Static Analysis for Dynamic Coupling Measures

Yin Liu

Ana Milanova

Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY 12180, USA
{liny,milanova}@cs.rpi.edu

Abstract

Coupling measures have important applica-
tions in software development and mainte-
nance. They are used to reason about the
structural complexity of software and have
been shown to predict quality attributes such
as fault-proneness, ripple effects of changes and
changeability. Traditional object-oriented cou-
pling measures do not account for polymorphic
interactions, and thus underestimate the com-
plexity of classes and fail to properly predict
their quality attributes.

To address this problem Arisholm et al. [3]
define a family of dynamic coupling measures
that account for polymorphism. They collect
dynamic coupling measures through dynamic
analysis and show that these measures are bet-
ter indicators of complexity and better predic-
tors of quality attributes than traditional cou-
pling measures.

This paper presents a new approach to the
computation of dynamic coupling measures.
Our approach uses static analysis, in partic-
ular class analysis, and is designed to work
on incomplete programs. We perform experi-
ments on several Java components and present
a precision evaluation which shows that inex-
pensive class analysis such as RTA computes
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dynamic coupling measures with almost per-
fect precision. Our results indicate that inex-
pensive static analysis may be used as a more
convenient, more practical and more precise al-
ternative to dynamic analysis for the purposes
of computation of dynamic coupling measures.

1 Introduction

Coupling measures are typically based on some
form of static code analysis and their primary
goal is to quantify the connectedness of a class
to other classes. For example, class A is cou-
pled to class B if some method in A calls a
method in B. Coupling measures have im-
portant applications in software development
and maintenance. They are used to help de-
velopers, testers and maintainers reason about
software complexity and software quality at-
tributes. Coupling measures have been studied
extensively and have been used to assist main-
tainers in tasks such as impact analysis, assess-
ing the fault-proneness of classes, fault predic-
tion, ripple effects, and changeability among
others [8, 9, 29, 30, 17]. Therefore, coupling
measures assist developers, testers and main-
tainers in reasoning about the software and in
predicting the needs for code inspection, test-
ing and debugging.



1.1 Dynamic Coupling Measures

Traditional coupling measures [10, 11, 8] take
into account only ”static” couplings. They
do not account for "dynamic” couplings due
to polymorphism and may significantly un-
derestimate the complexity of software and
misjudge the need for code inspection, test-
ing and debugging. As an illustrating exam-
ple, consider the standard Bridge structure [15]
shown in Figure 1. Traditional coupling mea-
sures [10, 11, 8] would count only one coupling
due to polymorphic call imp.DevM() in method
A:m, namely a coupling of A to Imp. In fact, the
actual complexity of the call is considerably
higher since the polymorphic call can couple
”dynamically” each concrete A to each concrete
Imp for a total of siz couplings: (A1,Imp1),
(A1,Imp2), (Al,Imp3), (A2,Impl), (A2,Imp2)
and (A2, Imp3).

Arisholm et al. [2, 4, 3] address this prob-
lem by proposing several sets of dynamic cou-
pling measures specifically designed to account
for polymorphic interactions. They use dy-
namic analysis to capture the dynamic cou-
plings: they instrument the program, then exe-
cute it with all available inputs and collect dy-
namic measures over all executions. Arisholm
et al. perform detailed statistical analysis that
shows that these measures are better indicators
of complexity and better predictors of quality
attributes than traditional coupling measures.

1.2 Static Class Analysis

However, dynamic analysis has several disad-
vantages: (i) it is relatively slow, (ii) requires
a complete program, and (iii) produces incom-
plete results as the couplings output by the dy-
namic analysis are valid for particular inputs
and executions of the program.

The goal of our work is to utilize static
analysis as an alternative to dynamic analysis
for the computation of dynamic coupling mea-
sures. The static analyses considered in this pa-
per may have several advantages over dynamic
analysis: (i) they are practical, (ii) work on
incomplete programs and (iii) produce results
valid over all program executions (Section 2 ad-
ditionally argues the suitability of static anal-

ysis).

