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ABSTRACT

Knowing which associations are compositions is important
in a tool for the reverse engineering of UML class diagrams.
Firstly, recovery of composition relationships bridges the gap
between design and code. Secondly, since composition rela-
tionships explicitly state a requirement that certain repre-
sentations cannot be exposed, it is important to determine if
this requirement is met by component code. Verifying that
compositions are implemented properly may prevent serious
program flaws due to representation exposure.

We propose an implementation-level composition model
based on ownership and a novel approach for identifying
compositions in Java software. Our approach is based on a
static ownership inference; it is parameterized by class anal-
ysis and is designed to work on incomplete programs. We
present empirical results from one instantiation of our ap-
proach. In our experiments, on average 40% of the examined
fields account for relationships that are identified as compo-
sitions. We also present a precision evaluation which shows
that for our code base our analysis achieves almost perfect
precision—that is, it almost never misses composition rela-
tionships. The results indicate that precise identification of
interclass relationships can be done with a simple and in-
expensive analysis, and thus can be easily incorporated in
reverse engineering tools that support iterative model-driven
development.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering; F.3.2 [Logics and Meanings of Programs|:
Semantics of Programming Languages— Program Analysis

General Terms
Algorithms
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1. INTRODUCTION

In modern software development design recovery through
reverse engineering is performed often; in a typical iterative
development process reverse engineering is performed at the

beginning of every iteration to recover the design from the
previous iteration [23].

UML class diagrams describe the architecture of the pro-
gram in terms of classes and interclass relationships; they are
scalable, informative and widely-used design models. While
the UML concepts of class and inheritance have correspond-
ing first-class concepts in object-oriented programming lan-
guages, the UML concepts of association, aggregation and
composition do not have corresponding language concepts.
Thus, while the reverse engineering of classes and inheri-
tance hierarchies is straightforward, the reverse engineering
of associations presents various challenges.

UML associations model relatively permanent interclass
relationships; conventionally, they are implemented using in-
stance fields of reference type [23] (e.g., an association from
class A to class B is implemented using a reference field of
type B in class A). Thus, reverse engineering tools infer
associations by examining instance fields of reference type;
however, the inference is often non-trivial. One challenge is
the recovery of one-to-many associations implemented using
pseudo-generic containers (e.g., Vector). Another challenge
is the recovery of compositions. Modern reverse engineering
tools such as Rational ROSE do not address these challenges
and produce inconsistent class diagrams (see Guéhéneuc and
Albin-Amiot [19] for detailed examples). Clearly, this leads
to a gap between design class diagrams and reverse engi-
neered class diagrams which hinders understanding, round-
trip engineering and identification of design patterns.

Towards the goal of bridging this gap, this paper pro-
poses a methodology for inference of binary associations for
UML class diagrams. Our major focus is the inference of
composition relationships, which we believe is challenging
and inadequately addressed in previous work. While the
UML concept of aggregation is ”strictly meaningless” [13,
Chapter 5] (i.e., it has no well-defined semantics to distin-
guishe it from association), the UML concept of composition
has a well-defined semantics that emphasizes the notion of
ownership: a ”composition is a strong form of [whole-part]
association with strong ownership of parts by the composite
and coincident lifetime of parts with the composite. A part
may belong to only one component at a time” [38, Chapter
14]. Therefore, a composition relationship at design level
states the requirement for ownership and no representation
exposure at implementation level (i.e., the owned component
object cannot be exposed outside of its composite owner
object); if composition is implemented correctly ownership



must be preserved.

It is important to investigate techniques for recovery of
composition relationships. Firstly, it helps bridge the gap
between the design class diagram and the reverse engineered
diagram. Secondly, since composition relationships explic-
itly state a requirement that certain representations cannot
be exposed, it is important to determine if this require-
ment is met by component code. Verifying that composi-
tions are implemented properly may prevent serious pro-
gram flaws due to representation exposure such as the well-
known Signers bug in Java 1.1.1

Therefore, the goals of this work are (i) to define an imp-
lementation-level ownership model that captures the no-
tion of composition in design and (ii) to design an analy-
sis algorithm that infers ownership and composition using
this model. Our definition of implementation-level com-
position is based on the owners-as-dominators ownership
model [9, 32]; in this model the owner object (the compos-
ite) should dominate an owned object (a component)—that
is, all access paths to the owned object should pass through
its owner. The owners-as-dominators model defines an own-
ership boundary for each owner; intuitively, an owned object
may be accessed by its owner as well as other objects within
the boundary of the owner (e.g., an owned object stored in
an instance field may be passed to an owned container). As
pointed out by Clarke et al. [9, 32] and observed during our
empirical study, the owners-as-dominators model captures
well the notion of composition in modeling.

We propose a novel static analysis for ownership inference.
If the ownership inference determines that all objects stored
in a field are owned by their enclosing object, the analysis
identifies a composition through that field. Our approach
works on incomplete programs. This is an important fea-
ture because in the context of reverse engineering tools it is
essential to be able to perform separate analysis of software
components. For example, it is typical to have to analyze a
component without having access to the clients of that com-
ponent. Our ownership inference analysis is parameterized
by class analysis, which determines the classes of the objects
a reference variable or a reference object field may refer to.
We use the class analysis solution to approximate the pos-
sible accesses between run-time objects. Our work defines
a general framework for ownership and composition infer-
ence; it encompasses a wide range of analyses with different
degrees of cost and precision.

We have implemented one instantiation of this framework
based on the well-known Andersen-style points-to analysis
for Java [35]. We present empirical results on several compo-
nents. In our experiments, on average 40% of the examined
fields account for relationships that are identified as compo-
sitions. We also present a precision evaluation which shows
that for our code base, the analysis achieves almost per-
fect precision—that is, it almost never misses composition
relationships identified in our model. The results indicate
that precise identification of interclass relationships can be
done with a simple and inexpensive analysis, and thus can
be easily incorporated in reverse engineering tools that sup-

n Java 1.1 the security system function Class.getSigners
returned a pointer to an internal array allowing clients to
modify the array and compromising the security of the sys-
tem.

port iterative development.
This work has the following contributions:

e We propose an implementation-level ownership and
composition model that captures well the notion of
composition in modeling.

e We propose a general analysis framework for static in-
ference of ownership and composition relationships in
accordance with our model; the analysis framework
works on incomplete programs.

e We present an empirical study that evaluates one in-
stance of our framework. The results indicate that
precise identification of composition relationships can
be achieved with relatively inexpensive analysis.

2. PROBLEM STATEMENT

Reverse engineering tools typically infer associations by
examining instance fields of reference type in the code. In
our model, an association relationship through a field f is
refined as composition if it can be proven that all objects
referred by f are owned by their enclosing object. Thus,
given a suitable definition of implementation-level owner-
ship and composition, our goal is to design a static anal-
ysis that answers the question: given a set of Java classes
(i.e, a component to be analyzed) for what instance fields
we observe implementation-level composition throughout all
possible executions of arbitrary client code built on top of
these classes? The output is a set of fields for which the
relationship is guaranteed to be a composition for arbitrary
clients.

The input to the analysis contains a set Cls of interact-
ing Java classes. We will use ”classes” to denote both Java
classes and interfaces as the difference is irrelevant for our
purposes. A subset of Cls is designated as the set of acces-
stble classes; these are classes that may be accessed by un-
known client code from outside of Cls. Such client code can
only access fields and methods from Cls that are declared
in some accessible class; these accessible fields and methods
are referred to as boundary fields and boundary methods.

Sections 2.1 and 2.2 describe the ownership model and
the notion of implementation-level composition based on it.
Section 2.3 discusses some constraints to the model that
allow more precise detection of ownership and composition.

2.1  Ownership Model

The ownership model is based on the notion of owners-as-
dominators [9, 8, 32]. It is essentially the model proposed by
Potter et al. [32] with several modifications that allow more
precise handling of popular object-oriented patterns such
as iterators, composites and factories [14]. In this model,
each execution is represented by an object graph which shows
access relationships between run-time objects:

e Let f be a reference instance field in a run-time object

0. There is an edge o 4, o in the object graph if and
only if field f in o refers to o’ at some point of program
execution.?

