease
the expected acknowledgement count of the reference to actor receiver held
by actor sender. With the asynchronous ACK protocol, the garbage collector
can identify sender pseudo roots and protected references from the perspective
of implementation:

– A sender pseudo root is one whose total expected acknowledgement count
of its references is greater than zero.

– A protected reference is one whose expected acknowledgement count is greater
than zero. A protected reference cannot be deleted.

The Reference Passing Protocol The reference passing protocol specifies
how to build inverse references in an asynchronous manner. A typical scenario of
reference passing is to send a message M containing a reference to c, from sender

to receiver. The reference (sender,receiver) and the reference (sender,c)

are protected at the beginning by increasing their expected acknowledgement
counts. Then sender sends the application message M to receiver. Right af-
ter receiver has received the message, it generates an application message
invRefRegistration to c to register the inverse reference of (receiver,c) in c.
A special acknowledgement from c to sender is then sent to decrease the count
of the protected reference (sender,c). Making invRefRegistration an appli-
cation message is to ensure that reference deletion of reference (receiver,c)

always happens after c has built the corresponding inverse reference. The pro-
tocol is shown in the right upper side of Figure 5.

The Migration Protocol Implementation of the migration protocol requires
assistance from two special actors, remoteSystem at a remote computing node,
and localSystem at the local computing node. An actor migrates by encoding
itself into a message, and then delivers the message to remoteSystem. During
this period, messages to the migrating actor are stored at localSystem. After
migration, localSystem delivers the temporarily stored messages to the mi-
grated actor asynchronously. Every migrating actor becomes a pseudo root by
increasing the expected acknowledgement count of its self reference. The mi-
grating actor decreases the expected acknowledgement count of its self reference
when it receives the temporarily stored messages. The protocol is shown in the
left lower side of Figure 5.

The Reference Deletion Protocol A reference can be deleted if it is not
protected — its expected acknowledgement count must be zero. The deletion
automatically creates a system message to the acquaintance of the actor deleting
the reference to remove the inverse reference held by the acquaintance. The
protocol is shown in the right lower side of Figure 5.

Safety of Actor Garbage Detection Protocol The safety of local actor GC
in a distributed environment is guaranteed by the following invariants:



1. Let x 6= y. If Actor y is referenced by a non-pseudo-root actor x, actor y

must have an inverse reference to Actor x.
2. If an actor is referenced by several pseudo roots, either it has at least one

inverse reference to one of the pseudo roots, or it is a pseudo root.

The above two invariants together guarantee the property of one-step back tracing
safety. The property says that if an actor is inter-node referenced, the actor either
can be identified as a remotely dependent pseudo root by one-step back tracing
through its registered inverse references, or is reachable from some local pseudo
roots.

5 Collecting Distributed Cyclic Garbage Actors

Although local garbage collectors and the actor garbage detection protocol to-
gether can identify all local garbage and distributed acyclic garbage, they cannot
identify distributed cyclic garbage — the kind of garbage that requires the global
state of a system to determine whether or not an actor is garbage. The difficulty
to obtain a coherent global state of a distributed system complicates distributed
garbage collection. The cost of obtaining a precise global state of a mobile actor
system is unacceptable and impractical. Fortunately, a precise coherent global
state of a distributed mobile actor system is not necessary for distributed actor
garbage collection. Instead, an approximate one is enough for actor garbage col-
lection which only requires a stable set of garbage actors. with the help of the
pseudo root approach, we propose the partial approximate snapshot algorithm
which: 1) provides such an approximate snapshot for distributed actor garbage
collection and 2) is fault tolerant.

5.1 The Concept of the Partial Approximate Snapshot

Distributed actor garbage collection requires a coherent actor reference graph
to identify live actors. To obtain such an actor reference graph, existing actor
garbage collection algorithms either use stop-the-world synchronization or FIFO
(or simulated FIFO with timestamps) communication. The stop-the-world syn-
chronization approach is expensive for concurrent or distributed systems. FIFO
communication is a little better, but has to maintain the order of message recep-
tion which is expensive with actor migration. To avoid the use of stop-the-world
synchronization or FIFO communication, the partial approximate snapshot al-
gorithm is proposed to obtain a coherent actor reference graph.