We propose a static analysis framework for
the computation of the dynamic coupling mea-
sures from [3] for strictly-typed languages such
as Java. The framework is parameterized by
class analysis, which determines the classes of
the objects a reference variable or a reference
object field may refer to; the framework can
be instantiated with a wide variety of class
analyses of varying degrees of precision and
cost [1, 5, 16, 13, 18, 7, 19, 22, 25 27, 2§|.
We use the class analysis solution to approxi-
mate the interactions of run-time objects and
infer the possible dynamic couplings. Our ap-
proach works on incomplete programs. This
is an important feature because it is essential
to be able to perform separate analysis of soft-
ware components. For example, it is typical to
have to assess the quality attributes of a com-
ponent without having access to the clients of
that component.

We have instantiated the framework with
Class Hierarchy Analysis (CHA) [12] and Rapid
Type Analysis (RTA) [5], two well-known class
analyses at the lower end of the cost/precision
spectrum; we approximate dynamic couplings
with the two instantiations. We present empir-
ical results on several components. We present
a precision evaluation which shows that one of
our analyses, namely the one based on RTA,
achieves almost perfect precision—that is, it
computes almost exactly the same couplings
that would have been identified dynamically
with the most complete suite of test cases writ-
ten on top of the component. These results
indicate that dynamic coupling measures can
be measured precisely with a simple and inex-
pensive static analysis. Thus, our analysis can
be easily incorporated in software tools; it can
assist developers, testers and maintainers in as-
sessing software quality and in predicting qual-
ity attributes such as changeability and fault
proneness.

This work has the following contributions:

e We propose a static analysis framework
parameterized by class analysis, for the
computation of dynamic coupling mea-
sures. Our analysis framework is designed
to handle incomplete programs.

e We present an empirical study that eval-
uates two instantiations of the framework



on several Java components.

2 The Case for Static
Analysis

Arisholm et al. [3] capture dynamic coupling
measures through dynamic analysis; however,
they observe that dynamic analysis has (ar-
guably substantial) drawbacks. First, it is rel-
atively slow because it requires multiple exe-
cutions of the program with multiple inputs
and each execution incurs the overhead of in-
strumentation. Second, the engineering task
of building an instrumentation framework is
relatively complex. Third, dynamic analy-
sis always requires a complete program while
in many cases it is necessary to use coupling
measures to assess quality attributes of soft-
ware components (i.e., incomplete programs).
Fourth, the results that are obtained may be in-
complete as they are based on particular runs
with particular inputs. As an example, sup-
pose that there are two clients of the Bridge
structure in Figure 1, one that instantiates Al
with Impl and one that instantiates Al with
Imp2. Running the two clients will count dy-
namic couplings (A1l,Impl) and (Al,Imp2) as
due to call imp.DevM(). Thus, dynamic anal-
ysis will omit four valid couplings. One would
need at least six clients, and six runs, in order
to capture correctly all possible dynamic cou-
plings due to this call.

Static analysis, and in particular class anal-
ysis, presents a viable alternative to dynamic
analysis for the purposes of the computation of
dynamic coupling measures. Using class anal-
ysis, one can approximate the possible classes
of each reference variable and reference object
field and reason about possible dynamic cou-
plings. For the running example, a class anal-
ysis may determine that the possible run-time
classes for imp are Impl, Imp2 and Imp3 and
the possible run-time classes for implicit pa-
rameter thisp .y are Al and A2. This informa-
tion correctly yields that call tmp.DevM() may
trigger six dynamic couplings (clearly, thisp .y
refers to the receivers of A:m and it captures the
classes of the caller; imp captures the classes
of the callee). Static analysis has important
advantages over dynamic analysis when com-
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0 )

Figure 1: The Bridge pattern structure

puting dynamic coupling measures. First, the
static analyses considered in this paper are rela-
tively inexpensive and likely much more practi-
cal than dynamic analysis. Second, these anal-
yses are easy to implement; it is likely that
they are implemented for the purposes of essen-
tial tasks such as call graph construction, and
the analysis for the computation of dynamic
coupling measures will simply reuse available
results. Third, the static analysis considered
in this paper can be adapted to work on in-
complete programs (i.e., software components),
which is an important requirement. Fourth,
the static analysis is conservative—that is, it is
guaranteed that all possible run-time couplings
will be reported.