2We require that all newly created objects appear in the
object graph explicitly [9]. That is, at the point of creation
a new object is stored in a new local variable; this does not
change program semantics.



public class Vector {
protected Object[] data;
public Vector(int size) {
1 data = new Object[sizel; }
public void addElement(Object e,int at) {
2 datalat] = e; }
public Object elementAt(int at) {
3 return datalat]l; }
public Enumeration elements() {
4 return new VIterator(this); }

}

final class VIterator implements Enumeration {
Vector vector;

int count;

VIterator(Vector v) {
5 this.vector = v;
6 this.count = 0; }

Object nextElement() {

7 Object[] data = vector.data;
8 int i = this.count;

9 this.count++;

10 return datalil; }

main() {

11 Vector v = new Vector(100);
12 X x = new X();

13 v.addElement(x,0);

14 Enumeration e = v.elements();
15 x = (X) e.nextElement();

16 x.m();

Figure 1: Simplified vector and its iterator.

e There is an edge o B, o if and only if some element of
array o refers to o’ at some point of program execution.

e There is an edge o — o’ if and only if an instance
method or constructor invoked on receiver o has local
variable r that refers to o, or a static method called
from an instance method or constructor invoked on o,
has a local variable r that refers to o’. There is an
edge of this kind only if there is no edge of the first
kind from o to o'.

A run-time object o’ is accessed in the context of o iff
there is an edge from o to o’ in the object graph. The start
of program execution is expressed with a special node root.
Context root represents the context for main and for objects
referenced by static fields. For example, executing main in
Figure 1 results in the object graph in Figure 2(a). Node
Vector corresponds to the object created at the new site at
line 11, node Object[] corresponds to the array created at
the site at line 1, node VIterator corresponds to the iterator
created at the site at line 4, and node X corresponds to the
object created at the site at line 12.

The owners-as-dominators model states that the owner
of an object o is the immediate dominator of o in the ob-
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Figure 2: Object graphs for Figure 1.

ject graph [32].* Thus, according to this model Object[]
is not owned by its enclosing Vector object for this exe-
cution due to the access relationship (although only tem-
porary) between VIterator and Object[]. To make the
model less restrictive, we introduce the relazed object graph
which omits edges due to certain temporary access relation-
ships. We consider two kinds of temporary access relation-
ships. The first kind arises when an object is created in one
context and immediately passed to another context with-
out being used; the relationship between the creating object
and the new object is only temporary but if shown on the
graph it is likely to restrict ownership. This notion cap-
tures the situations when an object is created and imme-
diately returned (e.g., as in return new VIterator(this); in
method elements in Figure 1) and when an object is cre-
ated and immediately passed to another context (e.g., as
in new BufferedReader(new FileReader(fileName))). This
situation occurs in popular object-oriented design patterns
such as factories, decorators and composites; in these cases
the temporary relationship between the creating object and
the newly created one is a matter of safety and flexibility of
the implementation rather than an intention of the design.
The second kind of temporary access relationships arises
from field read statements r = [.f, where r is not assigned,
passed as an implicit or explicit argument, or returned. This
notion captures the situation that arises in iterators (con-
sider statement data = wvector.data in nextElement in Fig-
ure 1)—iterator objects have temporary references to the
representation of their collections, which allows efficient ac-
cess of collection elements; however, the collection object is
always in scope. Therefore, if all accesses of o' in the con-
text of o are due to such temporary access relationships,
edge 0o — 0 is not shown in the relaxed object graph.

The relaxed object graph for the execution of main in Fig-
ure 1 is shown in Figure 2(b). Edge Vector—VIterator is
omitted because it is due to a temporary access relationship
of the first kind; edge VIterator—0Object[] is omitted as
well because it is due to a temporary access relationship of

3Node m dominates node n if every path from the root of the
graph that reaches node n has to pass through node m. The
root dominates all nodes. Node m immediately dominates
node n if m dominates n and there is no node p such that
m dominates p and p dominates n.



the second kind. The owner of o is the immediate domina-
tor of o in the relaxed object graph. Thus, root owns X,

Vector and Viterator and Vector owns Object[]. .
package zip;

2.2 Implementation-level Composition public class InflaterInputStream {
Let A be a class in Cls, and f be a field of type B de- protected Inflater inf;
clared in A where B is a reference type (class, interface protected bytel[] buf;
or array type [15]). The ownership property holds for f if public InflaterInputStream(Inflater inf,
throughout all possible executions of arbitrary clients of Cls, int size) {
every instance of A owns the instances of B that its f field this.inf=inf;

refers to. Consider the case when f is a collection field—
that is, all objects stored in the field are arrays or instances
of one of the standard java.util collection classes (e.g.,
java.util.Vector). If every instance of A owns all corre-

buf=new bytel[size]; }

public InflaterInputStream(Inflater inf) {
this(inf, 512); }

// methods read and fill contain instance calls on inf

sponding instances stored in the collection, there is a one-to- }

many composition relationship between A and C, where C'is

the lowest common supertype of the instances stored in the public class ZipInputStream extends
collection®; otherwise, there is a one-to-many regular associ- InflaterInputStream {

ation. For collection fields for which the ownership property private ZipEntry entry;

holds, there is an attribute of the association {owned collec- private CRC32 crc=new CRC32();

tion} that indicates that the collection is owned by its en- public ZipInputStream() {

closing object. Consider the case when f is not a collection super (new Inflater(true), 512); }
field. If the ownership property holds for f, the association public ZipEntry getNextEntry() {
between A and B is a one-to-one composition; otherwise it crc.reset();

is a regular one-to-one association.

Example. Consider the package in Figure 3. This exam-
ple is based on classes from the standard Java library pack-
age java.util.zip, with some modifications made to sim-
plify the presentation and better illustrate the problem and
our approach. Cls contains the classes from Figure 3 plus
class ZipEntry. The accessible classes are ZipInputStream,
ZipOutputStream and ZipEntry and the boundary methods

inf.reset();
if ((entry=readLOC())==null) return null;
return entry; }
private ZipEntry readLOC() {
ZipEntry e=new ZipEntry();
// code reads and writes fields of e
return e; }

are all public methods declared in those classes (i.e., the }
component can be accessed from client code through the public class ZipOutputStream extends
public methods declared in these classes). DeflaterQutputStream {

Clearly, the CRC32 objects are always owned by their en- private ZipEntry entry;
closing streams. Thus, there is a one-to-one composition private Vector entries=new Vector();
relationship between class ZipInputStream and class CRC32 private Hashtable names=new Hashtable();
through field crc. Similarly, there is a one-to-one com- private CRC32 crc=new CRC32();

position relationship between ZipOutputStream and CRC32
through field crc. There is a regular one-to-one associ-
ation through field entry in ZipInputStream; it is easy
to construct client code on top of these classes such that
the ZipEntry instances created in ZipInputStream objects

public ZipOutputStream() {
super (new Deflater(...)); }

public void putNextEntry(ZipEntry e) {
// code reads and writes fields of e

i 1=
are leaked to client code from getNextEntry. Similarly, if (1.1ames.put(e.name, e)t=null) { ... }
. .. : entries.addElement (e);
there is a regular one-to-one association through entry in N )
entry=e;

ZipOutputStream because the ZipEntry objects are passed
from client code to putNextEntry. The associations through
fields names and entries are both one-to-many regular as-

public void closeEntry() {
ZipEntry e=entry;

sociations between ZipOutputStream and ZipEntry; both // code reads and writes fields of e

have attribute {owned collection}. The ZipOutputStream crc.reset();

instance trivially owns the Hashtable instance. It owns entry=null; }

the Vector instance as well, although the Vector instance public void finish() {

is referred to in the context of its iterator (recall the ex- Enumeration enum=entries.elements();
ample in Figure 1); however, the iterator is a local object while (enum.hasMoreElements()) { ... } }
owned by the enclosing ZipOutputStream object which en- }

sures that the Vector instance is dominated by the enclosing

ZipOutputStream and may be accessed only within its own- Figure 3: Sample package zip.

“Note that in Java, a unique non-trivial (i.e., non-Object)
common supertype may not exist. A detailed discussion
appears in [26].



ership boundary.

2.3 Discussion

In order to allow more precise detection of implementation-
level composition, we employ the following constraint, stan-
dard for other problem definitions that require analysis of
incomplete programs [36, 34]. We only consider executions
in which the invocation of a boundary method does not
leave Cls—that is, all of its transitive callees are also in
Cls. In particular, if we consider the possibility of unknown
subclasses, all instance calls from Cls could potentially be
”redirected” to unknown external code that may affect the
composition inference. For example, a field may be iden-
tified as composition in the current set of classes but an
unknown subclass may override some method and the over-
riding method may leak the field (e.g., by passing it to a
static field).

