
BLOSOM: A Framework for Mining Arbitrary
Boolean Expressions over Attribute Sets ∗

Lizhuang Zhao and Mohammed J. Zaki
Department of Computer Science

Rensselaer Polytechnic Institute, Troy, NY 12180
{zhaol2, zaki}@cs.rpi.edu

Naren Ramakrishnan
Department of Computer Science

Virginia Tech., Blacksburg, VA 24061
naren@cs.vt.edu

February 25, 2006

Abstract

We introduce a novel framework (BLOSOM) for mining (frequent) boolean expres-
sions over binary-valued datasets. We organize the space of boolean expressions into
four categories: pure conjunctions, pure disjunctions, conjunction of disjunctions, and
disjunction of conjunctions. For each category, we propose a closure operator that
naturally leads to the concept of a closed boolean expression. The closed expressions
and their minimal generators give the most specific and most general boolean expres-
sions that are satisfied by their corresponding object set. Further, the closed/minimal
generator expressions form a lossless representation of all possible boolean expressions.
BLOSOM efficiently mines several forms of frequent boolean expressions by utiliz-
ing a number of methodical pruning techniques. Experiments showcase the behavior
of BLOSOM with respect to different input settings and parameter thresholds. An
application study on real datasets is also given.

∗This work was supported in part by NSF CAREER Award IIS-0092978, DOE Career Award DE-FG02-
02ER25538, NSF grants EIA-0103708, EMT-0432098, EIA-0103660, IBN-0219332, and NIH/NIAID grant
N01-AI-40035.



1 Introduction

One of the basic goals of data mining is to discover novel patterns that are potentially
useful. Within the database community the frequent pattern mining problem, especially
itemset mining, has received a lot of attention, ever since the problem was first introduced
in [1].

Itemset mining takes as input a binary-valued dataset and discovers patterns that are
pure conjunctions of items. Itemset mining hence covers a very restricted subset of the
wider class of arbitrary boolean patterns, which may consist of conjunctions, disjunctions,
and negations of items. Mining such boolean patterns can lead to significant nuggets of
knowledge, with many potential applications in market basket analysis, web usage mining,
social network analysis, and bioinformatics. For example, in market-basket analysis, given
customer point-of-sales data, a grocery store may find that many customers buy (pizza
or cookies) and (coke or milk). In social network analysis, given the voting records for
senators in the US senate, we may discover a group of senators who support resolutions
on increased educational spending or welfare spending, but not voluntary school prayer. A
secondary analysis of the group, based on the liberal or conservative leanings of the senators
may reveal additional insight. For example, one would expect the above group to contain
mainly liberals, but if we do find some conservatives, that might be potentially interesting.
Consider also an application in bioinformatics; given the expression levels (high or low) of
genes for various cancers, we may find that cancerous tissues have high levels of genes (g1

and g5 and g13) or (g10 and g15). This might indicate that these groups of genes are
co-regulated and somehow linked to cancer. Boolean expression mining is also useful in
the problem of finding redescriptions [17], that is to find alternative ways of describing a
group of objects. For instance, we may find that political candidates who support the death
penalty but not campaign finance reform are the same as candidates who oppose amnesty
for illegal immigrants and environment and labor standards in trade considerations. This is a
redescription relating a difference of two properties to an intersection of two other properties.

It is apparent that boolean expression mining can provide tremendous value, but there are
two main challenges to contend with. The first deals with the problem of high computational
complexity. With n items (or variables), there are 22n

possible distinct boolean expressions,
far too many to enumerate. To render the search tractable we focus on only the frequent
boolean expressions. Also instead of mining all frequent boolean expressions, we focus on
mining a lossless subset that retains complete frequency information, namely closed boolean
expression. The second challenge relates to comprehension of the patterns, i.e., they may
be complex and difficult to understand. Here we focus on mining the simplest or minimal
expressions that still from a lossless representation of all possible boolean expressions. These
minimal expressions are in fact the minimal generators of the closed expressions.

In this paper, we present a novel framework, called BLOSOM (an anagram of the bold
letters in BOOLean expression Mining over attribute Sets), to simultaneously mine closed
boolean expressions over attribute sets and their minimal generators. Our main contributions
are as follows: We organize boolean expressions into four categories: (i) pure conjunctions
(and-clauses), (ii) pure disjunctions (or-clauses), (iii) conjunctive normal form (conjunction

2



of disjunctions), and (iv) disjunctive normal form (disjunction of conjunctions). The theory
and algorithms developed for (i) and (ii) are then used as building blocks to develop solutions
for (iii) and (iv). For each case, we propose a closure operator, which yields closed boolean
expressions. The closed expressions and their minimal generators give the most specific and
most general boolean expressions that are satisfied by their corresponding object set. Fur-
ther, the closed/minimal generator expressions form a lossless representation of all possible
boolean expressions in the respective category. The BLOSOM framework is can efficiently
determine minimal generators for each of the four classes of boolean expressions: and-
clauses (BLOSOM-MA), or-clauses (BLOSOM-MO), and CNF (BLOSOM-MC) and
DNF (BLOSOM-MD) expressions. In addition, BLOSOM mines closed expressions for
and-clauses (BLOSOM-CA) and or-clauses (BLOSOM-CO), and can also mine closed
DNF (BLOSOM-CD) and CNF (BLOSOM-CC) expressions. BLOSOM employs a num-
ber of effective pruning techniques for searching over the space of boolean expressions, yield-
ing orders of magnitude in speedup. These include: dynamic sibling reordering, parent-child
relationship pruning, sibling merging, threshold pruning, and fast subsumption checking.
BLOSOM utilizes a novel extraset data structure for fast frequency computations, and to
identify the corresponding transaction set (or more generally, object set) for a given arbi-
trary boolean expression. We conducted several experiments on synthetic datasets to study
the behavior of BLOSOM with respect to (w.r.t.) different input settings and parameter
thresholds. We also highlight some of the patterns found using BLOSOM on real datasets.

2 Preliminary Concepts

Boolean Expressions Let I = {i1, i2, . . . , im} be a set of binary-valued attributes or items
(also called variables). Let ∧, ∨ denote the binary operators standing for the logical and
and or, respv., and let ¬ denote the unary operator for logical negation. A literal is either
an item i or its negation ¬i. A clause is either the logical and or logical or of one or
more literals. An and-clause is a clause that has only the ∧ operator over all its literals,
and an or-clause is one that has only the ∨ operator over all its literals, e.g., i2 ∧ i4 is an
and-clause, while i3 ∨ i5 is an or-clause. We assume without loss of generality that a clause
has all distinct literals (since a clause is either an and- or an or-clause, repeated literals are
logically redundant). A boolean expression is the logical and or or of one or more clauses.
Parentheses are used to demarcate clauses, and operator precedence, when necessary. The
length of an expression, E, written as |E|, is the number of literals it has.

A boolean expression is said to be in negated normal form (NNF) if all ¬ operators
directly precede literals (any expression can be converted to NNF by pushing all negations
into the clauses). An NNF boolean expression is said to be in conjunctive normal form (CNF)
if it is an and of or-clauses. An NNF expression is said to be in disjunctive normal form
(DNF) if it is an or of and-clauses. For example, (i3 ∧ i4)∨ (i1 ∧ i5 ∧ i7) is in DNF, whereas
(i2∨i3)∧(i0∨i1∨(¬i3)) is in CNF. Note that by definition a single or-clause is in CNF, since
it is an and of a single or-clause; likewise, a single and-clause is in DNF. Furthermore, when
considering negated literals, we disallow tautologies like the or-clause i|i which is always

3



true. Similarly, we disallow contradictions like the and-clause containing i ∧ i since this is
always false. Note that a CNF expression is a tautology if and only if (iff) each one of its
clauses contains both an item and its negation. Likewise, a DNF expression is a contradiction
iff each one of its clauses contains both a variable and its negation. Thus by disallowing the
tautologies/contradictions in individual clauses, we disallow tautologies/contradictions in
any expression.

For compactness, henceforth, we denote a negated item ¬i as i, we use the symbol |
instead of ∨ to denote or, and simply omit the operator ∧ whenever there is no ambiguity;
thus two adjacent clauses without any operator will always denote an and. For example,
(i2∨ i3)∧ (i0∨ i1∨ (¬i3)) is rewritten as (i2|i3)(i0|i1|i3), and (i3∧ i4)∨ (i1∧ i5∧ i7) is rewritten
as (i3i4)|(i1i5i7).
Dataset Let I = {i1, i2, . . . , im} be a set of items, let T = {t1, t2, . . . , tn} be a set of
transaction identifiers (tids). A dataset D is then a subset of T × 2I (note that 2I denotes
the power-set of I, i.e., the set of all subsets of I); in other words, the dataset D is a set
of tuples of the form (t, t.X), where t ∈ T is the tid of the transaction containing the set of
items t.X ⊆ I. Note that any categorical dataset can be transformed into this transactional
form, by assigning a unique item for each attribute-value pair.