However, static analysis can be overly con-
servative and report infeasible couplings—that
is, couplings that cannot happen during any
execution of the program. Clearly, overly con-
servative analysis may overestimate the pos-
sible couplings and software complexity and
thus undermine the usefulness of the coupling
measures. We believe that in order to use
static analysis as a viable alternative to dy-
namic analysis, the static analysis must pro-
vide a precise approximation of the dynamic
couplings.

3 Problem Statement

The goal of our work is to design static analysis
that computes dynamic coupling measures pre-
cisely; the analysis must work on incomplete
programs. This analysis problem fits into a
general framework for analysis of incomplete



programs due to Nasko Rountev [23, 26, 24].
The input to the analysis contains a set Cls of
interacting Java classes. A subset of Cls is des-
ignated as the set of accessible classes; these
are classes that may be accessed by unknown
client code from outside of Cls. Such client
code can only access fields and methods from
Cls that are declared in some accessible class;
these accessible fields and methods are referred
to as boundary fields and boundary methods.

3.1 Dynamic Coupling Measures

The dynamic coupling measures we study were
defined and studied in detail by Arisholm et
al. [2, 3]. Our work focuses on the object cou-
pling measures which capture polymorphic in-
teractions. The measure of highest granular-
ity, denoted by IC_OD in [3], records a tuple
(C1,m1,I,Co,ma) when the dynamic analysis
encounters an execution of method my with re-
ceiver of type C1 and during this execution call
site I in my invokes method ms with receiver of
class Cy. Recall the example in Figure 1 and as-
sume that call site imp.DevM() in method A:m
has number 1. Assuming that there are tests
that ensure complete coverage, the dynamic
analysis would report the following /C_OD tu-
ples for call site 1:
(A1,A:m,1,Impl,Impl:DevM()

)
(A1,A:m,1,Imp2,Imp2:DevM())
(A1,A:m,1,Imp3,Imp3:DevM())
(A2,A:m,1,Impl,Impl:DevM())
(A2,A:m,1,Imp2, Imp2:DevM())
(A2,A:m,1,Imp3, Imp3:DevM()).

The measure of middle granularity, de-
noted by IC_.OM in [3] records tuples
(Cy,mq,C2,mo) dropping the call site index I
from the IC_OD tuple. The measure of lowest
granularity, denoted by IC_OC in [3] records
tuples (C1,mq,Cy) dropping the callee method
from the IC_OM tuple. Clearly, IC_OD sub-
sumes IC_OM and IC_OM subsumes IC_OC.

One can use these tuples to compute a mea-
sure for each class; for example the IC_OD
measure for class C' is equal to the number
of tuples for which the caller method m; is a
method defined in C. Arisholm et al. [3] show
through detailed statistical analysis that the
dynamic measures capture new dimensions of
complexity of classes compared to traditional

coupling measures [8], and predict quality at-
tributes such as changeability better than tra-
ditional measures.

For the rest of this paper we will focus on
the IC_OD measure. Our goal is to design a
static analysis that answers the question: given
the set of Java classes Cls (i.e., the component
to be analyzed) what are the IC_OD couplings
that can be observed throughout all possible
executions of arbitrary client code built on top
of Cls?

Example. Consider the package in Fig-
ure 2; this example is based on classes
from the standard library java.text with
some modifications made to better illustrate
the problem and our approach. Here Cls
consists of the classes in Figure 2 plus
String. Note that classes SimpleBoundary,
BreakData, WordBreakData, LineBreakData
and CharBreakData have package visibility and
cannot be accessed directly by client code. The
remaining classes, BreakIter, CharIter and
StringCharIter are designated as accessible
classes.

Consider the IC_OD tuples in methods
of class SimpleBoundary (i.e., we are in-
terested in computing the IC_OD measure
for this class). For brevity we will use SB
to denote SimpleBoundary, SCI to denote
StringCharIter, and WBD, LBD and CBD to
denote WordBreakData, LineBreakData and
CharBreakData respectively.

Call site 1 in setText triggers coupling
(SB,setText,1,SCI,getBeginIndex). Simi-
larly, call site 2 in first triggers coupling
(SB,first,2,SCI,getBeginIndex). Finally,
call site 3 in nextPosition triggers couplings
(SB,nextPosition,3,WBD,WBD:forward),
(SB,nextPosition,3,CBD,CBD: forward),
(SB,nextPosition,3,LBD,LBD: forward).