Thus, Cls is augmented to include the classes that provide
component functionality as well as all other classes transi-
tively referenced. In the experiments presented in Section 6
we included all classes that were transitively referenced by
Cls. This approach restricts analysis information to the cur-
rently ”known world”—that is, the information may be in-
validated in the future when new subclasses are added to
Cls. Another approach is to change the analysis to make
worst case assumptions for calls that may enter some un-
known overriding methods. However, in this case, the anal-
ysis will be overly conservative and likely report fewer com-
positions. Thus, we believe that it is more useful to restrict
the analysis to the known world; of course, the analysis user
must be aware that the information is valid only for the
given set of known classes.

3. CLASS ANALYSIS FOR OBJECT
GRAPH CONSTRUCTION

Class analysis determines the set of objects that a given
reference variable or a reference object field may refer to.
This information has a wide variety of uses in software tools
and optimizing compilers. In this paper, class analysis in-
formation is needed to construct a graph that approximates
all possible object graphs that can happen when arbitrary
client code is built on top of Cls; subsequently the approx-
imation of the object graph is used to infer ownership and
composition relationships. There is a large body of work on
class analysis with different trade-offs between cost and pre-
cision [30, 31, 1, 3, 18, 37, 41, 44, 43, 25, 35, 17, 27, 28, 47,
24, 5, 48]. In this paper, we propose a general framework for
class analysis that encompasses a large number of analyses
with varying degrees of cost and precision. The framework
can be instantiated to relatively inexpensive and imprecise
analyzes such as RTA [3] as well as to relatively expensive
and precise analyses such as object-sensitive points-to anal-
ysis [27, 28] and call-string context-sensitive analysis. The
object graph construction uses the output of class analysis—
therefore, the precision and cost of constructing the object
graph and subsequently inferring ownership and composi-
tion depend on the precision and cost of the underlying class
analysis.

3.1 Generalized Class Analysis for Java

The two major dimensions of precision in class analysis
are flow sensitivity and context sensitivity. Flow-insensitive
analyses do not take into account the flow of control between
program points and are less precise and less expensive than
flow-sensitive analyses. Context-sensitive analyses distin-
guish between different calling contexts of a method and are
more precise and more expensive than context-insensitive
ones. Note that the term context was used in Section 2.1
when describing the notion of the object graph and it had a
different meaning. Thus, it is warranted to make a distinc-
tion between the use of the term in Section 2.1 and the use
of the term in the current section.® In the sense of the ob-
ject graph, the context refers to the receiver of the method;
the intuition is that the receiver controls the method and
thus all objects that are referenced within that method are
referenced by its receiver—that is, the objects are accessed
in the context of the receiver object. In the sense of context-
sensitive flow analysis, the context characterizes a particular
invocation of a method; typically, the analysis keeps a copy
of the method for each relevant context of invocation of the
method. Popular context sensitivity schemes are the se-
quence of k enclosing call sites, the receiver object [27, 28]
and the cartesian product of the set of classes at an invoca-
tion site [1]. Although certain context sensitivity schemes in
flow analysis, such as using the receiver object as context as
outlined below, are related to the meaning of the term in the
sense of the object graph, context in flow analysis stands for
a more general concept; for our purposes we regard the two
uses of the term as independent. For the rest of the paper
we carefully clarify each use of the term context.

Other dimensions of precision include field sensitivity, di-
rectionality, the call graph construction scheme, the refer-
ence representation scheme and the object naming scheme.
Field-sensitive analyses are able to distinguish flow through
different object fields while field-insensitive analyses merge
flow through different fields of an object; thus field-sensitive
analyses are more precise than field-insensitive ones. Direc-
tional analyses, also referred to as propagation-based analy-
ses, process assignments in one direction, while bi-directional
analyses, also referred to as unification-based analyses pro-
cess assignments in both directions; for example a direc-
tional analysis processes assignment | = r by propagating
the set of classes for r into [; in contrast, a bi-directional
analysis propagates the set of classes for r into [ and the
set of classes for [ into r. With respect to call graph con-
struction, the analysis may construct a call graph on-the-fly
while propagating classes, or pre-compute the call graph us-
ing an inexpensive technique such as Class Hierarchy Anal-
ysis (CHA) [11].° Typically, the analyses that construct the
call graph on-the-fly are significantly more precise than the
ones that pre-compute the call graph.

Yet another dimension of precision is the reference rep-
resentation scheme. This dimension refers to the number
of analysis variables used to represent reference variables;

5We use the term in the sense of the object graph because
it is a standard term in the ownership type literature [9,
32]; similarly, it is a standard, widely used term in the flow
analysis literature [40, 20, 39].

5Class Hierarchy Analysis (CHA) examines the declared
type of the receiver variable and the class hierarchy and
computes a set of possible run-time targets.



more precise analyses use more variables, while less precise
ones use less variables and thus "merge” information for
different reference variables. A typical reference representa-
tion scheme is to use an analysis variable for each reference
variable in the program. The object naming scheme refers
to the number of object names used to represent heap ob-
jects. More precise analyses use more object names, while
less precise ones use less names and thus "merge” distinct
run-time objects. One popular naming scheme is to rep-
resent each object by its class. Another popular naming
scheme is to represent each object by its allocation site. Note
that the reference representation and object naming schemes
are related to context sensitivity and the degrees of context
sensitivity—a context-sensitive analysis typically defines a
representation for reference variables and objects; however,
as demonstrated in this paper one may vary the reference
and object naming schemes within context-insensitive anal-
ysis as well. A detailed examination of a wide variety of class
analyses and their dimensions of precision is given in [39].

In this paper we consider analyses that are flow-insensitive,
field-sensitive, directional and construct the call graph on-
the-fly. The analysis designer may vary the context sensi-
tivity scheme, the reference representation and the object
naming scheme in order to achieve analysis of the desired
precision and cost. The generalized class analysis is defined
in terms of four sets. Set R is the set of locals, formals
and static fields of reference type. Set O is the set of ob-
ject allocation sites; the objects created at an allocation site
s; are represented by object name o; € O. Set F' contains
all instance fields in program classes and set Cl contains all
program classes. There are three analysis parameters. Set
C represents the set of all method contexts and C,, C C
is the set of contexts that are valid for method m; for ex-
ample, to represent context-insensitive analysis, there is a
single context e for each method in the program. Function
v(r,c) : R x C — V where V is the set of reference variable
representatives, defines the reference representation scheme;
for example, the most typical context-insensitive reference
representation scheme uses an analysis variable for each ref-
erence variable in the program. It is expressed as follows:
v(r,€) : R — R (i.e., we have v(r, ¢) = r for every r). Finally,
function h(o;,c¢) : O x C — H where H is the set of heap ob-
ject representatives, defines the object naming scheme used
by the analysis; as an example, when objects are represented
by their allocation site we have h(o;,c) : O x C — O (i.e.,
we have h(o;,¢) = 0;). The analysis solution is a points-
to graph whose edges represent the following ” may-refer-to”
relationships:

e An edge v — h in the points-to graph (also denoted by
(v, h)) means that at run-time some reference variable
r € R represented by v € V may refer to some object
represented by h € H.

e Let f € F be a reference instance field in objects rep-
resented by some h. An edge h ER ho (also denoted
by ({h, f), h2)) means that at run time field f of some
object represented by h € H may refer to some object
represented by hy € H.

e If h represents array objects, h q h2 (also denoted
by ({h,[]), h2)) shows that some element of some array

(si in m: I = new C,G) = foreach context ¢ € Cp,

add {(v(l,¢),h(0i,c))} to G

(I =r,G) = foreach context c € Cy,
add {(v(l,c),h) | (v(r,c),h) €G} to G

(I.f = r,G) = foreach context c € C,
add {(<haf>vh’2) ‘ (’U(Z,C),h)eG A (U(T7 C)vh’Q)EG} to G

(I =r.f,G) = foreach context ¢ € Cp,
add {(v(l,c),h) | (U(Tv C)th)eG A (<h27f>7h)€G} to G

(si: L =19.m(r1), G) = foreach context ¢
{resolve(G, m, c,h,r1,l)| (v(ro,c),h) G}

resolve(G,m,c,h,r1,l) =
let m;(this,p1,ret;) = dispatch(h,m) in
c'=findNewContezt(s;, c, h); add ¢’ to Crn,
add {(v(this,c'),h)}U to G
add {(v(p1, ), ha) | (v(r1, ), h2) €G} to G
add {(v(l,¢), h3) | (v(retm,, '), hs) €G} to G

Figure 4: Generalized Class Analysis.

represented by h € H may refer at run time to an
object represented by he € H.