The partial approximate snapshot algorithm comes from two different ideas:
partial garbage collection and the approximate snapshot algorithm. Partial garbage
collection divides a system into several regions and performs garbage collection
in each region independently. Any failure at one region cannot affect results of
other regions. Let t1 be the time point to start the snapshot algorithm, t2 be the
time point to end the snapshot algorithm, and t1 < tx < t2. The approximate
snapshot is to maintain the minimal invariant of garbage collection: the garbage



set at tx contains the same elements as the garbage set at t1. The concept of
the partial approximate snapshot algorithm is to take an approximate snapshot
on a closed group of actors such that the snapshot has the minimal invariant of
garbage collection.

Operation Restrictions To maintain reachability from roots during snapshot,
reference deletion is not allowed or has to be recorded during snapshot. Incoming
and outgoing inter-node references have to be preserved because they affect the
definition of liveness from the perspective of local garbage collection. The state
of an actor must be monitored during snapshot. If an actor has ever become a
pseudo root, the actor is identified as a pseudo root in the snapshot.

Migration during garbage collection is supported by the proposed algorithm.
If an actor is migrating, it is live because it is unblocked. Since it is live, it can
be removed from the snapshot safely by adding the references it held to the set
of incoming inter-node references. All newly created actors are excluded from
the snapshot automatically. The partial approximate snapshot algorithm goes
as follows:

1. Form a closed group of actors.

2. Monitor the state of each actor at the group. Preserve deleted references
and incoming inter-group references of each actor at the group. If an actor
is migrating, remove it from the group by adding the references it held to
the incoming inter-group references.

3. Start to record the actor reference graph.

4. Maintain the partial approximate snapshot for actor garbage collection.

Merging Snapshots To maximize possible concurrency, each computing node
can take a partial approximate snapshot independently and then a global mech-
anism is used to merge these local snapshots into a large one. The merging
operation is meaningful if the merged snapshot maintains the minimal invariant
of garbage collection, which requires two simple global synchronization steps:

1. Ask each computing node to form a closed group of actors, to monitor the
state of actors, and to preserve deleted references and incoming inter-group
references.

2. Wait until each computing node responds or timeout happens.

3. Ask each computing node to record its local snapshot.

4. Wait until each computing node responds or timeout happens.

5. Re-identify inter-group incoming references and inter-group outgoing refer-
ences.

The first four steps are together called the global partial approximate snapshot
procedure, while the last step is called the partial approximate snapshot merging
operation.



5.2 The Distributed Actor Garbage Collector

We have implemented the partial approximate snapshot algorithm as an op-
tional logically centralized service. Garbage except distributed cyclic garbage
still can be reclaimed without it. The global collector gathers synchronized lo-
cal partial approximate snapshots to form a global snapshot. Consequently, the
global collector identifies garbage of the global partial approximate snapshot,
and then requests the local collectors to reclaim the global garbage. No actor
can be erroneously reclaimed even if a local garbage collector fails to deliver its
local snapshot to the service, but actors referenced by those at the failed node
cannot be reclaimed even if they are garbage. Actors work concurrently with the
local garbage collectors and the centralized global actor garbage collector, but
they have to pay performance penalty during garbage collection — the mutation
operations such as migration and reference deletion have to be monitored. The
algorithm has five steps:

1. Coordinate a global partial approximate snapshot,
2. Obtain all synchronized local partial approximate snapshots,
3. Merge the snapshots into a global snapshot,
4. Perform pseudo root garbage collection, and
5. Notify local collectors for the garbage list.

Figure 6 illustrates the concept of the algorithm.
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Fig. 6. A cycle of distributed actor garbage collection by the proposed centralized
global actor garbage collector that manages two local actor garbage collectors. Virtual
migration refers to transmitting a local snapshot to the server.



6 Experimental Results

Major concerns on the performance of distributed applications are mostly the
degree of parallelism and the application execution time. In this section, we
use several types of applications to measure the impact of the proposed actor
garbage collection mechanism in terms of real execution time, CPU time, and
overhead percentage.

Local Benchmark Application

Three different benchmark applications are designed to measure the impact of
the local garbage collection mechanism. These applications are Fibonacci number
(Fib), N queens number (NQ), and Matrix multiplication (MX). Each application
is executed at a dual-processor Solaris machine. The applications are described
as follows:

– Fibonacci number (Fib): Fibonacci number, abbreviated as Fib, takes one
argument and then computes the Fibonacci number. It is a coordinated tree-
structure computation, with sequential execution of number 29 or 30 at each
leaf.

– N queens number (NQ): N queens number, abbreviated as NQ, takes one
argument to calculate the total solutions of the N queens problem by creating
(N−1)×(N−2) actors for parallel execution and one actor for coordination.

