
UML-based Alias Control

Yin Liu
Department of Computer Science
Rensselaer Polytechnic Institute

liuy@cs.rpi.edu

Ana Milanova
Department of Computer Science
Rensselaer Polytechnic Institute

milanova@cs.rpi.edu

ABSTRACT
We propose a mechanism for alias control which is based on
the Unified Modeling Language (UML). Specifically, we pro-
pose use of ownership and immutability constraints on UML
associations and verification of these constraints through re-
verse engineering. These constraints inherently support soft-
ware design principles, and impose requirements on the im-
plementation that may help prevent serious program flaws.

We propose implementation-level models for ownership
and immutability that capture well the meaning of these
concepts in modeling, and we develop novel static ownership
and immutability inference analyses. We perform an empir-
ical investigation on several relatively large Java programs.
The results indicate that the inference analyses are precise
and practical. Therefore, the analyses can be integrated in
reverse engineering tools and can help support effective rea-
soning about software quality and software security.

1. INTRODUCTION
Unexpected aliasing between objects can seriously com-

promise software quality and software security. For example,
in Java 1.1 the security function Class.getSigners mistak-
enly returned a reference to an internal array of signers;
untrusted clients could modify this array and compromise
the security of the system. Current languages such as Java
do not provide effective mechanisms for preventing unex-
pected aliasing. Therefore, it is important to develop such
mechanisms and advance their usage in software practice.

This paper proposes use of alias-control constraints on
Unified Modeling Language (UML) [42] class diagrams, and
verification of these constraints through reverse engineer-
ing. UML class diagrams describe the architecture of the
program in terms of classes and associations that model
interclass relationships; they are scalable and informative
models, widely-used in software engineering practice.

Specifically, we propose use of ownership and immutabil-
ity constraints on UML associations. An association from
class A to class B marked as owned at design level, states
a requirement for ownership and no representation exposure
at implementation level. Intuitively, each A object must
control the B objects it references through this association.
An association from class A to class B marked as read-only
states a requirement for immutability at the implementation
level. An A object cannot modify the heap structure rooted
at the B object it references through this association.

Ownership and immutability constraints on UML associ-

ations inherently support software design principles such as
”Low Coupling” and ”Information Expert” [23]. Most im-
portantly, the constraints force reasoning about alias con-
trol at design level and impose requirements on the imple-
mentation. These requirements can be continuously verified
through reverse engineering which may prevent serious flaws
due to representation exposure such as the Signers bug.

The goals of this work are (i) to define implementation-
level ownership and immutability models that capture the
meaning of these notions at design level, and (ii) to develop
practical and precise analyses that infer ownership and im-
mutability in accordance with these models. The definition
of implementation-level ownership is based on owners-as-
dominators [13, 35]; in this model the owner object should
dominate an owned object—that is, all access paths to the
owned object should pass through its owner. As pointed
out by Clarke et al. [13], the owners-as-dominators model
captures well the notion of composition in modeling [42];
thus, design-level ownership constraints generalize composi-
tion relationships. The definition of immutability requires
that an enclosing object have read-only access to an enclosed
immutable object—that is, the methods invoked on the en-
closing object cannot change (directly, or through callees)
the heap structure rooted at the immutable object.

We propose two novel static analyses for Java, one for
ownership inference and one for immutability inference; the
analyses work directly on Java code and do not require
annotations by the programmer. Consider a reverse engi-
neered association from class A to class B. If the owner-
ship inference determines that all A objects own the cor-
responding B objects referenced through this association,
the analysis marks the association as owned. Analogously,
if the immutability inference determines that all A objects
never modify the B objects referenced through this associa-
tion, the analysis marks the association as read-only. The
inference is based on points-to analysis, which determines
the set of objects a reference variable or a reference object
field may point to. For ownership inference, the points-to
analysis solution is needed to approximate the possible ac-
cesses between run-time objects; for immutability inference,
it is needed to approximate the objects modified within a
method. It is important to note that the analyses can work
on complete programs (i.e., whole programs) as well as on in-
complete programs (i.e., software components). This paper
focuses on complete programs in order to (i) clearly present
the underlying algorithms, and (ii) emphasize analysis scal-



Register Sale SaleLineItem

ProductCatalog ProductSpec

{owned}
{owned}

{owned}

{read-only}

{owned-item}

{read-only}

1 *

1 *

{owned-collection}

{read-only}

Figure 1: Ownership and immutability constraints on UML associations.

ability on large programs.
Surprisingly, while applying our analysis on the code from

a popular textbook [23], we discovered a serious bug in this
code. Furthermore, we present empirical results on sev-
eral relatively large Java benchmarks. In our experiments,
on average 28% of the reverse-engineered associations were
determined to be owned, and 27% were determined to be
read-only. We present a precision evaluation which indi-
cates that the analyses achieve adequate precision—the own-
ership inference almost never misses an owned association
and the immutability inference rarely misses a read-only

association. In addition, the ownership and immutability
analyses are practical, running in less than 7 minutes on all
but one benchmark. These results indicate that the analyses
are precise and practical and can be incorporated in a soft-
ware tool for the reverse engineering of UML class diagrams.
They can effectively support verification of ownership and
immutability which will lead to high quality, secure, under-
standable and maintainable software systems.