The generalized class analysis algorithm is given in Fig-
ure 4; it propagates may-refer-to relationships by analyzing
program statements. For the majority of statements the
effects of the analysis are straight-forward. Consider state-
ment "l = new C”. The analysis processes this statement
separately for each context ¢ of the enclosing method m.
It applies v(l,¢) and finds the representative of [ for con-
text ¢; similarly, it applies h(o;,c) and finds the representa-
tive of the objects allocated at that site when the enclosing
method is invoked under context c¢. Subsequently, it creates
a points-to edge (v(l,c), h(0s,c)). Similarly, for statement
I = r the analysis infers that for each context c of the en-
closing method, the representative of [ in ¢ may refer to the
objects that the representative of r in c¢ refers to.

At virtual calls the analysis performs resolution based on
each object h in the current points-to set of the receiver
variable (i.e., it constructs the call graph on-the-fly based
on the current class analysis information). It finds the run-
time target m; based on the class of the receiver object h and
the compile-time target m. Subsequently, the analysis finds
a new context ¢’ for the target method m; according to the
context sensitivity scheme; for example, for 1-CFA analysis,
which distinguishes context by the last enclosing call site,
the new context is the call site 4, and for 2-CFA analysis
which distinguishes context by the last two enclosing call
sites, ¢’ is formed by extracting the last call site j from c
and attaching j to i (i.e., forming a string of the last two
enclosing call sites). The new context ¢’ is added to the set of
contexts Cp,;. The analysis appropriately propagates values
from actuals to formals and from the return variable to the
left-hand side of the call, taking into account the context c
of the caller and the context ¢’ of the callee.

3.2 Instances of the Generalized Analysis

The generalized analysis outlined above can be instanti-



ated to many existing class analyses, ranging from the in-
expensive RTA analysis to relatively expensive and precise
context-sensitive analyses. Below, we present four repre-
sentative instantiations in order of increasing precision and
cost: RTA, 0-CFA, Andersen-style points-to analysis and
object-sensitive points-to analysis. The class analysis infor-
mation output by these analysis can be used to construct the
object graph and subsequently infer ownership and compo-
sitions. The points-to graphs for the example in Figure 3
computed by 0-CFA, the Andersen-style points-to analysis
and the object-sensitive points-to analysis are discussed in
Section 3.3; they are shown in Figure 6.

3.2.1 Rapid Type Analysis (RTA)

RTA is a popular form of class analysis primarily used for
call graph construction [3]. Intuitively, it starts from the
main method of the program and keeps a set of currently
instantiated classes and a set of currently reachable meth-
ods. RTA analyzes two kinds of program statements: call
sites and allocation sites. When it encounters a call site in a
currently reachable method it examines all potential edges
according to CHA and for each edge records the classes that
trigger the edge. If at least one class that triggers the edge
is in the set of instantiated classes, the edge becomes valid
and the target method reachable. When RTA encounters
an allocation site which instantiates class A, it adds A to
the set of instantiated classes and makes valid all previously
visited edges that are triggered by A.

In order to instantiate our framework we need to define
the set of contexts C, sets V and H and functions v(r, c)
and h(o,c). Clearly, RTA is a context-insensitive analysis
and thus there is a single context C' = {e¢}. RTA can be
regarded as keeping a single variable v that represents all
reference variables [44]. Thus, function v(r,e)=v for every
r and we have V = {v}. Finally, RTA represents objects by
their class. Thus, function h(o,€)=A where A is the class of
object o (i.e., the class instantiated at allocation site o) and
we have H = CI. It is easy to see that this instantiation of
the generalized analysis from Figure 4 is equivalent to RTA.

3.2.2 0-CFA

0-CFA [30, 44] is another well-known class analysis at the
low end of the cost/precision spectrum; it propagates sets
of classes to reference variables and reference object fields.
It is context-insensitive, maintains a set for each reference
variable and represents heap objects by their class. For ex-
ample, for statement ! = new A the analysis adds class A
to the set for reference variable [. Similarly, for statement
I = r, the analysis propagates the set for variable r to the set
for variable I. In our framework 0-CFA can be achieved by
instantiating C' to {e}, v(r,€) to v(r,e) = r and h(o,e) = A
where A is the class of 0. Thus, we have V = R and H = CI.
Clearly, 0-CFA is more precise than RTA because it keeps a
separate analysis variable for each reference variable in the
program; in terms of the other dimensions, it uses the same
representation as RTA.

We consider two other analyses at the low end of the
cost/precision spectrum; these analyses are inspired by the
XTA-style analyses from [44]. These analyses vary the ref-
erence representation scheme between the singleton repre-
sentation of RTA and the R representation of 0-CFA while

keeping C and h the same as in RTA and 0-CFA; thus, the
precision of these analyses varies between RTA and 0-CFA.
The first instance, referred to as mTA, maps each reference
variable r to a representative valid for the enclosing method
m of r—that is, we have v(r, €)=v,, and V = M where M
is the set of all program methods. The second instance, re-
ferred to as ¢TA maps each variable r to a representative
valid for the enclosing class of r—that is, we have v(r, €)=v.
and R = Cl. Therefore, RTA is the least precise analysis,
followed by cTA, mTA and 0-CFA.

3.2.3 Andersen-style Points-to Analysis

So far, we considered analyses that represent heap objects
by their class. Another group of class analyses, typically
referred to as points-to analyses, represents heap objects
more precisely, usually by allocation site. The Andersen-
style points-to analysis for Java is a well-known flow- and
context-insensitive analysis [24, 5, 35, 41]. It uses an anal-
ysis variable for each reference variable and represents heap
objects by their allocation site. In terms of our framework
we have C = {e}, v(r,e) = r and h(o,€) = o; thus, we have
V = R and H = O. This analysis is at the heart of our
implementation of ownership and composition inference as
we believe it is the most suitable for that purpose.

3.2.4 Object-sensitive Points-to Analysis

Finally, we consider a context-sensitive points-to analy-
sis, which is referred to as object-sensitive analysis [27, 28].
With object sensitivity, each instance method and each con-
structor is analyzed separately for each object on which this
method/constructor may be invoked. More precisely, if a
method /constructor may be invoked on run-time objects
represented by object name o, the object-sensitive analysis
maintains a separate contextual version of that method/con-
structor that corresponds to invocation context o. For static
methods, the analysis uses a special context e.

In terms of our framework, the analysis is defined as fol-
lows. The set of contexts C' equals O—that is, the set of con-
texts is the set of object allocation sites. Map v(r,c) = 7°
where r¢ is the context copy of r that corresponds to the
invocation of the enclosing method of r in context ¢ (in this
case, with receiver object represented by c¢). Thus, we have
V =R x C = R x O. Similarly, map h(o,c) = 0° where
0° is the set of context-sensitive object names; intuitively,
0° represents the objects that are allocated at the site of o
when the enclosing method is invoked with context c. Thus,
we have H = O x O = O%.

At virtual calls, the analysis resolves the call based on
the heap object h = o and compile-time target m. The
new context ¢’ for run-time target m; is set to o and points-
to edge (thiso,ocu) is added to the points-to graph. Also
points-to edges (p?, h2) are added for every hz in the points-
to set of r{ in order to account for flow from actuals to
formals. Similarly, edges (I°, h3) are added for every hs in
the points-to set of retfnj. Note that this analysis maintains
a context of depth one, that is, one allocation site for both
reference variables and heap objects. It would be trivial to
define C, v and h to maintain contexts of higher depths.

3.3 Fragment Class Analysis

The class analyses are typically designed as whole-program



void main() {
ZipEntry ph_ZE;
ZipInputStream ph_ZIS;
ZipOutputStream ph_Z0S;
ph-ZE = new ZipEntry();
ph-ZIS = new ZipInputStream();
ph_Z0S = new ZipOutputStream();
ph_ZE.setCRC(0) ;
ph_ZE = ph_ZIS.getNextEntry();
ph_Z0S.putNextEntry (ph_ZE) ;
ph_Z0S.closeEntry() ;
ph-Z0S.finish();

Figure 5: Placeholder main method for zip.

analyses; they take as input a complete program and pro-
duce points-to graphs that reflect relationships in the entire
program. However, the problem considered in this paper re-
quires class analysis information for a partial program. The
input is a set of classes Cls and the analysis needs to con-
struct an approximate object graph that is valid across all
possible executions of arbitrary client code built on top of
Cls. To address this problem we make use of a general tech-
nique called fragment analysis due to Nasko Rountev [33, 36,
34]. Fragment analysis works on a program fragment rather
than on a complete program; in our case the fragment is the
set of classes Cls.