– Matrix multiplication (MX): Matrix multiplication, abbreviated as MX, re-
quires two files for application arguments, each of which contains a matrix.
The application calculates one matrix multiplication of the given two matri-
ces.

Distributed Benchmark Application

Each distributed benchmark application is executed at four dual-processor So-
laris machines, and initialized at another dual-processor Solaris machine. These
machines are connected by Ethernet. The distributed garbage collector is acti-
vated every 20 seconds. The benchmark applications are described as follows:

– Distributed Fibonacci number with locality (Dfibl): Dfibl optimizes the num-
ber of inter-node messages by locating four sub-computing-trees at each com-
puting node.

– Distributed Fibonacci number without locality (Dfibn): Dfibn distributes the
actors in a breadth-first-search manner.

– Distributed N queens number (DNQ): DNQ equally distributes the actors
to four computing nodes.

– Distributed Matrix multiplication (DMX): DMX divides the first input ma-
trix into four sub-matrices, sends the sub-matrices and the second matrix
to four computing nodes, performs one matrix multiplication operation, and
then merges the data at the computing node that initializes the computation.



Garbage Collection Mechanism to Measure

To show the impact of garbage collection, the measurement for actor garbage
collection uses three different mechanisms: No GC, GDP Only, and Local GC.
The mechanisms are described as follows:

– No GC: Data structures and algorithms for garbage collection are not used.
– GDP Only: The local garbage collector is not activated. Only the garbage

detection protocol is used.
– Local GC: The local garbage collector is activated every two seconds or in

case of insufficient memory.

The local experimental results are shown in Table 1, and the distributed
results are in Table 2. Each result of a benchmark application is the average of
ten execution times.

Table 1. Measurement on a Dual-processor Solaris Machine (measured in seconds).

Application(Argument)/Number of Actors
Mechanism Fib(38) Fib(41) NQ(13) NQ(15) MX(1002) MX(1502)

/109 /465 /133 /183 /3 /3

No GC
(Real/CPU) 1.70/2.57 5.09/8.66 1.84/2.16 6.72/11.58 1.84/1.93 2.63/2.84
GDP ONLY
(Real/CPU) 2.14/3.07 6.20/10.21 2.42/2.55 7.63/12.84 2.16/2.24 2.97/3.17
Local GC

(Real/CPU) 2.13/3.08 6.63/10.54 2.55/2.79 7.97/13.30 2.16/2.24 3.03/3.20

GDP Overhead
(Real/CPU) 25%/20% 22%/18% 32%/18% 14%/11% 17%/16% 13%/11%

LGC Overhead
(Real/CPU) 25%/20% 30%/22% 39%/29% 19%/15% 17%/16% 15%/13%

Table 2. Measurement in a distributed environment. Real time is measured in seconds.

Application(Argument)/Number of Actors
Dfibl(39) Dfibl(42) Dfibn(39) Dfibn(42) DNQ(16) DNQ(18) DMX(1002) DMX(1502)

Mechanism /177 /753 /177 /753 /211 /273 /5 /5

No GC 1.722 3.974 3.216 8.527 13.120 426.151 6.165 39.011
DGC 2.091 4.957 3.761 9.940 17.531 461.757 6.715 38.955

DGC Overhead 21% 25% 17% 17% 34% 8% 9% 0%

7 Related Work

Distributed garbage collection has been studied for decades. The area of dis-
tributed passive object collection algorithms can be roughly divided into two
categories — the reference counting (or listing) based algorithms and the indi-
rect distributed garbage collection algorithms. The reference counting (or list-
ing) based algorithms cannot collect distributed cyclic garbage — such as [22,



6, 27, 29, 5, 43, 33, 34]. They are similar to the proposed actor garbage detec-
tion protocol but they tend to be more synchronous — all of them rely on
First-In-First-Out (FIFO) communication or timestamp based FIFO (simulated
FIFO) communication, and some of them are even totally synchronous by using
remote-procedure-call [6]. Since actor communication is defined as asynchronous,
unordered, and message-driven, these algorithms cannot be reused directly by
actor systems.