It is easy to see that for each of
these couplings one can write a client of
the classes in Figure 2 that will trigger
that coupling. For example, client code
may call getWordInstance (thus initializ-
ing the newly created SimpleBoundary with
WordBreakData); subsequently it can access
SimpleBoundary.next (as next is part of the
public interface of BreakIter) which will trig-
ger the coupling between SimpleBoundary and
WordBreakData.



package iter;
public abstract class BreakIter {

public static BreakIter getWordInstance() {

return new SimpleBoundary(
new WordBreakData()); }

public static BreakIter getCharInstance() {

return new SimpleBoundary(
new CharBreakData()); }

public static BreakIter getLinelnstance() {

return new SimpleBoundary(
new LineBreakData()); }
public abstract void setText(CharIter);
public abstract CharIter getText();
public abstract int first();
public abstract int next(); }

final class SimpleBoundary extends BreakIter {

private BoundaryData data;
private Charlter text;
private int pos;

public void SimpleBoundary(BoundaryData d) {

text=new StringCharIter(...);
data=d; pos=0; }
public void setText(CharIter ci) {

1 text=ci; pos=text.getBeginIndex(); }
public CharIter getText() { return text; }
public int first() {

2 pos=text.getBeginIndex(); return pos; }
public int next() {

pos=nextPosition(pos); return pos; }
private int nextPosition(int offset) {

3 ... data.forward(); ... } ...

abstract class BoundaryData { ... }

class WordBreakData extends BoundaryData {
public void forward() { ... } ... }

class CharBreakData extends BoundaryData {
public void forward() { ... } ... }

class LineBreakData extends BoundaryData {
public void forward() { ... } ...

public interface CharIter {
public int getBeginIndex(); }

public StringCharIter implements CharIter {
public StringCharlter(String s) {...}
public int getBeginIndex() {...} ... }

Figure 2: Package iter.

3.2 Discussion

We employ the following constraint, standard
for other problem definitions that require anal-
ysis of incomplete programs [26, 24, 20]. We
only consider executions in which the invoca-
tion of a boundary method does not leave Cls—
that is, all of its transitive callees are also in
Cls. If we consider the possibility of unknown
subclasses we may have all instance calls from

Cls potentially be "redirected” to unknown ex-
ternal code that may affect the coupling infer-
ence.

Thus, Cls is augmented to include the classes
that provide component functionality as well
as all other classes transitively referenced. In
the experiments presented in Section 5 we in-
cluded all classes that were transitively refer-
enced by Cls. This approach restricts analysis
information to the currently ”known world”—
that is, the information may be invalidated in
the future when new subclasses are added to
Cls. Another approach is to change the anal-
ysis to make worst case assumptions for calls
that may enter some unknown overriding meth-
ods. However, in this case, the analysis will be
overly conservative. Thus, we believe that it
is more useful to restrict the analysis to the
known world; of course, the analysis user must
be aware that the information is valid only for
the given set of known classes.

4 Fragment Class Analy-
sis for Dynamic Coupling
Measures

Class analysis determines the classes of the ob-
jects that a given reference variable or a ref-
erence field may point to [1, 5, 16, 13, 18, 7,
19, 22, 25, 27, 28]. This information has a
wide variety of uses in software tools and opti-
mizing compilers. In this paper, class analysis
information is used to approximate the set of
IC_OD coupling tuples that can happen when
arbitrary client code is built on top of Cls.
This is done by using the class analysis solu-
tion to approximate the set of possible classes
for the caller, and the set of possible classes
for the callee. There is a large body of work
on class analysis and related points-to analyses
with different trade-offs between cost and preci-
sion. In this paper, we consider computation of
dynamic coupling measures based on two well
known and simple class analyses: Class Hierar-
chy Analysis (CHA) [12] and Rapid Type Anal-
ysis (RTA) [5].