Initially, the fragment analysis produces an artificial main
method that serves as a placeholder for client code written
on top of Cls. Intuitively, the artificial main simulates the
possible flow of objects between Cls and the client code.
Subsequently, the fragment analysis attaches main to Cls
and uses some whole-program class analysis engine to com-
pute a points-to graph which summarizes the possible ef-
fects of arbitrary client code. The fragment analysis ap-
proach can be used with a wide variety of class analyses;
for the purposes of this paper we consider fragment analysis
used with three of the class analyses described in the pre-
vious section: 0-CFA, Andersen-style points-to analysis and
object-sensitive points-to analysis.

The placeholder main method for the classes from Fig-
ure 3 is shown in Figure 5. The method contains variables
for types from Cls that can be accessed by client code. The
statements represent different possible interactions involv-
ing Cls; their order is irrelevant because the whole-program
analysis is flow-insensitive. Method main invokes all public
methods from the classes in Cls designated as accessible.

The details of the fragment analysis will not be discussed
here; they can be found in [36]. For the purposes of our
analysis we discuss the object reachability [34] property of
the results computed by the fragment analysis. Consider
some client program built on top of Cls and an execution
of this program (the program must satisfy the constraints
discussed in Section 2.3). Let r € R be a variable declared
in Cls and at some point during execution 7 is the start of
a chain of object references that leads to some heap object.
In the fragment analysis solution, there will be a chain of
points-to edges that starts at the representative of r, v € V
and leads to some object name h € H that represents the

run-time object. A similar property holds if r is declared
outside of Cls. In this case, in the fragment analysis solu-
tion, the starting point of the chain is the representative of
the variable from main that has the same type as r. This
property is relevant for the ownership and composition anal-
ysis described in Section 5 as the points-to graph is used to
approximate all possible object graphs and thus all possible
accesses must be taken into account.

We illustrate the analyses described in Section 3.1. Con-
sider the example from Figures 3 and 5. There are three
allocation sites in the main method; they are denoted by
names ZE1, ZIS1 and Z0S1. Name byte[] corresponds to
the allocation site in class InflaterInputStream. There
are three allocation sites in class ZipInputStream; they are
denoted by names CRC1, Inflaterl and ZE2. There are
four allocation sites in class ZipOutputStream; they are de-
noted by Vectorl, Hashtablel, Deflaterl and CRC2. In
addition, we consider the allocation sites in Vector (recall
Figure 1), which are transitively reachable; they are denoted
by Object[] and VIterl. For brevity, the relevant classes
are further denoted in a similar abbreviated fashion; for ex-
ample we use ZE to denote class ZipEntry, ZIS to denote
ZipInputStream and Z0S to denote ZipOutputStream.

The points-to graphs computed from the code in Fig-
ures 5, 3 and 1 when the generalized class analysis algorithm
is instantiated to 0-CFA, the Andersen-style points-to analy-
sis and to the object-sensitive points-to analysis are shown in
Figure 6. Variable el denotes variable readL0C. e (i.e., local
variable e in method readLOC in ZipInputStream); similarly,
e2 stands for putNextEntry.e, e3 stands for closeEntry.e
and e4 stands for Vector.addElement.e. Variable enum de-
notes finish.enum. Heap object names are underlined in
Figure 6. For simplicity, implicit parameters this and ob-
jects Inflater, byte[], Hashtable and Deflater are not
shown.

The points-to graph computed when the generalized class
analysis algorithm is instantiated to 0-CFA is shown in Fig-
ure 6(a). In this case, the objects are represented by their
corresponding classes. As a result, there is a single name
for the two CRC objects even though there are two allocation
sites that allocate CRC objects; similarly, there is a single
name for the two ZipEntry objects.

The points-to graph computed when the generalized algo-
rithm is instantiated to the Andersen-style points-to analy-
sis is shown in Figure 6(b). In this case, there are separate
object names, CRC1 and CRC2 for the two allocation sites
that instantiate CRC objects. Similarly, there are two ob-
ject names, ZE1 and ZE2 for the two allocation sites that
instantiate ZipEntry objects.

Finally, the points-to graph computed when the general-
ized algorithm is instantiated to the object-sensitive points-
to analysis is shown in Figure 6(c); the superscripts on refer-
ence variables and object names denote object contexts. The
placeholder main method is analyzed in the special static
context € and there is a single set variable for each place-
holder variable and a single objet name for each object al-
located in main—that is, object names ZIS1, Z0S1 and ZE1
as well as reference variables ph_Z0S, ph_ZIS and ph_ZE have
no superscripts. For the remaining object names, CRC1**s!
and ZE2%**! denote objects that are created in the context
of ZIS1 and thus are annotated with subscript zis1. Simi-
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Figure 6: Points-to graphs computed by the fragment points-to analysis.

larly, CRC2%°*! and Vector1*°*! denote objects created in the
context of Z0S1. VIter'*“**! denotes the iterator created by
Vectorl and Object [1'°**** denotes the data array created
by Vectorl (in methods elements and Vector in Figure 1
respectively). For the reference variables, e1***' denotes the
context copy of el when the enclosing method readLOC is
invoked with receiver ZIS1. Similarly, e2*°%', €3%°5! and
enum®*! denote the context copies of e2, e3 and enum when
their enclosing methods are invoked with receiver Z0S1. Fi-
nally, e4"**"* denotes the context copy of e4 when its en-
closing method addElement is invoked on receiver Vectorl.

4. APPROXIMATE OBJECT GRAPH

The output of fragment class analysis is needed to con-
struct the approximate object graph Ag which approximates
all possible run-time object graphs that can happen when
client code is built on top of Cls. Subsequently, Ag is used
for ownership inference. The nodes in Ag are taken from
the set of object names H and the edges represent ”may-
access” relationships. Figure 7 outlines the construction of
Ag given a points-to graph Pt—that is, the algorithm is pa-
rameterized by a class analysis. Recall that set C' represents
the contexts of invocation of a method for the purposes of
class analysis; although the generalized class analysis algo-
rithm may be instantiated with different context sensitivity

schemes, for clarity in this paper we consider only empty
contexts (i.e., C = {e}) and receiver object contexts (i.e.,
C = 0). The analysis in Figure 9 processes each statement
that may contribute object graph edges in each appropri-
ate context. In other words, for analyses that are context-
insensitive (RTA, 0-CFA and the Andersen-style points-to
analysis) statement s is processed once. For analyses that
are context-sensitive (the object-sensitive points-to analysis
in our example) statement s in method m is processed for
each context in Cy,.

Set Crm,c denotes the set of object names that represent
the contexts of invocation of method m in context c. Note
that C,,. are the contexts in the sense of the object graph
as described in Section 2.1—that is, the receivers of m when
m is invoked in context c. Clearly, each Cp, . can be approx-
imated using class analysis information. If m is an instance
method or constructor, C,, is the points-to set of this®
(i.e., the points-to set of the context copy of implicit pa-
rameter this for context ¢). If m is a static method Cp, .
includes the union of the points-to sets of this for all in-
stance methods or constructors that may call m (directly or
through a sequence of static calls); it includes root if m is
main or may be called from main.

Lines 1-2 account for edges due to flow from the con-
texts of the callee to the contexts of the caller (using the
term context in the sense of the object graph in Figure 2.1).



input Stmt: set of statements Pt: VUH — P(H)
output Ag: H — P(H)
[1] foreach statement s in method m
s:l=mnew C(...) s.t. I not immediately passed or
immediately returned to another context,
s:l=r.m(...) s.t. r # this,
s:l=r.fs.t. r # this and [ assigned to a variable
foreach context ¢ € C),
2]  add {h— hj|h€Cm,c A (v(l,c),h;) € Pt} to Ag
// add access edges due to flow from callees to callers
[3] foreach statement s in method m
s:l=new C(r),
s:1.m(r) s.t. | # this,
s:l.f =rst. [ # this
foreach context c € Cp,

[4]  add {h; — h;|(v(l,¢c), hi) € Pt A (v(r,c), hj) € Pt} to Ag

// add access edges due to flow from callers into callees

[5] foreach h; -5 h; € Pt label hi — hj € Ag with f
[6] foreach s in method m
s: 1 =mnew C(this) s.t. | not immediately passed or
immediately returned to another context,
s: r.m(this),
S:...= this
foreach context c € Cp,
[7]  add {h; — h; | (v(this,c), h;) € Pt } to Ag
// add self-loop edges due to this access

Figure 7: Construction of Ag. P(X) denotes the
power set of X. Ag is initially empty.