Given dataset D, we denote by DT the transposed dataset that consists of a set of tuples
of the form (i, i.Y ), where i ∈ I and i.Y ⊆ T is the set of tids of transactions containing i.
Figure 1 shows a dataset and its transpose, which we will use as a running example in this
paper. It has five items I = {A,B, C, D,E} and five tids T = {1, 2, 3, 4, 5}. Note that in D,
transaction t1 contains the set of items {A,C,D} (for convenience, we write it as ACD), and
in DT , the set of tids of transactions that contain item A is {1, 3, 4} (again, for convenience
we write it as 134).

D DT

tid set of items

1 ACD
2 BC
3 ABCD
4 ADE
5 E

item tidset

A 134
B 23
C 123
D 134
E 45

Figure 1: Dataset D and its transpose DT

Tidset and Support Given a transaction (t, t.X) ∈ D, with t ∈ T and t.X ⊆ I, we say
that tid t satisfies an item/literal i ∈ I if i ∈ t.X, and t satisfies the literal i if i 6∈ t.X. For
a literal l, the truth value of l in transaction t, denoted Vt(l) is given as follows:

Vt(l) =

{
1 if t satisfies l

0 if t does not satisfy l

4



We say that a transaction t ∈ T satisfies a boolean expression E if the truth-value of E,
denoted Vt(E), evaluates to true when we replace every literal l in E with Vt(l). For any
boolean expression E, t(E) = {t ∈ T : Vt(E) = 1} denotes the set of tids (also called a
tidset), that satisfy E.

The support of a boolean expression E in dataset D is the number of transactions which
satisfy E, i.e., |t(E)|. An expression is frequent if its support is more than or equal to a
user-specified minimum support (min sup) value, i.e., if |t(E)| ≥ min sup. For disjunctive
expressions, we also impose a maximum support threshold (max sup) to disallow any ex-
pression with too high a support. Setting min sup = 1 and max sup = ∞ allows mining all
possible expressions.
Boolean Expression Mining Tasks Given a dataset D and support thresholds min sup
and/or max sup, we are interested in mining various types of frequent boolean expressions
over the item space, such as and-clauses (i.e., pure conjunctions), or-clauses (i.e., pure
disjunctions), CNF and DNF. Moreover, instead of mining all such frequent boolean expres-
sions, we focus our attention on mining only (frequent) closed boolean expressions and their
minimal generators.

Before presenting the BLOSOM framework, we first study the structure and properties
of four classes of boolean expressions; we consider each case separately – and-clauses, or-
clauses, CNF and DNF. For simplicity of exposition, we restrict our examples to only positive
literals, but our approach is applicable to negated literals as well.

3 Mining Simple Boolean Expressions: Clauses

In this section we give a structural characterization of pure or-clauses and pure and-clauses.

3.1 Mining or-clauses

We first consider or-clauses or pure disjunctive boolean expressions. Given dataset D,
and thresholds min sup and max sup, the goal is to mine or-clauses that occur in at least
min sup and in at most max sup transactions. To the best of our knowledge, mining closed
and minimal or-clauses have not been studied previously.

Let’s review a few facts from lattice theory [7]. Let (P,⊆) be a partially ordered set
(also called a poset). Let X,Y ∈ P and let f : P → P be a function on P . f is called
monotone if X ⊆ Y ⇒ f(X) ⊆ f(Y ). We say that f is idempotent if f(X) = f(f(X)). f
is called extensive (or expansive) if X ⊆ f(X). Finally, f is called intensive (or contractive)
if f(X) ⊆ X. A closure operator on P is a function C : P → P such that C is monotone,
idempotent, and extensive. X is called closed if C(X) = X. On the other hand, a kernel
operator on P is a function K : P → P , which is monotone, idempotent, and intensive. X
is called open if K(X) = X. Thus, the set of all closed and open members of P form the
fixed-point of the closure (C) and kernel (K) operators, respectively.

Given two posets (P,⊆) and (Q,≤), a monotone Galois connection between them consists
of two order-preserving functions, φ : P → Q and ψ : Q → P , such that for all X ∈ P and

5



Y ∈ Q, we have: X ⊆ ψ(Y ) ⇐⇒ φ(X) ≤ Y . Finally it is known that the composite
function ψ ◦ φ : P → P is a closure operator, whereas the function φ ◦ψ : Q → Q is a kernel
operator, on P and Q, respectively [7].

Now, let E∨ be the set of all possible or-clauses over the set of items I; T is the set of
all tids as before. For an or-clause X ∈ E∨, let L(X) = {l|l is a literal in X} denote the set
of its literals.

Definition: Given X,Y ∈ E∨, we define the relation ⊆ between or-clauses as follows: X⊆Y
iff L(X) ⊆ L(Y ).

Then the relation ⊆ induces a partial order over E∨. For example, A|C⊆A|B|C|D, since
L(A|C) = AC ⊆ ABCD = L(A|B|C|D).

Lemma 1 Let X ∈ E∨ be an or-clause, and let l ∈ X be some literal in X. Then t(X) =⋃
l∈X t(l).

Let’s consider our example dataset from Figure 1. Starting from DT , which has the
tidsets for individual items, we can obtain all or-clauses by simply taking the union of the
tidsets as we enumerate the possible candidate clauses. Figure 2 shows the partial order
(E∧,⊆) obtained from D using min sup = 1 and max sup = |D| = 5. Note that in general
max sup should be less than |D|, since an or-clause that is always true in D is not likely to be
interesting. Figure 2 also shows the tidset for each clause. For example, t(A|B|C|D) = 1234.
Closed or-Clauses: Let (E∨,⊆) be the partial order over or-clauses, and let (2T ,⊆) be
the partial order over the tidsets under the usual subset (⊆) relationship. Let’s define a
Galois connection between these two partial orders. Below for convenience we also write an
or-clause l1|l2| · · · |lk as

∨{l1l2 · · · lk}.

Theorem 2 Given posets (E∨,⊆) and (2T ,⊆). Let X ∈ E∨ and Y ∈ 2T . Then the following
two mappings form a monotone Galois connection over E∨ and 2T :

φ = t : E∨ 7→ 2T , t(X) = {t ∈ T | t satisfies X}
ψ = i∨ : 2T 7→ E∨, i∨(Y ) =

∨{i ∈ I | t(i) ⊆ Y }

Since (t, i∨) form a monotone Galois connection, it follows immediately that C∨ =
i∨ ◦ t : E∨ → E∨ forms a closure operator and K∨ = t ◦ i∨ : 2T → 2T forms a kernel
operator for or-clauses. For example, in our example dataset from Figure 1, C∨(A|C) =
i∨(t(A|C)) = i∨(1234) = A|B|C|D. Thus A|B|C|D is a closed or-clause. On the other
hand K∨(234) = t(i∨(234)) = t(B) = 23. Thus 23 is an open tidset. It is also easy to see
that the corresponding tidset for a closed or-clause is always open. Figure 2 shows all the
closed or-clauses (enclosed in boxes) and their corresponding open tidsets obtained from
our example dataset. For example, the closed or-clause A|D has the open tidset 134. We
use the notation C∨(E∨) to denote the set of all closed or-clauses.
Minimal or-Clauses: Given any set X of subsets over a universe U , we denote by min⊆(X)
the set of all minimal members in X, w.r.t. the subset operator ⊆. Let X ∈ E∨ be a closed
or-clause. We say that Y⊆X,Y 6= ∅ is a generator of X if C∨(Y ) = X. Y is called a proper
generator if Y 6= X. By definition, a proper generator cannot be closed. Let G(X) be the

6



B E

45

B|EB|DA|CA|B

A|B|C A|B|D A|C|D B|C|D

C|D

A|B|C|D

C

B|C

123
A D

A|D

A|B|E A|C|E B|C|E B|D|E C|D|E

B|C|D|EA|C|D|EA|B|D|EA|B|C|E

A|B|C|D|E

A|D|E

D|EA|EC|E
1234 1234 1234 1234

1234 1234 1345
12345 12345

12345

134
134

134

23

123 2345
12345 1345 1345

1234 1234

1234

12345

12345 12345 12345

123451234512345

Figure 2: or-Clauses: Closed (rectangles) and Minimal (circles). Groupings denote genera-
tors

set of all generators of X, including X. Then M(X) = min⊆{Y ∈ G(X)}, the set of all
the minimal elements of G(X) are called the minimal generators of X. The unique maximal
element of G(X) is X.