CHA is the simplest form of class analysis.
To determine the possible bindings of polymor-
phic variables and fields CHA examines the



structure of the class hierarchy. For a refer-
ence variable r or an instance field f of de-
clared type C, the set of possible classes for
the objects of r is the set containing C' and
all direct and transitive subclasses of C' (ex-
cluding abstract classes). For example, the
possible classes for data in nextPosition in
Figure 2 are WordBreakData, LineBreakData
and CharBreakData. An implementation of
CHA typically assumes that there is a whole-
program—that is, there is a main method
which is the start of the program execution;
it starts at main and maintains a set of reach-
able methods R. Whenever a reachable method
is found, CHA examines the call sites in this
method. For each call site [ = r.m(...), it ap-
proximates the possible run-time classes for r
based on the hierarchy and for each C, it finds
the appropriate run-time target m; based on C'
and the compile-time target m. Each such m;
is added to R.

RTA is another simple form of class analy-
sis. It improves on CHA by taking into account
what classes are instantiated in the program.
RTA assumes a whole program and starts from
main as the first reachable method. Whenever
a reachable method is found, RTA examines
the call sites and the instantiation sites in this
method. For each call site I = r.m(...), it ap-
proximates the possible run-time classes for r
based on the hierarchy and for each C finds the
appropriate run-time target m;. If C' has been
instantiated, m; is added to R; otherwise, m;
is added to a set of potential targets that would
become reachable if C' is instantiated. At in-
stantiation sites RTA records the class that has
been instantiated and adds to R all potential
targets associated with the instantiated class.
To summarize, the RTA solution for a refer-
ence variable or a reference object field is the
set of instantiated classes compatible with its
declared type.

4.1 Fragment Class Analysis

Class analyses are typically designed as whole-
program analyses; they take as input a com-
plete program and produce a class analysis so-
lution that reflects bindings throughout the en-
tire program. However, the problem considered
in this paper requires class analysis of a par-

tial program. The input is a set of classes Cls
and the analysis needs to approximate dynamic
couplings that could happen across possible ex-
ecutions of arbitrary client code built on top of
Cls. To address this problem we make use of a
general technique called fragment analysis due
to Nasko Rountev [23, 26, 24]. Fragment anal-
ysis works on a program fragment rather than
on a complete program; in our case the frag-
ment is the set of classes Cls.

Initially, the fragment analysis produces an
artificial main method that serves as a place-
holder for client code written on top of Cls.
Intuitively, the artificial main simulates the
possible flow of classes between Cls and the
client code. Subsequently, the fragment analy-
sis attaches main to Cls and uses some whole-
program class analysis engine to compute class
analysis information which summarizes the
possible effects of arbitrary client code. The
fragment analysis approach can be used with a
wide variety of class analyses [1, 5, 16, 13, 18,
7, 19, 22, 25, 27, 28]; for the purposes of this
paper we only consider fragment analysis used
with CHA and RTA.

void main() {
BreakIter ph_BI;
CharIter ph_CI;
StringCharIter ph_SCI;
String ph_string = "string literal";
ph BI = BreakIter.getWordInstance();
phBI = BreakIter.getCharInstance();
ph BI = BreakIter.getLineInstance();
phBI.setText(ph_CI);
phCI = ph BI.getText();
phBI.first();
phBI.next();
ph_CI.getBeginIndex();
ph-SCI = new StringCharIter(ph_string);
ph CI = ph_SCI; }

Figure 3: Placeholder main method for iter.

The placeholder main method for the classes
from Figure 2 is shown in Figure 3. The
method contains variables for types from Cls
that can be accessed by client code. The
statements represent different possible interac-
tions involving Cls; their order is irrelevant
because the whole-program analysis is flow-
insensitive. Method main invokes all public
methods from the classes in Cls designated as
accessible. The last statement handles possible



assignment conversions between CharIter and
StringCharIter.

The details of the fragment analysis will not
be discussed here; they can be found in [26].
For the purposes of our analysis we discuss
the following property of the results computed
by the fragment analysis, originally outlined
in [24]. Consider some client program built on
top of Cls and an execution of this program
(the program must satisfy the constraints dis-
cussed in Section 3.2). Let r be a variable or
a reference field declared in Cls and at some
point during execution r refers to a heap ob-
ject of class C. In the fragment analysis so-
lution, class C' will be in the set of classes for
r. A similar property holds for variables r de-
clared outside of Cls. In this case, in the frag-
ment analysis solution, the set for the variable
in main that has the same type as r will contain

C.