For example, at a constructor call new edges are added to
Ag from each context of the call to the name representing
the newly created object. Similarly, at an instance call not
through this new edges are added from each context of the
call to each returned object. Note that when the newly con-
structed object is immediately passed to another context
(e.g., as in new A(new B(...))), or immediately returned to
another context (e.g., as in returnnew V Iterator(this)), no
new edges are added to that object from the contexts enclos-
ing the constructor call. Also, at indirect read statements,
no edges are added when variable [ is not assigned or passed
as an explicit or implicit argument later (e.g., it is used only
to access instance or array fields such as in x=[[i]). This is
consistent with the definition of the relaxed object graph in
Section 2.1. Lines 3-4 account for edges due to flow from
the contexts of the caller to the contexts of the callee. For
example, at instance calls edges are added to each object
in the points-to set of a reference argument, from each ob-
ject in the points-to set of the receiver. Line 5 labels the
edges with the appropriate field identifier and line 6 creates
a self-loop that is due to a reference through implicit param-
eter this. For clarity, we omit detailed discussion of static
fields. The actual implementation creates edges from root
to each object in the points-to set of a static field; the case
is handled correctly by this algorithm and by the algorithm
in Section 5.1.

We discuss the reachability property of the approximate
object graph. Consider some client program built on top
of Cls and an execution of this program (the program must
satisfy the constraints discussed in Section 2.3). Let ¢ be a

context in the sense of the object graph (i.e., root or a heap
object) and at some point during execution c is the start of
a chain in the relaxed object graph that leads to some heap
object o". In Ag, there will be a chain of edges that starts
at the representative of ¢ and leads to the representative of
o".

Figure 8 shows the approximate object graphs computed
from the code on Figures 3, 5 and 1, and the points-to graphs
in Figure 6 (only object names from Figure 6 are shown
and fields are omitted for clarity). We consider in detail
the object graph in Figure 8(b) resulting from the points-to
graph computed by Andersen’s points-to analysis in Fig-
ure 6(b). The other two object graphs are computed analo-
gously and the reachability property holds for all. The anal-
ysis is context-insensitive and thus each statement is pro-
cessed by the algorithm in Figure 7 once in the empty con-
text €; also we have v(r,€) = r and H = O. For the majority
of edges inference is straight-forward. For example, edges
root—ZIS1, root—ZIS2 and root—ZE1 are due to the con-
structor calls in main and edges ZIS1—CRC1 and ZIS1—ZE2
are due to the constructor calls in class ZipInputStream.
Edge Z0S1—VIterl is due to call enum=entries.clements()
in method finish. Edge VIterl—Vectorl is due to state-
ment return new VIterator(this) in method elements; note
that there is no edge Vector1—VIterl due to this state-
ment. Edge root—ZE2 is due to statement ph_ZE = ph_ZIS.
getNextEntry() in main, and edges Z0S1—ZE2 and Z0S1—ZE1
are due to statement ph_Z0S.putNextEntry(ph_ZE) in main.
Edges Object [1—ZE2 and Object [] —ZE1 are due to flow at
statement data[at] = e in addElement.

5. IDENTIFYING COMPOSITION
RELATIONSHIPS

We propose a novel analysis for ownership inference. The
analysis uses Ag to identify a boundary subgraph rooted
at h for each object name h; the subgraph contains paths
that are guaranteed to represent flow within the ownership
boundary of h. Whenever the edge appears in the boundary
of its source for all edges labeled with f, the relationship
through f is identified as composition.

5.1 Ownership Boundary

Procedure computeBoundary in Figure 9 takes Ag and
object name h; as input and outputs subgraph Bndry(h;).
Subgraph Bndry(h;) contains paths that are guaranteed to
represent flow within the ownership boundary of an instance
represented by h;. From now on we will denote run-time
time objects by 0", of, 07, etc; their corresponding analysis
representatives will be denoted by h, h;, hj, etc. More pre-
cisely, we have the following lemma. Let o] be a heap object
represented by h;. For every edge e: h — h; € Bndry(h;) we
have that if o] dominates some o” (represented by h) then
o; dominates the o} (represented by h;) that o" refers to.
Therefore, for every o; and run-time path p: o] — ...0" —
0}, whose representative is in Bndry(h:), we have that o]
dominates o; .

Consider the object graph in Figure 8(b). The bound-
ary of Z0S1 includes nodes Z0S1,CRC2,Vectorl,Object[]
and VIterl and the edges between them. There are paths
Z20S1—CRC2, Z0S1—VIterl, Z0S1—Vectorl, Z0S1—VIterl
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Figure 8: Approximate object graphs computed by the algorithm in Figure 7.

—Vectorl, Z0S1—Vectorl— Object[] and Z0S1—VIterl
—Vectorl—0bject[]. It is easy to see that for exam-
ple for every run-time Z0S1"—Vectorl”, Z0S1" dominates
Vectorl”.

Below we briefly outline the algorithm and the correctness
argument. The algorithm uses the fact that o} flows from
object o; to some object o}, only if one of the following is
true: (1) o, has a handle to both o; and o} (and due to the
reachability property Ag contains edges hy — hi, hy — hj,
hi — hj), or (2) o has a handle to both o} and o} (and
Ag contains edges h; — hi, hi — hj, hix — h;). This ob-
servation helps identify encapsulation more precisely. Sup-
pose that our running example has another input stream
object, created by root and denoted by name ZIS2. The
relationship between ZIS2 and its crc object would be rep-
resented by edge ZIS2—CRC1 in Figure 8(b). A naive algo-
rithm may identify root as the dominator of the crc objects,
and fail to identify the composition relationship between
ZipInputStream and CRC32. In fact, the CRC1 object is cre-
ated and dominated by its enclosing ZIS1 object because
there is no hy such that either hy has handles to both ZIS1
and CRC1, or ZIS1 has handles to both h; and CRC1; thus,
the CRC1 object created by the ZIS1 object does not flow to
or from any other context.

The algorithm builds the boundary of an object name h;
by adding edges. First, computeBoundary partitions the
edges reachable from h; into appropriate closure sets using
auxiliary procedure findClosureSet. Intuitively, the clo-
sure set of edge h — h; contains all edges hr — h; in the

transitive closure of h;, such that some o}, and o" refer to the
same o;. For example, the closure set of Z0S1—Vectorl is
{Z0S1—Vector1,VIterl— Vectorl}, and the closure set of
Z0S1—ZE1 is {Z0S1—ZE1,Vector1—ZE1,0bject [1 —ZE1}.
The role of the parent set Prt (discussed later) is to en-
sure that the relevant paths to h — h; stay in boundary.
Bndry(h;) grows from zero to one edge, h; — h;, when (i)
there is no hi that has handles to both h; and h; and (ii)
there is no hy such that h; has handles to both hy and hj,
and hi has a handle to h;. The first condition is guaran-
teed by the check that the Closure set of h; — hj; is not
forbidden, and the second condition is guaranteed by the
check that the Prt set of h; — h; is empty; both checks
are performed at line 5. Thus, an edge h; — h; is added
to the empty boundary of h; only when it is guaranteed
that the h; object accesses the hj object exclusively (i.e., no
other object has a handle to it). Examples of such edges are
ZIS1—CRC1 and Z0S1—CRC2. Clearly, the lemma holds in
this case.

Consider an edge h — h; that is added to Bndry(h;) at
line 6. Consider some client program built on top of Cls and
an execution of this program (the program must satisfy the
constraints discussed in Section 2.3). Let oj be any run-time
object represented by h; and o be an object dominated by
0;. We need to examine all hy such that some o;-' referred
by o" may flow to or from o}, (i.e., there is an edge oy — 0}
in the relaxed object graph). If all these o}, are dominated
by o; then o} is dominated by o; .