There are various indirect distributed garbage collection algorithms for pas-
sive object systems. The most important feature of these algorithms is that they
collect at least some distributed cyclic garbage. Hughes’ algorithm [15] uses
global timestamp propagation from roots which requires long pause time for
garbage collection and is very sensitive to failures. Liskov et al. [23, 19] present a
client-server based algorithm which requires every client (local collector) to re-
port inter-node references to a server. Vestal [41] assumes assistance from acyclic
reference counting and tries to virtually delete a reference to see whether or not
an object is garbage, which cannot detect all cycles. Maheshwari et al. [24, 25]
and Le Fessant [21] propose heuristics based algorithms which use the minimal
number of inter-node references from a root to suspect some objects as garbage
and then verifies the suspects. Lang et al. [20] propose a group-based tracing al-
gorithm with the help of a reference listing protocol and local garbage collection
to collect garbage hierarchically, which does not support migration and must stop
the mutators while garbage collection is performing. Rodrigues et al. [31] present
a dynamically partitioning approach which starts from suspecting an object as
garbage, traces from it, and then forms a group for global garbage collection.
During global garbage collection, mutators must be suspended for local live ob-
ject marking. Overlapped partition can occur which either causes deadlocks, or
no work can be done. The algorithm proposed by Veiga et al. [39] is also heuris-
tics based, and it uses asynchronous local snapshots to identify global garbage.
Any change to the snapshots has to be updated by local mutators, forcing cur-
rent global garbage collection to quit. Hudson et al. [14] propose a generational
collector where the address space of each computing node is divided into sev-
eral disjoint blocks (cars), and cars are grouped together into several distributed
trains. Each train represents a generation of objects, and forms a ring structure
for distributed management. Objects can only move from an older generation
car to a younger generation car, and the oldest car is eventually inspected. A
car/train can be disposed of if there are no incoming inter-car/inter-train refer-
ences to it. Blackburn et al. [7] suggest a methodology to derive a distributed
garbage collection algorithm from an existing distributed termination detection
algorithm [12, 11, 26], in which the distributed garbage collection algorithm de-
velopers must design another algorithm to guarantee a consistent global state.
All of the above algorithms cannot be reused directly in actor systems because
actors and passive objects are different in nature.

The definition of garbage actors is different from the perspective of passive
object garbage collection. For instance, the marking phase of passive object
garbage collection has only two choices, the depth-first-search and the breadth-



first-search. Marking algorithms for actor garbage collection are relatively var-
ious, including Push-Pull, Is-Black by Kafura et al. [17], Dickman’s graph par-
tition merging algorithm by Dickman [10], and the actor transformation algo-
rithm by Vardhan and Agha [36, 37]. Most distributed actor garbage collection
algorithms are snapshot based due to the autonomous nature of actors. The
algorithm proposed by Kafura et al. [16] uses the Chandy-Lamport snapshot
algorithm [9] to determine a precise global state, which is expensive and requires
FIFO communication to flush communication channels. Venkatasubramanian
et al. [40] assume a two-dimensional grid network topology, and the algorithm
requires FIFO communication to flush communication channels. Puaut’s algo-
rithm [30] is client-server based, and requires each computing node to maintain
a timestamp vector to simulate a global clock. It makes a message become larger
while the number of computing nodes increases. Vardhan’s algorithm [36] trans-
forms each local actor reference graph into a passive object reference graph,
and uses Schelvis’ algorithm [32] for global garbage collection. It assumes: 1)
First-In-First-Out (FIFO) communication, 2) temporarily suspending the mes-
sage sender which is waiting for an acknowledgement from the message receiver,
and 3) periodically performs stop-the-world garbage collection. All existing actor
garbage collection algorithms violate the asynchronous, unordered assumption
of actor communication, and all of them do not support the concept of actor
migration.

8 Conclusion and Future Work

In this paper, we have redefined garbage actors to make the definition more
operational. We also introduced the concept of pseudo roots, making actor GC
easier to understand and to implement. The most important contribution of
this paper is the actor garbage collection framework for actor-oriented program-
ming languages. Implementation of actor GC is available since version 1.0 of the
SALSA programming language [45, 38]. Unlike existing actor GC algorithms, the
proposed framework does not require FIFO communication or stop-the-world
synchronization. Furthermore, it supports actor migration and it works con-
currently with mutation operations. This feature reduces interruption of users’
applications. The proposed logically centralized global garbage collector is safe
in the case of failures since it does not collect actors which are referenced by
unknown actors.

Future research focuses on the idea of resource access restrictions, which is
part of distributed resource management. By applying the resource access re-
strictions to actors, the live unblocked actor principle is no longer true — not
every actor has references to the root actors. Another direction of this research is
to modify the partitioning based passive object GC algorithms to increase scal-
ability. Last but not least, testing the GC algorithms on real-world applications
running on large-scale distributed environments is necessary to further evaluate
their scalability and performance.
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