4.2 Computation of Dynamic
Coupling Measures

The algorithm in Figure 4 computes Dyn,
the set of tuples (Cy,n,i,Cy,m) approximat-
ing the possible dynamic couplings when arbi-
trary client code is written on top of Cls. The
algorithm is parameterized by class analysis,
Cs. The precision of the computation of the
dynamic measures depends on the precision of
the underlying class analysis. If the class anal-
ysis is more precise (i.e., the solution contains
fewer classes per reference variable), then the
set of couplings will be more precise (i.e., fewer
coupling tuples will be reported).

We briefly discuss the processing of vir-
tual calls (lines 1-5). Lines 2-3 address the
case when virtual call s;: r.m(...) is enclosed
by a static method n declared in class Cj.
The analysis adds to Dyn a dynamic tuple
(C1,n,1,Co, target(Cy,m)) for each class Cy
that is a possible run-time class for r accord-
ing to the class analysis; target(Ca,m) finds
the run-time target method based on class Co
and compile-time target m. Lines 4-5 address
the case when the virtual call is enclosed by
an instance method n. In order to approxi-
mate the possible dynamic couplings through
virtual call s;: r.m(...) the analysis considers
the possible run-time classes of the implicit pa-

input Methods: set of reachable methods
Stmt: set of statements in Methods
Cs: Vars — P(Classes)
output Dyn: Cls x Methods x I x Cls x Methods
[1] foreach virtual call s;: r.m(...) s.t. 7 # this
[2] if s; enclosed in static method Ci:n
[3] add {{Ci,n,i,Cq, target(Ca,m)) |
Ca € Cs(r) A Cy # Ca} to Dyn
[4] else if s; enclosed in instance method n
(n can be constructor)
[B]  add {(C1,n,i,Co, target(Ca,m)) | C1 €
Cs(thisn) A C2 € Cs(r) A C; # Cz} to Dyn
| foreach static call s;: Ca.m(...)
7] if s; enclosed in static method Ci:n, C1#£C>
] add (C1,n,i,C2,m) to Dyn
] else if s; enclosed in instance method n
(n can be constructor)
[10] add {{(Ci,n,i,C2,m) |
Cy € Cs(thisn) A C1 # Cs} to Dyn

Figure 4: Computation of dynamic couplings.

rameter this, of the enclosing method, and
the possible run-time classes for r. Consider
the example in Figure 1. Suppose that the class
analysis computes that Cs(thisy.n)={A1,A2}
and Cs(imp)={Impl,Imp2, Imp3} and consider
the couplings that result from call imp.DevM().
The set of classes for thisp .y, approximates the
concrete receivers of method A:m which in this
case are Al and A2. The set of classes for imp
approximates the possible callee classes, which
in this case is {Imp1,Imp2,Imp3}. The anal-
ysis outputs the six IC_OD tuples outlined in
Section 3.1.

5 Experimental Study

The goal of the experimental study is to ad-
dress the following question. How imprecise
the analysis is when instantiated with CHA and
with RTA—that is, how often it reports infea-
sible coupling tuples?

For the experiments we used several Java
components from the standard library pack-
ages java.text and java.util.zip (used in
related analyses [24], [20] and [21]). The com-
ponents are described briefly in the first three
columns of Table 1. Each component contains
the set of classes in Cls (i.e., the classes that
provide component functionality plus all other



(1)Component (2)Functionality|(3)#Class in Cls/|(4)CHA-based Analysis|(5)RTA-based Analysis

#Functionality| IC_OD{IC_OM| IC_OC|IC_OD|IC_.OM|IC_OC
gzip GZIP IO streams 199/6 26 19 9 8 7 4
zip ZIP IO streams 194/6 29 8 7 24 4 4
checked 10 streams & checksums 189/4 4 4 2 4 4 2
collator text collation 203/15 134 75 36 130 71 32
date date formatting 205/17 358 223 99 335 205 92
number number formatting 198/10 120 55 19 113 52 16
boundary iteration over boundaries 193/13 239 56 27 230 47 25

Table 1: Java components and statically inferred dynamic coupling tuples.