Object o] flows from o" into some o} when one of the



procedure findClosureSet // of h — h; w.r.t. h;

input Ag: H—P(H) h—hj: HxH hg: H n: Int
output Closure(h;,n): P(H x H) Prt(hi,n): P(H x H)
initialize Wi={}, Closure(h;, n)={}, Prt(h;, n)={}

[1] mark h — h;, add it to W1 and to Closure(h;, n)

[2] while WI not empty

[3] remove h — h; from Wi

[4] foreach hy — hj s.t. hi — h and hy reachable from h;
[5] if hy — h; is unmarked

[6]  mark hx — hj, add it to Wi and Closure(h;,n)

[7] add hx, — h to Prt(hi,n)

[8] foreach hi — hj s.t. h — hg

[9] if hy — h; is unmarked

[10] mark hy — hj, add it to Wi and Closure(h;,n)

[11] add h — hi to Prt(h,n)

procedure computeBoundary // of h;

input Ag: H— P(H) hi: H

output Bndry(h;): P(H x H)

initialize n=0

[1] foreach unmarked edge h — h; reachable from h;
[2] findClosureSet(h — hj,0;,n++)

[3] foreach h; — h; s.t. Jhy s.t. hy — h; and hy, — h;
[4] mark the Closure set of h; — h; as forbidden

[5] while empty Prt(hi, k) and Closure(hi, k) not forbidden
[6] add Closure(hi, k) to Bndry(h;)

[7] foreach e € Closure(h;, k) remove e from each Prt
[8] remove Pri(o;, k) and Closure(h;, k)

Figure 9: Ownership analysis.

following conditions is true. First, oj, has handles to both
o" and o] (e.g., of may be returned to o, from a method
invoked on 0", or it may be passed as an argument from oy,
to a method invoked on 0"). Since o] dominates o” we have
that o dominates o;,. This case is examined at lines 4-7 in
findClosureSet and hy — h; is added to the worklist; it
is examined in a subsequent iteration of the while loop in
findClosureSet in order to find the representatives of the
objects that oj may flow to from oj. In addition, hy — h;
is added to Closure(hi,n), the closure set of h — hj. Sec-
ond, oj may flow from 0" into some o} such that o" has
handles to both oy and o;. Clearly, in this case we have
that h — hi € Bndry(h;) because h — hy is in the Prt set
of h — hj; recall that an edge is removed from a Prt set
only when it is added to the boundary at lines 6-7 in com-
puteBoundary. We may assume that the lemma holds
for h — hy € Bndry(h;)—that is, if o] dominates o" then
o; dominates the o, referred to by o". Thus, we have that
o; dominates oj. This case is examined at lines 8-11 in
findClosureSet and appropriate hy, — h; are added to the
worklist and to the closure set.

We briefly illustrate the algorithm on our running exam-
ple. Consider the boundary of ZIS1. There is a single closure
set that is not forbidden, Closure(ZIS1,0)={ZIS1—CRC1}
with corresponding parent set Prt(ZIS1,0)={} and edge
ZIS1—CRC1 is added to Bndry(zIS1) at line 6. Consider
the boundary of Z0S1. As a result of findClosureSet in
lines 1-2 there are four closure sets that are not forbidden:
Closure(Z0S1,0)={z0S1—CRC2}, Closure(Z0S1,1) ={Z0S1—

VIter1}, Closure(Z0S1,2)={Z0S1—Vectorl,VIterl1—Vect-
orl} and Closure(Z0S1,3)={Vectori—0bject[]}. Their
corresponding parent sets are Prt(2081,0)={}, Prt(z0s1,1)
={}, Prt(z0s1,2)={z0S1—VIter1}, and Prt(z0S1,3)={}.
The algorithm processes the first closure set and adds edge
Z0S1—CRC2 to Bndry(Z0S1). Then it adds the second clo-
sure set—that is, edge Z0S1—VIterl to the boundary and
deletes the edge from the third parent set. The third parent
set becomes empty and Z0S1—Vectorl and VIterl—Vectorl
are added to the boundary. Finally, edge Vector1—0bject[]
is added to the boundary. Thus we have the following bound-
ary graphs: Bndry(ZIS1) = {ZIS1—CRC1}, Bndry(Vectorl)
= {Vectori—0bject[1} and Bndry(Z0S1) = {Z0S1—CRC2,
Z0S1—Vectorl, Z0S1—VIterl, Vectorl—0bject[],VIterl
—Vectorl}.

A corollary of the lemma is that whenever we have an
edge hi—h; € Bndry(h:) each o] owns the o] instances
that it may refer to. If for every edge labeled with f we

have h 5 1’ € Bndry(h) the analysis identifies one-to-one
implementation-level composition or collection ownership.
As pointed earlier, the major focus of this paper is the in-
ference of ownership and compositions. Our methodology
handles inference of one-to-many relationships as well but
in order to keep the focus of the paper it is not discussed
here; it is addressed in [26].

5.2 Analysis Complexity

We discuss the complexity of the analysis in terms of sets
H,V and C and we emphasize the framework instance that
is based on the Andersen-style points-to analysis which we
believe is the most suitable for our purposes (i.e., it pro-
vides the best trade-off between analysis cost and analysis
precision for the purposes of composition inference).

Let N be the size of the program being analyzed (i.e., Cls
and the placeholder main)—that is, the number of state-
ments, the number of object allocation sites and the num-
ber of reference variables is of order N. To reason about
the complexity of the generalized class analysis in Figure 4
we consider a standard set-constraint-based solution proce-
dure [12, 42, 44, 35]. In set-constraint-based analyses the
solution is divided into constraint generation and constraint
resolution where complexity is clearly dominated by con-
straint resolution. For example, when the algorithm in Fig-
ure 4 is instantiated into Andersen-style points-to analy-
sis constraint generation processes each statement once and
generates constraints of the form v, C v; (i.e., this constraint
denotes that the points-to set of r flows to the points-to set
of 1). Solving for Andersen’s analysis requires propagat-
ing object names o; to each v, which clearly dominates the
linear generation. To reason about constraint resolution in
terms of sets H and V' consider that H object names need to
be propagated towards V reference variables through con-
straints of the form h C v; and v; C v;. Therefore, the
complexity of propagation for the generalized analysis is
O(H * V*)—clearly, each constraint o; C v; may be dis-
covered though O(V) intermediate variables. As a result for
0-CFA we have O(CI * R*)=0(N?), for the Andersen-style
points-to analysis we have O(O * R*)=0(N?) and for the
object-sensitive points-to analysis we have O(O * O x (R *
0)*)=0(N?®) (note that although the number of classes C1 is
of order N, the number of classes C! is substantially smaller



than the number of allocation sites O in practice).

The complexity of the construction of the approximate ob-
ject graph in Figure 7 is O(N*CxH?): there are O(N) state-
ments, each statement is processed in at most O(C) con-
texts and for each statement the algorithm performs at most
O(H?) work (due to lines 2 and 4). Thus, for 0-CFA we have
O(N % CI*)=0O(N?), for the Andersen-style points-to analy-
sis we have O(N * O%*)=0O(N?) and for the object-sensitive
points-to analysis we have O(N % O * (O * O)?)=0(N°®).

Finally, consider procedure computeBoundary in Fig-
ure 9. The code for partitioning the edges in the transitive
closure of h; into closure sets (lines 1-2) examines each edge
and for each edge performs at most O(H) work: for edge
h — h; there may be at most O(H) nodes hj such that
hir — h and hp — h; (examined at lines 4-7 in findClo-
sureSet); similarly, there may be at most O(H) nodes hy
such that h — hy and hry — h; (examined at lines 8-11 in
findClosureSet). Therefore, the complexity of lines 1-2 is
O(H?). The while loop that adds edges to the boundary
(lines 5-8) examines each edge at most once, and each edge
is removed from at most O(H) parent sets. Therefore, the
complexity of lines 5-8 is O(H?®) as well. To conclude, the
complexity of our analysis is dominated by the computation
of the boundary sets which is worst-case O(H®*). For the
Andersen-style points-to analysis, the overall complexity is
O(N*).

6. EXPERIMENTAL STUDY

We implemented one instance of our framework—in par-
ticular, we considered class analysis based on the Andersen-
style points-to analysis, and the object graph construction
and ownership inference based on it. We believe that this in-
stance of the framework is the most suitable for the purposes
of inference of compositions in program fragments. The goal
of the empirical study is to address two questions. First, how
often does our analysis discover implementation-level com-
position? Second, how imprecise the analysis is—that is,
how often it misses implementation-level composition?