Lemma 3 Let X = C∨(X). If Y is a generator of X then t(Y ) = t(X).

By Lemma 3, t(Y ) = t(X) = T for all generators Y ∈ G(X). We conclude that X is the
unique maximal or-clause that describes the set of objects T . On the other hand, a minimal
generator of X is the minimal or simplest or-clause that still describes the same object set T .
In other words, the closed clause X is the most specific expression that describes the tidset T ,
whereas the minimal generators are the most general expressions that describe T . The set of
all minimal generators of closed or-clauses in E∨ is given as MC∨(E∨) =

⋃
X∈C∨(E∨)M(X).

Figure 2 shows the groups of all generators of closed or-clauses in our example dataset
(from Figure 1). Within each group the unique maximal element is the closed clause (enclosed

7



in a rectangle). The minimal elements of each group are the minimal generators (enclosed in
dark circles). It is easy to see that the tidsets are the same for each member of a group, but
different across groups. The information about tidsets, closed or-clauses and their minimal
generators is summarized in Table 1.

Tidset Closed Min Generators

23 B B

45 E E
123 B|C C

134 A|D A,D

1234 A|B|C|D A|B, A|C, B|D,C|D
1345 A|D|E A|E, D|E
2345 B|E B|E
12345 A|B|C|D|E A|B|E, B|D|E, C|E

Table 1: Closed (CO) and Minimal (MO) or-Clauses

It should be apparent at this point that both closed or-clauses (CO) and minimal or-
clauses (MO), individually, serve as a lossless representation of the set of all possible (fre-
quent) or-clauses. We are particularly interested in minimal or-clauses, since they represent
the most general expressions, and as such may be easier to comprehend. We would like to
gain further insight into the structure of these minimal generators.

We give two separate characterizations of the minimal generators, one based on the closed
clauses and the other a direct one. They are both based on the notion of hitting sets. Let
X = {X1, X2, · · · , Xk} be a set of subsets over some universe U . The set Z ⊆ U is called a
hitting set of X iff Z ∩Xi 6= ∅ for all i ∈ [1, k]. Let H(X) denote the set of all hitting sets of
X. Z is called a minimal hitting set if there does not exist another hitting set Z ′, such that
Z ′ ⊂ Z.

Let X be a closed or-clause, we define the lower-shadow of X as the set X` = {Xi}i∈[1,k]

where for all i ∈ [1, k], Xi ⊂ X, Xi is closed, and there doesn’t exist any other closed or-
clause Y , such that Xi ⊂ Y ⊂ X. In other words, the lower shadow of X is the set of closed
or-clauses that are immediate subsets of X. We further define the differential lower-shadow
of X as the set Xδ = {X −Xi}i∈[1,k], where Xi ∈ X`.

Theorem 4 Let X be a closed or-clause, and let Xδ be the differential lower shadow of X.
Then M(X) = min⊆{Z ∈ E∨ | Z ∈ H(Xδ)}.

The theorem states that the minimal generators of a closed or-clause X are exactly
the minimal hitting sets of the differential lower shadow of X. For example, consider the
closed clause X = A|B|C|D|E in Figure 2. We have as its lower shadow the set of closed
clauses X` = {A|B|C|D, A|D|E, B|E}. Thus the differential lower shadow of X is given

8



as Xδ = {E, B|C, A|C|D}. The minimal hitting sets of Xδ are given as min⊆{H(Xδ)} =
{C|E, A|B|E, B|D|E}. We can see from Table 1, that the minimal hitting sets are identical
to the minimal generators of A|B|C|D|E.

The above characterization of minimal generators relies on knowing the closed sets and
their lower shadows. There is in fact a direct structural description. We define a union tidset
to be a tidset obtained by finite unions over the set of tidsets for single items, t(i)|i ∈ I. Let
U be the set of all distinct union tidsets. For a union tidset T ∈ U , we define the transaction
set of T , as the set R(T ) = {t.X ⊆ I|t ∈ T, (t, t.X) ∈ D}, i.e., the set transactions in D
with tids t ∈ T .

Theorem 5 Let T ∈ U be a union tidset. Then the set min⊆{Z ∈ E∨ | Z ∈ H(R(T )) and
t(Z) = T} is identical to the minimal generators of the closed or-clause X which has the
corresponding open tidset T = t(X).

The above theorem states that every distinct tidset T obtained as a union of other
tidsets produces minimal generators for the closed or-clause associated with the tidset T .
For example, let T = 1345 = t(A) ∪ t(E) in our example database in Figure 1. Then
R(T ) = {ACD,ABCD, ADE, E}. The hitting sets Z with t(Z) = T and that are minimal
are given as follows {A|E, D|E}. Note that C|E is a minimal hitting set of R(T ), but
t(C|E) = 12345 6= T , thus we reject it. We can see from Table 1 that these minimal hitting
sets form the minimal generators of the closed or-clause A|D|E with tidset T = 1345.

3.2 Mining and-clauses

Closed and-clauses have been well studied in data mining as closed itemsets [15], as well
as in the Formal Concept Analysis as concepts [9]. The notion of minimal generators for
and-clauses has also been previously proposed in [3]. We thus focus on our novel structural
insights for and-clauses.

Given posets (P,⊆) and (Q,≤), a anti-monotone Galois connection [7] between them
consists of two order-reversing functions, φ : P → Q and ψ : Q → P , such that for all
X ∈ P and Y ∈ Q, we have: X ⊆ ψ(Y ) ⇐⇒ Y ≤ φ(X). Also, the composite functions
ψ ◦ φ : P → P and φ ◦ ψ : Q → Q are both closure operators on P and Q, respectively [7].

Let E∧ be the set of all and-clauses over the set of items I, let (E∧,⊆) be the partial
order over E∧, and let (2T ,⊆) be the partial order over 2T . Let X ∈ E∧ and Y ∈ 2T , then
the following two mappings form an anti-monotone Galois connection [9]:

φ = t : E∧ 7→ 2T , t(X) = {t ∈ T | t satisfies X}
ψ = i∧ : 2T 7→ E∧, i∧(Y ) = {i ∈ I | Y ⊆ t(i)}

Note that for or-clauses i∨ and t are both order-preserving, and form a monotone Galois
connection, whereas for and-clauses i∧ and t are both order-reversing and form an anti-
monotone Galois connection. Note also that i∧(Y ) is the set of items i with Y ⊆ t(i),
whereas i∨(Y ) is the set of items i with t(i) ⊆ Y . This formulation of i∧ is novel, but
equivalent to that in [9].

Since (i∧, t) forms a anti-monotone Galois connection, C∧ = i∧ ◦ t : E∧ → E∧ forms
a closure operator for and-clauses [9]. Due to the anti-monotonicity, the mapping t ◦ i∧ :

9



2T → 2T also forms a closure operator (expansive) on tidsets, whereas for or-clauses the
mapping t ◦ i∨ was a kernel operator (contractive). We use the notation C∧(E∧) to denote
the set of all closed and-clauses. Note that as before, Y is a minimal generator for a closed
and-clause X iff Y is a minimal subset of X such that t(Y ) = t(X). Let M(X) denote
the set of minimal generators of X, and let MC∧(E∧) =

⋃
X∈C∧(E∧)M(X) be the set of all

minimal generators of and-clauses.

13

13 13

13 13

13

123 45
134134

134 3 4 423 3

43

A D B
23

DEBC AC AEBDAD AB

ABCD

ABD ACDABC BCD

C E

CD

ADE

Figure 3: Closed and Minimal and-Clauses

Consider our example dataset from Figure 1. Figure 3 shows the set of all closed and-
clauses (in rectangles) and their minimal generators (in circles), as well as the groupings of
the generators for and-clause. The tidset for each clause is also shown. As in the case of
or-clauses, it is clear that the closed and minimal and-clauses are the most specific and most
general clauses relating to a group of tidsets, and they both form a lossless representation of
all and-clauses. Table 2 lists the set of all closed (CA) and-clauses, as well as their minimal
generators (MA).