classes that are directly or transitively refer-
enced); the number of classes in Cls and the
number of functionality classes is shown in col-
umn (3). We considered the IC_OD, IC_.OM
and IC_OC tuples for the classes that pro-
vide component functionality. For the rest of
this section we primarily focus on the IC_OD
tuples as the other kinds of tuples are triv-
ially derived from them. In particular we con-
sider all tuples (C1,m1,I,Cy, ms) where mq is
a method reachable by RTA, and both C7 and
C5 are classes that provide component func-
tionality (i.e., we exclude couplings of function-
ality classes to library classes). The standard
library classes are typically well-tested and do
not affect the quality attributes assessed by the
coupling measures (e.g., they do not contribute
to the fault-proneness or changeability of the
functionality classes). As mentioned earlier, we
instantiate the algorithm in Figure 4 with CHA
and RTA.

5.1 Results

Columns (4) and (5) in Table 1 show the num-
ber of IC_OD, IC_.OM and IC_OC tuples com-
puted by the analysis in Figure 4 when instanti-
ated with CHA and RTA respectively. Clearly,
RTA improves precision over CHA. The differ-
ent granularity level of the three object cou-
pling measures is evident from these results; for
most components IC_OD is substantially larger
than IC_OM and IC_OM is substantially larger
than IC_OC. This reflects the structure of the
code. It happens often that within the same
method, the same virtual call (i.e., a call to the
same method with the same receiver class) ap-
pears several times at different call sites; when
the call site is dropped from the tuple, previ-

ously distinct tuples are treated as one and thus
there is a drop from IC_OD to IC_OM. Also, it
happens often that within the same method,
there are calls to distinct methods with the
same receiver class; when the callee is dropped
from the tuple, distinct tuples are treated as
one and this accounts for the drop from IC_OM
to IC_OC.

We additionally categorize the IC_OD tu-
ples into monomorphic and polymorphic. The
monomorphic tuples result from call sites that
are resolved uniquely by CHA—that is, both
the caller class and the callee class are unique
according to CHA. For example, if a static
method contains virtual call s;: r.m() and there
is only one possible receiver class for r accord-
ing to CHA, the corresponding IC_OD tuple is
categorized as monomorphic. The polymorphic
tuples are due to call sites for which either the
caller or the callee resolve to more than one
class according to CHA. Polymorphic tuples
are further categorized as (i) polymorphic only
in the caller, (ii) polymorphic only in the callee,
and (iii) polymorphic both in the caller and the
callee. For example, the six tuples that result
due to call site imp.DevM () in Figure 1 are
categorized as polymorphic in both the caller
and the callee. There is polymorphism in the
caller because the class analysis determines two
possible classes for implicit parameter this of
method A:m, namely Al and A2. Similarly,
there is polymorphism in the callee because the
class analysis determines three possible classes
for imp, namely Imp1, Imp2 and Imp3.

Table 2 shows the results of this categoriza-
tion for the RTA IC_OD tuples (given in col-
umn 5 of Table 1).

Most of the polymorphic tuples are callee-
polymorphic; however, caller-polymorphic tu-



Component | #MONO #POLY Component Polymorphic Tuples
Caller | Callee | Both | Total CHA-based | RTA-based | Actual
gzip 2 0 4 2 6 gzip 24 6 5
zip 24 0 0 0 0 zip 5 0 0
checked 4 0 0 0 0 checked 0 0 0
collator 107 0 23 0 23 collator 27 23 23
date 171 3 161 0| 164 date 187 164 164
number 98 0 15 0 15 number 22 15 15
boundary 182 0 48 0 48 boundary 57 48 48

Table 2: Dynamic tuples category statistic.

ples still exist and it is important that an anal-
ysis for the computation of dynamic coupling
measures considers both polymorphism in the
caller and in the callee. Table 2 underscores
the importance of measures that take into ac-
count polymorphism—there is a large number
of polymorphic tuples and most of these tuples
would have been omitted with traditional cou-
pling measures. Therefore, in order to assess
code quality attributes appropriately, it is es-
sential to consider dynamic coupling measures.