We performed experiments on the 7 Java components
listed in Table 1. The analysis implementation is based
on the Soot framework [46]. The components are from the
standard library packages java.text and java.util.zip,
also used in [34]. The components are described briefly in
the first two columns of Table 1. Each component contains
the set of classes in Cls (i.e., the classes that provide com-
ponent functionality plus all other classes that are directly
or transitively referenced by the functionality classes). The
number of classes in Cls and the number of classes that
implement the component functionality is shown in column
(3). We considered all reference instance fields in the classes
that implement the component functionality; this number is
given in column (4).

6.1 Results

We applied Andersen-style points-to analysis, object graph
construction based on the Andersen-style points-to analy-
sis and composition inference as described earlier in order
to determine which fields accounted for composition rela-
tionships. Column (5) in Table 1 shows how many of the
fields from column (4) are identified as one-to-one compo-
sitions and column (3) shows how many are identified as

owned collections (i.e., arrays and standard java.util col-
lections). On average, the analysis reported 30% one-to-one
compositions and 10% owned collections—that is, 40% of
the reference instance fields account for representation that
is not being exposed outside of its enclosing object.

6.2 Analysis Precision

The issue of analysis precision is of crucial importance for
software tools. If an analysis is imprecise, it may report
that the relationship between two classes is not a composi-
tion while in reality it is, or that a collection is not owned
while in reality it is owned (i.e., the analysis reports that
certain representation may be exposed while in fact it is
not). Such information is not useful and may confuse the
user and even render the tool unusable. For example, if a
user attempts to ensure the consistency between the code
and the composition relationships in UML design class dia-
grams, imprecision will mean that a large chunk of code will
have to be examined manually. Since imprecision results in
waste of human time, analysis designers must carefully and
precisely identify and evaluate any sources of imprecision.

In our experiments, we examined the fields that were
not identified as compositions or owned collections. We at-
tempted to prove that it was possible to write client code
s.t. an object stored in such a field would be exposed (i.e.,
it would not be owned by its enclosing object in accordance
with the ownership model in Section 2.1). In all cases, ex-
cept one, we were able to prove exposure. Thus, the analysis
achieves almost perfect precision.

Field defaultCenturyStart in component date accounted
for the one case of imprecision. The object stored in the field
comes from a call to a method getTime which creates and
immediately returns a Date object. Although the Date ob-
ject stored in defaultCenturyStart does not flow out of its
enclosing SimpleDateFormat object, other Date objects cre-
ated by getTime in SimpleDateFormat are being returned
(i.e., there are edges in Ag to the SimpleDateFormat object
and the only representative of Date). This imprecision may
be resolved by using an instance of our framework that em-
ploys more precise object naming. In the case of getTime
it may distinguish the Date objects for different call sites of
getTime—for example, 1-CFA analysis which distinguishes
context by the last enclosing call site would produce precise
results; in this case, the target of the defaultCenturyStart
edge would be a separate Date object that does not flow out
and the ownership inference algorithm will correctly iden-
tify that there is a composition relationship through this
field. However, it remains to be seen whether a more precise
context-sensitive points-to analysis will result in substantial
benefits for the ownership and composition analyses.

6.3 Conclusions

Our results indicate that the ownership model captures
conceptual composition relationships appropriately—we en-
countered several cases when values of private fields were
stored in other parts of the object representation. Thus, a
model based on exclusive ownership (i.e., a model which re-
quires that an owned object is referenced only by its owner)
would not have been sufficient. The results also show that
composition relationships occur often. Therefore, the anal-
ysis can provide useful information for reverse engineering



(1)Component (2)Functionality (3)#Classes | (4)#Fields Compositions

Cls /Functionality (5)#One-to-one (6)#Owned collections

Analysis Perfect | Analysis Perfect

gzip GZIP 10 streams 199/6 71 4(57%) 4(57%) 0(0%) 0(0%)
zip ZIP IO streams 194/6 10 | 3(30%) | 3(30%) | 2(20%) 2(20%)
checked IO streams with checksums 189/4 2 0(0%) 0(0%) 0(0%) 0(0%)
collator text collation 203/15 24 | 10(42%) | 10(42%) | 6(25%) 6(25%)
date date formatting 205/17 20 | 3(15%) | 4(20%) | 5(25%) 5(25%)
number number formatting 198/10 3| 2(67%) | 2(67%) 0(0%) 0(0%)
boundary iter. over boundaries in text 199/13 7 0(0%) 0(0%) 0(0%) 0(0%)
Average 30% 31% 10% 10%

Table 1: Java components and implementation-level compositions.

tools. It is important that precise results can be obtained
with practical analysis—the combined running time of the
points-to, object graph construction and composition infer-
ence analyses does not exceed 10 seconds on any component
(executed on a 900MHz Sun Fire 380R).

Clearly, a threat to the validity of our results is the rel-
atively small code base used in our experiments. Although
the components used in this study are representative pro-
gram fragments, the results need to be confirmed on more
components. In the future we plan to investigate the impact
of other framework instances, especially context-sensitive
ones, on more components.

7. RELATED WORK

Work by Kollmann and Gogolla [22] and more recently by
Guéhéneuc and Albin-Amiot [19] presents definitions and
identification algorithms for implementation-level associa-
tion, composition and aggregation relationships. Our work
focuses on compositions and differs from [22] and [19] in
both the definition of implementation-level composition and
in the identification algorithm. The definition of composi-
tion in [22] and [19] is based on exclusive ownership. This
may not be sufficient to model commonly used patterns such
as iterators, decorators, and factories [14], as well as the
common situation when instance fields refer to owned ob-
jects that are temporarily accessed by other parts of the
representation of the owner. Our definition is based on the
owners-as-dominators model which does not require exclu-
sive relationship with the owner; as observed by us and other
researchers [9, 32|, this model captures well the notion of
composition in modeling [38].

We present an identification algorithm that may be more
appropriate. Guéhéneuc and Albin-Amiot propose the use
of dynamic analysis, but point out serious disadvantages.
First, dynamic analysis is slow, second, it requires a com-
plete program, and third, the results that are obtained may
be incomplete because they are based on particular runs of
particular clients of the component. Kollmann and Gogolla
use dynamic analysis as well. Our detection algorithm is
based on practical static analysis that works on incomplete
programs and produces a solution that is valid over all un-
known clients of the component.

Work in [21] and [45] addresses the issue of recovering
one-to-many associations through containers, since reverse
engineering tools typically loose the association between the
enclosing class and the class whose instances are stored in

the container field (recall the entries field of Vector type
in Figure 3). Identification of composition is not addressed
in these papers.

Ownership type systems disallow certain accesses of object
representation [29, 9, 8, 2, 6]. These systems require type
annotations and typically do not include automatic inference
algorithms or empirical investigations. In contrast, we infer
ownership automatically and present an empirical study of
the effectiveness of our approach; we believe that our analy-
sis can be usefully incorporated in software tools for reverse
engineering of class diagrams from Java code. The only type
annotation inference analysis that we are aware of is given
by Aldrich et al. [2] for the purposes of alias understand-
ing. Similarly to [19], the owned annotation is used only
when the analysis is able to prove exclusive ownership; in
the majority of cases it infers alias parameters. Our work
focuses on a different problem, composition inference, and
infers ownership using a model that captures better the no-
tion of composition in modeling. Grothoff et al. [16] and
Clarke et al. [10] present tools for checking of confinement
within a package and within a class respectively. They de-
fine confinement rules and the tools check if code conforms
to these rules. Our work focuses on a different problem,
composition inference, and takes a different approach, the
use of semantic analysis that is based on points-to analy-
sis. We believe that such analysis may be more appropriate
than confinement rules for the purposes of the identification
of object ownership and composition; for example, the rules
in [16] and [10] do not handle pseudo-generic containers well.

Bruel et al. [7] and Barbier et al. [4] formalize UML inter-
class relationships by defining sets of characteristics for asso-
ciation, aggregation and composition; they do not address
implementation-level relationships and the problem of re-
verse engineering. In contrast, we consider implementation-
level relationships and propose a methodology for their re-
verse engineering with an empirical investigation.

8. CONCLUSIONS AND FUTURE WORK

We present an analysis that identifies composition rela-
tionships in Java components. We define an ownership-
based implementation-level composition model and a static
analysis framework for inference composition relationships
in incomplete programs. Our experimental study indicates
that (i) the ownership-based model captures well the notion
of composition in modeling and (ii) implementation-level
compositions occur often and almost all such compositions



can be identified using a relatively simple and inexpensive

analysis.

Clearly, no definitive conclusions can be drawn

from these limited experiments. In the future, we plan to
focus on further empirical investigation placing special em-
phasis on framework instances based on context-sensitive
class analyses.
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