In terms of the strucure of minimal generators for and-clauses, an analog of Theorem 4,
describing the minimal generators of a closed and-clause X = E∧(X) as the minimal hitting

10



Tidset Closed Min Generators

3 ABCD AB, BD
4 ADE AE, DE
13 ACD AC, CD
23 BC B
45 E E
123 C C
134 AD A, D

Table 2: Closed (CA) and Minimal Generators (MA) for and-clauses

sets of its differential lower shadow is already known [16]. We focus instead on a novel
characterization of the minimal generators for and-clauses. We define an intersection tidset
to be a tidset obtained by finite intersections over the set of tidsets for single items, t(i)|i ∈ I.
Let M be the set of all distinct intersection tidsets. As before, for an intersection tidset
T ∈ M, we define the transaction set of T , denoted R(T ), as the set of transactions with
tids t ∈ T . For example, T = 13 is an intersection tidset since it can be obtained as the
intersection of t(A) and t(C). The transaction set of T is the set of transactions with tids
1, and 3, given as R(T ) = {ACD,ABCD}.

Theorem 6 Let T ∈ M be an intersection tidset. Then the set min⊆{Z ∈ E∧ | Z ∈
H(R(T )) and t(Z) = T} is identical to the minimal generators of the closed and-clause X
which has the corresponding closed tidset T = t(X).

This theorem gives a novel structural description of the minimal and-clauses. It states
that every distinct tidset T obtained as a finite intersection of other tidsets produces minimal
generators for some and-clause. For example, let T = 13 = t(A) ∩ t(C) in our example
database in Figure 1. Then R(T ) = {ACD, ABCD}. The hitting sets Z of R(T ) with
t(Z) = T and that are minimal are given as follows {AC,CD}. Note that A is a minimal
hitting set, but t(A) = 134, thus we reject it. Likewise we reject hitting sets C,D,AB,BD.
We can see from Table 2 that the minimal hitting sets are identical to the minimal generators
of the closed and-clause ACD with tidset T = 13.

4 Mining Complex Boolean Expressions: Normal Forms

Our approach for DNF and CNF mining builds upon the pure or- and and-clauses. We
give novel structural characterizations for the minimal DNF and CNF expressions below.

11



4.1 Mining DNF Expressions

Let Ednf denote the set of all boolean expression in DNF, i.e., each X ∈ Ednf is an or of
and-clauses. For convenience we denote a DNF-expression X as X =

∨
Xi, where each

Xi is an and-clause. By definition E∧ ⊆ Ednf. Also E∨ ⊆ Ednf, since an or-clause is a
DNF-expression over single literal (and) clauses. We assume we have already computed the
closed (C∧(E∧)) and minimal (MC∧(E∧)) and-clauses, and their corresponding tidsets.

Note that any DNF-expression X =
∨

Xi is equivalent to the DNF expression X ′ =∨
C∧(Xi), since any tidset that satisfies Xi must satisfy C∧(Xi) as well. Similarly X is also

equivalent to the DNF expression X ′′ =
∨M(Xi), since any t(Xi) = t(M(Xi)).

We say that X =
∨

Xi is a min-DNF-expression if for each and-clause Xi there does
not exist another Xj (i 6= j) such that Xi ⊆ Xj. Note that any DNF-expression can easily
be made a min-DNF-expression by simply deleting the offending clauses. For example in
the DNF-expression (AD)|(ADE), we have AD ⊆ ADE; thus the expression is logically
equivalent to its min-DNF form (AD). For any DNF-expression X, we use the notation

mindnf(X) to denote its min-DNF form. Given X,Y ∈ Ednf, with X =
∨

Xi and Y =
∨

Yi,
we say that X is more general than Y , denoted X⊆Y , if there exists a 1-1 mapping f that
maps each Xi ∈ X to f(Xi) = Yj ∈ Y , such that Xi ⊆ Yj.
Closed DNF: We now define a closure operator for DNF expressions. First, we consider
DNF expressions consisting only of closed and-clauses. Then if we treat each Xi ∈ C∧(E∧)
as a composite item, we can define two monotone mappings that form a monotone Galois
connection as follows: Let X =

∨
Xi be a DNF expression, such that Xi ∈ C∧(E∧), and let

Y ∈ 2T . Define t(X) = {t ∈ T | t satisfies X}, and id(Y ) =
∨{Xi | Xi ∈ C∧(E∧) ∧ t(X) ⊆

Y }. This implies that Cd = id ◦ t is a closure operator. For example, consider each closed
and-clause in Table 2 as an “item”. Consider X = ACD|E. Cd(X) = id(t(ACD|E)) =
id(1345) = ABCD|ADE|ACD|E|AD, which is a closed DNF expression. However it is
logically redundant. What we want is the maximal min-DNF expression equivalent to Cd(X),
which is ACD|BC|E.
Minimal DNF: Let T ∈ 2T be a union tidset obtained as the finite union of tidsets of closed
and-clauses. As before the transaction set of T , denoted R(T ), as the set of transactions in
D with tid t ∈ T . Analogous to Theorem 5 for or-clauses, we can characterize the minimal
DNF expressions as the set min⊆{Z ∈ Ednf | Z ∈ H(R(T )) and t(Z) = T}, which is the
set of all minimal hitting sets of R(T ) having the tidset T . For example, consider the union
tidset T = 34 (which is the union of t(ABCD) and t(ADE). The minimal DNF hitting sets
that hit exactly tids 3 and 4 are AB|AE, AB|DE, BD|AE, BD|DE. In fact the minimal
DNF hitting sets can be obtained directly from minimal and-clauses.

Theorem 7 Let T be a union tidset, and let X be the closed DNF-expression with t(X) = T .
Then M(X) = min⊆{Z =

∨
Zi|Zi ∈MC∧(E∧) and t(Z) = T}.

For example, for T = 34, we see in Table 2 that {AB,BD} are the minimal genera-
tors with tidset 3, and {AE, DE} have tidset 4. Taking the minimal or expressions ob-
tained from these two sets, we get all the minimal generators having tidset T = 34, namely

12



AB|AE,AB|DE,BD|AE,BD|DE. Table 3 shows the closed DNF expressions and their
minimal generators, in addition to those shown in Tables 1 and 2. Some entries are repeated
since, the closed expressions in DNF have changed. Also the new union tidsets are marked
in bold.

Tidset Closed (maximal min-DNF) Min Generators

34 (ABCD)|(ADE) (AB)|(AE), (AB)|(DE),
(BD)|(AE), (BD)|(DE)

123 (ACD)|(BC) C

134 (ACD)|(ADE) A,D

234 (ADE)|(BC) B|(AE), B|(DE)
345 (ABCD)|E (AB)|E, (BD)|E
1234 (ACD)|(ADE)|(BC) A|B,A|C, B|D, C|D
1345 (ACD)|E A|E, D|E
2345 (BC)|E B|E
12345 (ACD)|(BC)|E A|B|E, B|D|E, C|E

Table 3: Additional/changed Closed (CD) and Minimal Generators (MD) for DNF

4.2 Mining CNF Expressions

Let Ecnf denote the set of all boolean expressions in CNF, i.e., each X ∈ Ecnf is an and
of or-clauses. By definition E∨ ⊆ Ecnf. Also E∧ ⊆ Ecnf, since an and-clause is a CNF-
expression over (or) clauses consisting of a single literal. For convenience we denote a
CNF-expression X as X =

∧
Xi, where each Xi is an or-clause.

We say that X is a min-CNF-expression if for each or-clause Xi there does not exist
another Xj (i 6= j) such that Xi⊆Xj. Note that any CNF expression can easily be made a
min-CNF-expression by simply deleting the offending clauses, e.g., for the CNF expression
(B|C)(A|B|C|D), we have B|C⊆A|B|C|D; thus the expression is logically equivalent to its

min-CNF form (B|C). For any CNF expression X, we use the notation mincnf(X) to denote

its min-CNF form. Let Ecnf denote the set of all min-CNF-expressions. Given X, Y ∈ Ecnf,
with X =

∧
Xi and Y =

∧
Yi, we say that X is more general than Y , denoted X⊆Y , if

there exists a 1-1 mapping f that maps each Xi ∈ X to f(Xi) = Yj ∈ Y , such that Xi⊆Yj.
Analogously to DNF expressions, we can define the closed and minimal CNF expressions

directly from the set of all closed (C∨(E∨)) and minimal (MC∨(E∨)) or-clauses, and their
corresponding tidsets.