5.2 Analysis Precision

The issue of analysis precision is important for
the static analysis for the computation of dy-
namic coupling measures. If the analysis is im-
precise it may report coupling tuples that can-
not happen for any execution of the program.
Such information is misleading as it may over-
estimate the complexity of a class, improperly
assess the quality attributes of the code and
ultimately undermine the usefulness of the dy-
namic coupling measures.

We examined the IC_OD tuples computed by
the two instantiations of our analysis and for
each tuple we attempted to write client code
that would exhibit that tuple. We were able
to prove that all monomorphic tuples in our
code base are feasible (recall that for compar-
ison purposes we consider tuples in methods
reachable by RTA).

Table 3 shows the number of polymorphic tu-
ples: the number for the CHA-based analysis,
the number for the RTA-based analysis and the
actual number obtained by manual inspection
(i.e., after finding a client whose execution on
top of Cls would exhibit the tuple). Table 3
shows that the RTA-based analysis achieves al-

Table 3: Statically inferred polymorphic tuples.

most perfect precision as all tuples but one can
be exercised by a client (the results for gzip
are shown in boldface in Tables 3,1 and 2 to
underscore this imprecision). The CHA-based
analysis, although not as precise as the RTA-
based analysis, is still close to the actual result
in most cases.

5.3 Conclusions

The static analyses considered in this paper
are simple and easy to implement; they have
practical cost, practically linear in the size of
the program. Utilizing these analyses can lead
to efficient computation of dynamic coupling
measures in practice. In addition, the analysis
based on RTA achieves almost perfect precision
and thus it may present a viable, more con-
venient and more practical alternative to dy-
namic analysis for the purposes of the computa-
tion of dynamic coupling measures. Of course,
a threat to the validity of these results is the
relatively small code base; clearly, the results
need to be confirmed on additional code bases.

6 Related Work

There is a lot of work on coupling measures [10,
11, 8, 9, 30, 29, 17]. These coupling measures
are typically computed by code analysis and
do not take into account polymorphism, thus
underestimating code complexity. Our work is
based on static analysis as well, but the mea-
sures we compute specifically account for poly-
morphism.

Our work is related to work on metrics
for polymorphism. Eder et al. define a set
of coupling measures that consider polymor-
phism [14]; however, they do not consider the



computation of these measures. In contrast
our work focuses on the computation of cou-
pling measures; it provides a static analysis
algorithm that captures the measures defined
in [3]. Benlarbi and Melo define and empir-
ically investigate the quality impact of poly-
morphism on object-oriented design [6]. They
define measures of polymorphic behavior for
C++ as follows: for each class C, they consider
the number of polymorphic (i.e., virtual) meth-
ods that appear in C' and its ancestors and de-
scendants. Similarly to the work by Arisholm
et al. [3] their statistical analysis shows that
such polymorphism affects quality attributes
such as the fault-proneness of class C'. This
work additionally underscores the need to con-
sider polymorphism in measures. The mea-
sures by Benlarbi and Melo [6] capture a dif-
ferent dimension of polymorphism compared to
the measures by Arisholm et al. [3], when con-
sidering polymorphism in server classes. In-
tuitively, they capture the complexity due to
polymorphism in the hierarchy (i.e., the com-
plexity of polymorphic calls through this such
as this.m()) while the measures from [3] aim
to capture non-inheritance couplings (i.e., the
complexity of calls not through this). Clearly,
the two measures complement each other.

7 Conclusions and
Future Work

In this paper, we have proposed a new ap-
proach to the computation dynamic coupling
measures by utilizing static class analysis. The
main contributions of our work are the follow-
ing. First, we propose a static analysis frame-
work for the computation of dynamic coupling
measures for strictly-typed object-oriented lan-
guages such as Java; our analysis is parameter-
ized by a class analysis and works on incom-
plete programs. Second, we present an empir-
ical investigation that indicates that our anal-
ysis achieves almost perfect precision. There-
fore, we believe that our approach presents a
viable alternative to the more expensive and
complex dynamic analysis for the purposes of
computation of dynamic coupling measures.
In the future we plan to experiment with ad-
ditional components as well as complete pro-

grams. Also, we plan to experiment with
other instances of our framework that use more
expensive and precise class analyses such as
points-to analysis. Finally, we plan to ex-
tend our methodology to support analysis of
dynamically-typed object-oriented languages.
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