Let’s treat each Xi ∈ C∨(E∨) as a composite item, we can define two anti-monotone
mappings that form an anti-monotone Galois connection as follows: Let X =

∧
Xi be a CNF

expression, such that Xi ∈ C∨(E∨), and let Y ∈ 2T . Define t(X) = {t ∈ T | t satisfies X},

13



and id(Y ) =
∧{Xi | Xi ∈ C∨(E∨) ∧ Y ⊆ t(X)}. This implies that Cc = ic ◦ t is a closure

operator. For example, consider each closed or-clause in Table 1 as an “item”. Consider
X = (A|D)(B|C). Cc(X) = ic(t((A|D)(B|C))) = id(13) = (B|C)(A|D)(A|B|C|D)(A|D|E)
(A|B|C|D|E), which is closed. However it is logically redundant. What we want is the
maximal min-CNF expression equivalent to Cc(X), which is (A|D|E)(B|C).

Theorem 8 Let T ∈ 2T be an intersection tidset obtained as the finite intersection of tidsets
of closed or-clauses. Let X be the closed CNF-expression with t(X) = T . Then M(X) =
min⊆{Z =

∧
Zi|Zi ∈MC∨(E∨)and t(Z) = T}.

Tidset Closed (maximal min-CNF) Min Generators

3 B(A|D) AB, BD

13 (B|C)(A|D|E) AC, CD

34 (A|D)(B|E) A(B|E), D(B|E)
234 (A|B|C|D)(B|E) (A|B)(B|E), (A|C)(B|E),

(B|D)(B|E), (C|D)(B|E)
345 (A|D|E)(B|E) (A|E)(B|E), (D|E)(B|E)

Table 4: Additional/changed Closed (CC) and Minimal Generators (MC) for CNF

For example, let T = 13. We can obtain 13 as the intersection of several minimal or-
clauses’ tidsets, e.g., the minimal or-clauses C and {A|E, D|E}. However the minimal
among all of these are C and {A,D}, giving the two minimal CNF expressions: AC and
CD. Table 4 shows the closed CNF expressions and their minimal generators in addition to
those already shown in Tables 1 and 2, or those that have changed.

5 The BLOSOM Framework

The BLOSOM framework for mining arbitrary boolean expressions supports several differ-
ent algorithms, as listed in Table 5. Our main focus in on efficiently mining the minimal
boolean expressions due to their inherent simplicity. We do propose algorithms for mining
closed clauses, which can easily be extended to mine closed normal forms.

BLOSOM assumes that the input dataset is D, and it then transforms it to work with
the transposed dataset DT . Starting with the single items (literals) and their tidsets, BLO-
SOM performs a depth-first search (DFS) extending an existing expression by one more
“item”. BLOSOM employs a number of effective pruning techniques for searching over
the space of boolean expressions, yielding orders of magnitude in speedup. These include:
dynamic sibling reordering, parent-child pruning, sibling merging, threshold pruning, and
fast subsumption checking. Further BLOSOM utilizes a novel extraset data structure for
fast frequency computations, and to identify the corresponding transaction set for a given
arbitrary boolean expression. Below, we give algorithmic details for mining the simple (or-
and and-clauses) and complex expressions (DNF and CNF).

14



Algorithm Mining Task

BLOSOM-MO Minimal or-clauses
BLOSOM-MA Minimal and-clauses
BLOSOM-MD Minimal DNF expressions
BLOSOM-MC Minimal CNF expressions
BLOSOM-CO Closed or-clauses
BLOSOM-CA Closed and-clauses
BLOSOM-CD Closed DNF expressions
BLOSOM-CC Closed CNF expressions

Table 5: Algorithms in the BLOSOM Framework

5.1 BLOSOM-MO: Minimal or-Clauses

BLOSOM-MO mines all the minimal or-generators (its pseudo-code is given in Figure 4).
It takes as input the set of parameter values min sup, max sup, max item and a dataset
D (we implicitly convert it to DT ). The max item constraint is used to limit the maximum
size of any boolean expression, if desired. BLOSOM-MO conceptually utilizes a DFS tree
to search over the or-clauses. Each or-clause is stored as a set of items (the or is implicitly
assumed). Thus each node of the search tree is a pair of (I × T ), where I is an item set
denoting an or-clause and T is a tidset. (as shown in Figure 5). In the description below,
we use MO to denote a minimal generator of or-clauses. Before describing the pseudo-code
we briefly describe each of the optimizations used in the BLOSOM-MO.

5.1.1 Pruning and Optimization Techniques

Threshold Pruning: BLOSOM uses the three thresholds to prune the trivial generators,
based on min sup,max sup and max item. Furthermore, if the item set I of the current
node equals the set of all items I, then we stop its expansion immediately, since any of its
descendants will be pruned.
Dynamic Sibling Reordering: Before expanding a group of sibling nodes in the search
tree, BLOSOM-MO dynamically reorders them by their tidset size dynamically. Since
smaller tidsets are more likely to be contained in longer previous tidsets, this can prune out
many branches.
Relationship Pruning: BLOSOM-MO makes use of two kinds of relationship pruning:
parent-child and sibling based. During the DFS expansion, if the tidset of a node is the
same as any of its parents’, the node and all of its descendants are pruned (based on the
definition of minimal generators). If some sibling nodes of the same parent node have the
same tidset, they are merged together by unioning their itemsets into a “composite node”.
A prefix item set data structure is utilized to deal with siblings merging. All sibling nodes
of the same parent share a common prefix, containing the item sets on the path from the

15



Input : min sup, max sup, max item and dataset D in vertical format
Output : hash table M containing all MO of D
Initialization: NL = ∅; for each item i of D, add set pair (t(i)× {i}) to NL; call

BLOSOM-MO(∅, NL, 0, 0)

BLOSOM-MO( P0, NL0, sup0, sum0 )1

quicksort NL0 = {ni} in decreasing order of |ni.T |2

while ∃ n1 and n2 ∈ NL0 such that n1.T = n2.T do3

n1.I ← n1.I ∪ n2.I /* sibling merging */4

NL0 ← NL0 − n25

foreach n1 ∈ NL0 do6

P1 ← P0 + n1.I7

sup1 = sup0 + |n1.T |8

sum1 = sum0 + summation(n1.T ) /* to reduce conflicts mapped to the same9

entry further */
if sup1 > max sup then10

continue /* goto line 6 */11

if sup1 ≥ min sup then12

foreach combination I1 of P1 do13

/* I1 is generated by picking one and only one item from each P ∈ P1.14

*/
delete all supersets of I1 in M[sup1×sum1]15

M[sup1×sum1] ←M[sup1×sum1] + I116

if |P1| ≥ max item then17

continue /* goto line 6 */18

NL1 ← ∅19

foreach n2 ∈ NL0 ranking behind n1 do20

n3.T ← n2.T − n1.T /* get extraset */21

if |n3.T | 6= ∅ then22

n3.I ← n2.I23

NL1 ← NL1 + n324

if NL1 6= ∅ then25

BLOSOM-MO( P1, NL1, sup1, sum1 )26

Figure 4: BLOSOM-MO Algorithm

root to the current node. The prefix also saves memory, since all the siblings do not need to
keep their separate prefix copies.
Fast Subsumption Checking: BLOSOM-MO maintains a hash table for storing the
current MO; the hash key of the MO is the tidsum (summation of tids in T ) of its transaction

16



set T . An element of the hash table is a pair (T ×MS), where T is a tidset and MS is the
set of T ’s MOs. Subsumption checking on MOs guarantees that the current generators are
minimal, i.e. for some transaction set T , any two of its generators do not contain each other.
Before adding a new generator G we remove any of its supersets in MS. Due to the nature
of the enumeration process, it is not necessary to check if G is minimal, i.e., G cannot be a
superset of any MO of entry T , since otherwise G would have been pruned previously by one
of its ancestor nodes using the parent-child pruning. So we only need to do the subsumption
checking in one direction.
Extraset Technique: BLOSOM-MO utilizes a novel extraset technique to save set
operation time and memory for tidsets. The DFS expansion involves a lot of tidset unions,
and each node has to maintain such an intermediate set, which is a superset of the parent
node’s tidset. So for each node, we simply retain the extra-part of its parent’s tidset in a
data structure we call extraset, which loses no information, and yet saves a lot of memory
while storing the intermediate tidsets. In addition, the set union operations on the original
tidset are changed to the operations on the extraset, which also saves a lot of time, due to
the small size of extrasets.
No-Transaction-Set Optimization: Sometimes one needs only the frequency of a MO,
instead of the entire tidset. If tidsets are not required, we can avoid keeping large tidsets
for each generator and the corresponding costly comparisons. The additional overhead is to
separate those generators that share the same hash entry (if they share the same tidsum,
but no the same tidset); however, since most entries have one or only a few generators for
most datasets, this overhead is minimal.

5.1.2 Algorithmic Description

We now describe the BLOSOM-MO algorithm in detail, based on the pseudo-code in
Figure 4. It is a recursive algorithm that, at each call accepts a current prefix queue P0

containing the I sets on the path from the root to the current node, a node list NL0 containing
a group of sibling nodes that share the same parent, and two parameters of the current tidset
T : support (|T |) and summation (

∑
t∈T t). We use these instead of the original tidset T to

save memory and corresponding copying cost, which proves very effective. The initial call
is made with an empty P0, the NL containing all the single items, and the support and
summation are set to 0. Line 2 sorts the current sibling nodes in NL0 in decreasing order
of support, which speeds up the convergence of the algorithm (dynamic sibling reordering).
Lines 3-5 merge the sibling nodes with the same tidset T by unioning their item sets together
(sibling merging). Lines 6-26 form the main loop to process each of the sibling nodes one by
one. Line 7 updates the current prefix queue for further recursive calls. Line 8-9 generates the
current transaction set support sup1 and summation sum1 by adding tids from the extraset
n1.T . Lines 10-11 check the max sup threshold. Lines 12-16 try to add the current sibling
node satisfying min sup and max sup to the hash table M. If the node satisfies max sup
(line 10) and min sup (line 12), then the algorithm will try to add every possible queue P1

item combination to the current MO hash table (lines 13-16). Each combination is generated
by picking one and only one item from each P ∈ P1. At the same time, we also need to do

17



subsumption checking and to delete any supersets of the new MO I1 to be added (line 15).
The new MO I1 must be minimal, i.e., it should not be subsumed by any current MO in the
hash table (fast subsumption checking). Lines 17-18 check the max item threshold. Lines
19-24 produce node n1’s valid children nodes NL1 generated with other sibling nodes ranked
after n1 (in sorted order). BLOSOM-MO tries every node pair (line 20) and generates
children nodes (line 21). It only saves the extraset (n1.T ∪ n2.T − n1.T = n2.T − n1.T )
to save memory and set operation time, which proves very efficient for dense datasets. If a
child node is not subsumed by its parents (line 22), then it is added to the valid children
node list (lines 23-24) (note: line 22 constitutes the parent-child relationship pruning). Lines
25-26 make a recursive call with node n1’s valid children.

After the steps showed in Figure 4, BLOSOM-MO needs to do some further work to
separate those generators that have the same support and tidsum but actually have different
tidsets. Since most entries of hash table M have only one or a few generators for most
datasets, the separating stage is not too costly.

5.1.3 An Example

and reorder
merge

and reorder
merge

P =0 {{C}}

T =0 {1,2,3}
P =0 {{B}}

T =0 {2,3}

P =0 {{A,D},{B,C}}
T =0 {1,2,3,4}

P =0 {}
T =0 {}

P =0 {{A,D}}
T =0 {1,3,4}

{}

C E
{1,2,3} {4,5}

{4,5}
C

{1,2,3}
E

{2,3}
B

D
{1,3,4}

B
{2,3}

A
{1,3,4}

{1,3,4}
{A,D}

{2} {2} {5}
C EB

E
{5}{2}

{5}
E

B E E
{} {4,5} {4,5}

{B,C}

sup=3, sum=8

sup=4, sum=10

sup=3, sum=6 sup=2, sum=5

sup=0, sum=0

Figure 5: DFS Search Tree

18



Here we show an example of how BLOSOM-MO works on our example dataset DT

from Figure 1. Figure 5 shows the DFS search tree. Initially the prefix queue P0 is empty,
and node list NL contains five single items. After sibling merging and reordering, they
become AD×134, C×123, B×23 and E×45 as shown in Figure 5. From P1={A,D}, we
get two item combinations: A and D. We thus add A and D to the MOs hash table M
with the entry T1 = ∅ ∪ 134 = 134, sup = 3, and tidsum = 1 + 3 + 4 = 8, as shown in
Table 6. In the table the subscript numbers represent the order in which MOs are added to
the table. Then we expand node {A,D}×134 by combining with node C×123, B×23 and
E×45, and save the extraset of the tidset union for each combination pair as follows. Since
X∪Y−X=Y−X, the expansion results are 123−134=2; 23−134=2; and 45−134=5, respec-
tively. After reordering and merging, NL1 = {{B, C}×2, E×5}. Along with P0={{A,D}}
and T1=134, BLOSOM is called recursively. Next step from P1={{A,D}, {B,C}}, we get
four combinations: {A,B}, {A,C}, {B, D} and {C,D}, and we add them to the hash table
with entry: T1=134 ∪ 2=1234, sup = 4, tidsum = 10. Readers can continue this process
until all the MOs are generated as shown in Table 6 in subscript order. Please note in
the path Root→C→B, node B×∅ is pruned using parent-child relationship because of its
empty extraset (i.e. generator BC is not minimal and generates the same tidset as one of
its parents). In addition, when generator CE is added to entry T = 12345 of M, previously
added MOs ACE and CDE of the entry will be deleted (as marked by underlines) for they
are supersets of generator CE.

Note that in Table 6, the tidsets T are actually not kept during the mining process, if
only support is desired. In this case we then have to verify the generators in each entry of
(sup×sum) = (4×10), (5×15) and (4×13) to assure they belong to the same entry. For this
example, they do. Otherwise, we need to separate them into different entries.

T sup tidsum Minimal or Generators

134 3 8 {A}1, {D}1

1234 4 10 {AB}2, {AC}2, {BD}2, {CD}2

12345 5 15 {ABE}3, {ACE}3, {BDE}3, {CDE}3

{CE}6

1345 4 13 {AE}4, {DE}4

123 3 6 {C}5

23 2 5 {B}7

2345 4 14 {BE}8

45 2 9 {E}9

Table 6: Addition of Minimal or Generators (MOs) to Hash Table M

19



5.2 BLOSOM-CO: Closed or-Clauses

Whereas BLOSOM-MO is designed for mining minimal generators, BLOSOM-CO is spe-
cific to mining closed expressions. The overall approach is similar to BLOSOM-MO, i.e.,
BLOSOM-CO performs a DFS search to find all all the close or-clauses. The main dif-
ferences are that instead of finding the minimal elements, we have to find the maximal
elements corresponding to the given tidsets. This the logic of subsumption checking, as well
as relationship pruning (both parent-child and sibling), has to be reversed. There are two
additional pruning optimizations utilized in BLOSOM-CO, which are:
Sibling Containment Pruning: After sibling merging, another relationship among sib-
lings can be utilized for CO generation, i.e., containment relationship. When expanding a
node N , any sibling node ranking after N whose tidset is a subset of that of N , can be
pruned in the next level of N ’s expansion tree, and its item set is merged with the item set
of the current node.
Hash Pruning: Assume M is the hash table of COs. If we find the item set of the current
tree node (T × I) is subsumed by the entry of M, i.e. I ⊂ M(T ), then all the descendant
nodes of the current node will be pruned, since their item sets will be subsumed by that of the
descendant nodes of T×M(T ). This pruning is required because after sibling containment
pruning, there is no one direction property for CO mining when doing subsumption check
as in MO mining.

Since most of the algorithmic details of BLOSOM-CO are similar to BLOSOM-MO
we do not give a more detailed description.

5.3 BLOSOM-MA/CA: and-Clauses

To mine the minimal and closed and-clauses, we build upon BLOSOM-MO and BLOSOM-
CO, respectively. Note that by DeMorgan’s law, to mine the minimal and-clauses, we can
mine the minimal or-clauses over the complemented tidsets. For example in our example
dataset in Figure 1, with T = 12345, we have t(AB) = t(A) ∩ t(B) = 134 ∩ 23 = 3. We
can obtain the same results if we take the or of A and B and complement the final results.

For example t(A)|t(B) = t(A) ∪ t(B) = 25 ∪ 145 = 1245 = 3. Thus to mine MA, we mine
MO over complemented tidsets. Likewise, to mine CA, we mine CO over the complemented
tidsets.

5.4 BLOSOM-MD/MC/CD/CC: Minimal and Closed DNF/CNF
Expressions

Following the structural characterization of minimal DNF expressions in Section 4.1, BLOSOM-
MD follows a two-phase approach. It first extracts all the minimal and-clauses and then
find the minimal DNF expressions using those.

Figure 6 shows the pseudo-code of BLOSOM-MD. First we use BLOSOM-MA to get
all MA generators (MMA) on the original dataset (line 2). Second, we generate tidsets for
each entry in MMA (line 3) and assign each MA class a new item label (line 4). These then

20



Input : dataset D in vertical format
Output : hash table MMD containing all MD of D
BLOSOM-MD()1

call BLOSOM-MA() on D and produce MMA2

generate transaction sets for each entry in MMA3

assign each entry in MMA an item number4

form a new dataset Dnew from step 3 and 45

call BLOSOM-MO() on Dnew and produce MMD6

replace each item number in MMD with the MA generators it represents7

delete the subsumed generators in MMD8

Figure 6: BLOSOM-MD Algorithm

form a new dataset (line 5). Third, we call BLOSOM-MO to get all MO generators on
the new dataset (line 6). Next, we combine the results from BLOSOM-MA (line 2) and
BLOSOM-MO (line 6) to form MD candidates by replacing each item label in MMD with
the MA generators it represents. Finally, we delete the subsumed generators in MMD to
produce min-DNF forms.

For mining the minimal CNF expressions, the roles of BLOSOM-MA and BLOSOM-
MO are reversed. BLOSOM-MC starts by mining the minimal or-clauses and then com-
putes the minimal and-clauses by treating each of them as a new item. Finally any subsumed
generators are purged to obtain the min-CNF forms.

Finally, consider the approach for mining the closed DNF and CNF expressions. For
mining closed DNF expressions, we follow the same pseudo-code as for BLOSOM-MD,
replacing BLOSOM-MA and BLOSOM-MO with BLOSOM-CA and BLOSOM-CO,
respectively. That is we assume we know the closed and-clauses and then treating each of
these as a new items we mine the closed or-clauses. Finally, convert each such expression in
the maximal min-DNF form. For closed CNF expressions, reverse the roles of BLOSOM-
CO and BLOSOM-CA, and finally output the maximal min-CNF expressions.

6 Experiments

All experiments were done on a Ubuntu virtual machine (over WindowsXP & VMware)
with 448MB memory, and a 1.4GHz Pentium-M processor. We used both synthetic and
real datasets to evaluate BLOSOM. The real datasets are used to highlight the kinds of
knowledge mined by our approach, whereas the synthetic datasets are used primarily to
study the effect of various parameters and demonstrate scalability.

The synthetic datasets are generated with three parameters: the number of items |I|,
the number of transactions |T | and dataset density, δ. The size of the dataset is |I|×|T |.
For each item i, the average size of its transaction set t(i), is given as δ × |T |. The average
size is distributed uniformly in the interval [0, |T |], and the tids are distributed in t(i) with
equal probability.

21



6.1 Performance Study

 0

 10

 20

 30

 40

 50

 12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42

tim
e (

sec
)

#Items (|I|): DB size (|I| x 2|I|)

original
hash

parent-son
dynamic-sibling-reordering

no-superset
sibling-merging
one-parent-son

extraset
no-transaction-set

Figure 7: The effects of the speedup optimizations

Effect of Optimizations: We first study the effect of various optimizations proposed in
Section 5.1.1 on the performance of BLOSOM-MO, as shown in Figure 7. The x-axis
shows the number of items |I| in the synthetic datasets. The number of transactions were
generated as |T | = 2|I|. Each curve in the figure shows the running time after applying
the optimizations specified in succession. Thus the final curve for no-transaction-set

includes all previous optimizations. In the legends, original stands for the unoptimized
version, hash means using a hash table for subsumption, parent-son means doing parent-
child pruning, dynamic-reordering is the reordering of nodes, no-superset stands for one
directional subsumption checking, sibling-merging is self explanatory, one-parent-son

means we check only the left parent when making use of the parent-child relationship to do
the pruning on the basis of the application of dynamic-sorting, extrasets is obvious, and
finally no-transaction-set means we avoid storing the entire tidset. We can see that the
cumulative effect of the optimizations is substantial; BLOSOM-MO can process a datsset
around 10 times ((38× 76)/(12× 24) = 10) larger than the base algorithm can in the same
running time. Thus all the optimizations together deliver a speedup of over an order of
magnitude compared to the base version.
Effect of Parameters: The base-line parameters for the synthetic datasets are shown in
Table 7. Note that we set min sup = 1 and max sup = |T |, which means the entire set
of all possible expressions will be mined. In the experiments we vary one parameter at a
time, and study the effect. Figure 8 shows how the the mining time varies with |I| (top
row), with |T | (middle row), and with density δ (bottom row). The figure shows the effect
for minimal clauses (MO/MA – left column), minimal CNF/CNF expressions (MC/MD –
middle column), and closed clauses (CO/CA – right column).

22



Parameters MO/MA MC/MD

|I| 50 15

|T | 300 30

δ 0.5 0.5

min sup 1 1

max sup |T | |T |
max item 4 3

Table 7: Common experimental parameters

 0

 5

 10

 15

 20

 40  45  50  55  60

ti
m

e 
(s

ec
)

items: | I |

BLOSOM-MO
BLOSOM-MA

 0

 10

 20

 30

 11  12  13  14  15

ti
m

e 
(s

ec
)

items: | I |

BLOSOM-MD
BLOSOM-MC

 0

 1

 2

 3

 4

 50  60  70  80  90

ti
m

e 
(s

ec
)

items: | I |

BLOSOM-CO
BLOSOM-CA

 0

 2

 4

 6

 8

 100  200  300  400  500

ti
m

e 
(s

ec
)

trans: | T |

BLOSOM-MO
BLOSOM-MA

 0

 20

 40

 60

 80

 20  25  30  35  40

ti
m

e 
(s

ec
)

trans: | T |

BLOSOM-MD
BLOSOM-MC

 0

 0.5

 1

 1.5

 2

 300  400  500  600  700

ti
m

e 
(s

ec
)

trans: | T |

BLOSOM-CO
BLOSOM-CA

 0

 2

 4

 6

 8

 0.2  0.3  0.4  0.5  0.6

ti
m

e 
(s

ec
)

density

BLOSOM-MO
BLOSOM-MA

 0

 10

 20

 30

 40

0.550.500.450.400.35

ti
m

e 
(s

ec
)

density

BLOSOM-MD
BLOSOM-MC

 0

 0.5

 1

 1.5

 2

 0.2  0.3  0.4  0.5  0.6

ti
m

e 
(s

ec
)

density

BLOSOM-CO
BLOSOM-CA

Figure 8: Synthetic Data: Effect of number of items, number of transactions, and density

From these graphs we observe several trends. Notice that as we increase number of
items/transactions and density, the disjunction times (for CO, MO, MD) tend to be higher
than the conjunction times (CA, MA, MC). This is mainly because “unions” of tidsets tend
to produce more distinct tidsets than “intersections”, resulting in a larger search space.

23



The trend for increasing |I| and |T | are as expected; the more the number of items or
transactions, the longer the running time. However, with increasing density, the running
time reaches the peak and then comes down. This is mainly because when density is closer
to 50% we tend to mine patterns in the middle of the lattice, resulting in larger search spaces.

 0

 5

 10

 15

 20

 2000  2100  2200  2300  2400

tim
e 

(s
ec

)

min_sup

CHARM-L
BLOSOM-MA

Figure 9: BLOSOM-MA vs. CHARM-L

Comparison: BLOSOM-MA vs. CHARM-L: We also compared BLOSOM-MA with
CHARM-L [21], which can also mine the minimal generators for and-clauses (i.e., itemsets).
We used the chess dataset, from the UCI machine learning repository1 for the evaluation.
From Figure 9 we can see that BLOSOM-MA can be about ten times faster than CHARM-
L, and the gap is increasing with decreasing support. This is mainly because CHARM-L
first finds all closed expressions and then uses their differential lower shadows to compute the
minimal and-clauses. In contrast, BLOSOM-MA directly mines the minimal generators,
and uses effective optimizations to speed up the search. It is worth noting that we know
of no other algorithms to mine minimal OR-clauses, and closed/minimal CNF and DNF
expressions.

6.2 Application Study

We applied our BLOSOM framework to mine several real datasets. We wanted to discover
whether a given object set affords alternative boolean descriptions, which are non-trivial.
We report some of the interesting patterns found.
House Votes: We analyzed the voting-records dataset from the UCI machine learning
repository, which has the US congressional voting records from 1984, for 435 congressmen

1www.ics.uci.edu/∼mlearn

24



(267 democrats, 168 republican). Each record measures the Yes or No votes of the congress-
men on 16 issues. Taking the Yes or No values as separate attributes for each issue yields 32
attributes for 435 records. One of the patterns we found was that the four representatives who
voted in favor of bills on el-salvador-ad, duty-free-exports, export-administration-act-south-
africa, but against bills on water-project-cost-sharing, budget-resolution were those exact
representatives who voted in favor of bills on anti-satellite-test-ban but against the bills on
aid-to-nicaraguan-contras, mx-missile, synfuels-corporation-cutback, superfund-right-to-sue.
All four were republicans.
Senate Voting: We looked at another voting dataset, this time from the US Senate (102th
Congress - 1st Session), for 1991. The dataset was obtained from the US Library of Congress
THOMAS database2. It has the voting record for 101 senators on 280 rolls. Counting both
Yes and No votes as separate items, we obtain a dataset with 101 transactions and 560 items.
We found that out that a group of 97 senators voting for H.R.4, Amdt.No.36, were the exact
same senators who agreed to S.Con.Res.5, but rejected Amdt.No.35. Note that all theses
rolls related to the 1991 Iraq War. H.R.4 allowed some IRS extensions for people involved
in operation DesertShield, Amdt.No.36 disallowed money for rebuilding of Iraq as long as
Saddam Hussein remained in power, S.Con.Res.5 demanded that Iraq abide by the Geneva
Convention regarding prisoners of war, and Amdt.No.36 disallowed the use of US tax-payer
dollars for rebuilding Iraq. It is interesting that all 97 senators rejected Amdt.No.36.
Gene Expression: We applied BLOSOM to mine frequent boolean expressions as well
as redescriptions between descriptors on a gene expression dataset from [17]. This dataset
involves 74 genes participating in 824 descriptors, derived from Gene Ontology (GO) cate-
gories3, gene expression bucketing, and k-means clustering. We specifically focus on finding
minimal generators to help redescribe the descriptors corresponding to k-means clusters. One
potential application is to obtain more expressive functional enrichments of these clusters in
terms of GO categories. For instance, a set of six genes participating in a k-means cluster,
represented by descriptor d512 was approximately redescribed in DNF form as: d512 ⇔
d507 ∨ d685 ∨ d700, with Jaccard’s coefficient 0.83 (i.e., t(d512) ∩ t(d507|d685|d700)

t(d512) ∪ t(d507|d685|d700)
= 5

6
= 0.83),

where d507 denotes genes in the GO biological process category ‘response to heat,’ d685
corresponds to genes in GO cellular location category ‘extracellular,’ and d700 corresponds
to genes in GO molecular function category ‘exopeptidase.’ This redescription shows that
the concerted activity of a set of genes in a heat shock experiment derives from their role as
either heat shock factors, extracellular signaling, or the (downstream) catalytic removal of
an amino acid from a polypeptide chain. This showcases the power of BLOSOM to uncover
meaningful biological descriptions of gene clusters.

7 Related Work

Mining frequent itemsets (i.e., pure conjunctions) has been extensively studied within the
context of itemset mining [1]. The closure operator for itemsets (and-clauses) was proposed

2www.senate.gov
3www.geneontology.org

25



in [9], and the notion of minimal generators for itemsets was introduced in [3]. Many algo-
rithms for mining closed itemsets (see [10]), and a few to mine minimal generators [3, 21, 8]
have also been proposed in the past. The work in [8] focuses on finding the succinct (or
essential) minimal generators for itemsets. CHARM-L [21] finds the minimal generators
for itemsets (MA). It first finds the closed itemsets and then uses the notion of differential
lower shadows to mined the minimal generators. In contrast, BLOSOM-MA directly mines
the MAs and runs much faster than CHARM-L. The task of mining closed and minimal
monotone DNF expressions was proposed in [19]. It gives a direct definition of the closed
and minimal DNF expressions (i.e., a closed expression is one that doesn’t have a superset
with the same support and a minimal expression is one that doesn’t have a subset with the
same support). The authors further give a level-wise Apriori-style algorithm. In contrast,
the structural characterization of the different classes of boolean expressions via the use
of closure operators and minimal generators, as well as the efficient, extensible BLOSOM
framework for mining arbitrary expressions, are the novel contributions of our work.

Within the association rule context, there has been previous work on mining negative
rules [18, 20, 2], as well as disjunctive rules [14]. Unlike these methods we are interested
in characterizing such rules within the general framework of boolean expression mining.
Also related is the mining of optimal rules according to some constraints [4], since the
boolean expressions can be considered as constraints on the patterns. More general notions
of itemsets (including negated items and disjunctions) have been considered in the context of
concise representations [6, 12]. Another point of comparison is w.r.t. the work in [11] where
the authors aim to find frequent and (maximally) interesting sentences w.r.t. a variety of
criteria. Many data mining tasks, including inferring boolean functions, are instantiations
of this problem.

Also of relevance is the task of mining redescriptions. The CARTwheels algorithm [17]
mines redescriptions only between length-limited boolean expressions in disjunctive normal
form and CHARM-L [21] is restricted to redescriptions between conjunctions. None of these
algorithms can mine redescriptions between arbitrary boolean expressions, as done here.

The theoretical machine learning (PAC) community has focused on learning boolean
expressions [5] in the presence of membership queries and equivalence queries. Mitchell [13]
proposed the concept of version spaces (which are basically a partial order over expressions)
to organize the search for expressions consistent with a given set of data. However, these
works conform to the classical supervised learning scenario where both positive and negative
examples of the unknown function are supplied. In contrast, our work aims to find boolean
expressions without explicit direction about the examples they cover.

8 Conclusions

In this paper we present the first algorithm, BLOSOM, to simultaneously mine closed boolean
expressions over attribute sets and their minimal generators. Our four-category division of
the space of boolean expressions yields a compositional approach to the mining of arbitrary
expressions, along with their minimal generators. The pruning operators employed here have

26



resulted in orders of magnitude speedup, producing highly efficient implementations.
There are still many interesting issues to consider. The first one involves the effective

handling of negative literals without being overwhelmed by dataset density. The second
issue is to push tautological considerations deeper into the mining algorithm by designing
new pruning operators. Finally, we are led to the general challenge of, given a general
propositional reasoning framework, mining only the simplest boolean expressions necessary
for inference in that framework.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of
association rules. In U. Fayyad and et al, editors, Advances in Knowledge Discovery and Data
Mining, pages 307–328. AAAI Press, Menlo Park, CA, 1996.

[2] M.-L. Antonie and O. Zaiane. Mining positive and negative association rules: An approach
for confined rules. In European PKDD Conf, 2004.

[3] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent patterns with
counting inference. SIGKDD Explorations, 2(2), Dec. 2000.

[4] R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In ACM SIGKDD Conf,
1999.

[5] N. Bshouty. Exact learning boolean functions via the monotone theory. Information and
Computation, 123(1):146–153, 1995.

[6] T. Calders and B. Goethals. Minimal k-free representations of frequent sets. In European
PKDD Conf., 2003.

[7] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990.

[8] G. Dong, C. Jiang, J. Pei, J. Li, and L. Wong. Mining succinct systems of minimal generators
of formal concepts. In Int’l Conf. Database Systems for Advanced Applications, 2005.

[9] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer-
Verlag, 1999.

[10] B. Goethals and M. Zaki. Advances in frequent itemset mining implementations: report on
FIMI’03. SIGKDD Explorations, 6(1):109–117, June 2003.

[11] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. Sharma. Discovering
all most specific sentences. ACM Transactions on Database Systems, 28(2):140–174, 2003.

[12] M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-free gener-
ators. In Int’l Conf. on Data Mining, 2001.

[13] T. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.

27



[14] A. Nanavati, K. Chitrapura, S. Joshi, and R. Krishnapuram. Association rule mining: Mining
generalised disjunctive association rules. In ACM CIKM Conf., 2001.

[15] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. In 7th Intl. Conf. on Database Theory, Jan. 1999.

[16] J. Pfaltz and R. Jamison. Closure systems and their structure. Information Sciences, 139:275–
286, 2001.

[17] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. Helm. Turning cartwheels: An
alternating algorithm for mining redescriptions. In ACM SIGKDD Conf., 2004.

[18] A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large
database of customer transactions. In ICDE Conf, 1998.

[19] Y. Shima, S. Mitsuishi, K. Hirata, and M. Harao. Extracting minimal and closed monotone
dnf formulas. In Int’l Conf. on Discovery Science, 2004.

[20] X. Wu, C. Zhang, and S. Zhang. Efficient mining of both positive and negative association
rules. ACM Trans. on Information Systems, 22(3):381–405, 2004.

[21] M. Zaki and N. Ramakrishnan. Reasoning about sets using redescription mining. In ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2005.

28