This work has the following contributions:

• We propose a new mechanism for alias control. It
is based on the UML and light-weight verification of
properties related to software quality and security.

• We develop implementation-level models for ownership
and immutability that capture well the meaning of
these concepts in design.

• We develop novel static ownership and immutability
inference analyses.

• We present an empirical study on relatively large Java
programs which demonstrates that the analyses are
adequately precise and practical.

The rest of the paper is organized as follows. Section 2
presents an example that motivates the idea of UML-based
alias control. Section 3 presents the ownership and im-
mutability models and formulates the analysis problem. Sec-
tion 4 presents the inference analyses and Section 5 presents
the empirical results. Section 6 discusses related work and
Section 7 concludes the paper.

2. MOTIVATING EXAMPLE
This section motivates the idea of UML-based alias con-

trol. Consider the UML class diagram in Figure 1. It il-
lustrates the design of a supermarket Point-of-Sale system
and is taken directly from a popular textbook on software
design and the UML [23]. The solid lines represent per-
manent associations (implemented through instance fields),

and the dashed lines represent temporary dependencies (typ-
ically implemented through local variables). We have added
ownership and immutability constraints based on the de-
scription in the textbook—these constraints formalize the
design principles emphasized in the textbook.

A singleton Register object, an abstraction for the cash
register, controls the sale logic. It creates a ProductCatalog

object that stores the specifications of all products (i.e., the
ProductSpec objects). The Register object creates a Sale

object, initiates the sale, passes information about sale items
to the Sale object and completes the sale. When a new sale
item is processed, the Register fetches the corresponding
ProductSpec object from the catalog, and passes that ob-
ject to the Sale object. The Sale object creates a new
SaleLineItem object for the current sale item and passes
the ProductSpec object to it.

The association from Register to Sale is marked as owned.
Thus, the Register owns each Sale object it refers through
this association—intuitively, the Register may create a Sale

object, pass it to other parts of its representation, but cannot
leak the Sale object to outside parts (e.g., objects that are
part of the User Interface (UI) of the system). The other
owned constraints have analogous meaning. Furthermore,
the association between SaleLineItem and ProductSpec is
marked as read-only. Thus, the SaleLineItem object can-
not modify the ProductSpec object it refers to. Register

and Sale objects have read-only access to ProductSpec ob-
jects as well, leaving the ProductCatalog the only object
that can initialize and update product information. Note
that for one-to-many associations (e.g., ProductCatalog to
ProductSpec) one can specify constraints on the collection
and on the items. For example, a ProductCatalog owns the
collection that stores ProductSpecs, but does not own the
ProductSpec items stored in this collection.

The ownership and immutability constraints inherently
support reasoning about software design principles such as
”Low Coupling”, ”Information Expert”, etc. [23]. For ex-
ample, the constraint that Register owns the Sale objects
forbids coupling from UI classes to Sale which helps achieve
low coupling and separation of the UI layer from the domain
layer. The constraint that SaleLineItem has read-only ac-
cess to ProductSpec forbids SaleLineItems from modifying
ProductSpecs; in fact, the ProductCatalog is the ”informa-
tion expert” and the only object that can initialize and up-
date product information. Most importantly, the ownership
and immutability constraints impose requirements on the
implementation. These requirements can be continuously
verified in a light-weight manner through reverse engineer-
ing of the UML class diagram.

The Java code from [23] that corresponds to this diagram



is given in Appendix A. Surprisingly, when we applied our
analysis on this code, the association between SaleLineItem

and ProductSpec was reported as non-read-only. A brief
examination of the code revealed a bug that could be very
serious—the SaleLineItem object mistakenly modified the
price field of the ProductSpec object. As a result, sub-
sequent sales fetched ProductSpecs with wrong prices and
computed incorrect sale totals!

In summary, verifying and enforcing ownership and im-
mutability constraints will lead to higher quality, more se-
cure, understandable and maintainable software systems.

3. PROBLEM STATEMENT
Conventionally, software tools reverse engineer UML asso-

ciations by examining instance fields of reference type in the
code (e.g., a reference field f of type B in class A is reverse
engineered into an association from A to B labeled with f).1

In our model, an association through a field f is marked as

owned if it can be proven that for each run-time edge o
f→ o′,

o owns o′. An association through f is marked as read-only

if it can be proven that for each run-time edge o
f→ o′, o does

not mutate o′. Thus, it remains to give suitable definitions
of implementation-level ownership and immutability.

3.1 Ownership Model
The ownership model is based on the notion of owners-

as-dominators [13, 12, 35]. In this model, each execution
point is represented by an object graph which shows access
relationships between run-time objects. There is an edge
o→o′ from run-time object o to run-time object o′ (i.e., we
say that o′ is accessed in the context of o) if and only if one
of the following is true:

• Reference instance field f in o refers to o′.

• Object o is an array object with element o′.

• An instance method or constructor invoked on receiver
o has local variable r that refers to o′, or a static
method called from an instance method or constructor
invoked on o, has a local variable r that refers to o′.2

Note that the first two items account for somewhat per-
manent, ”heap” accesses. In contrast, the last item accounts
for temporary, ”stack” accesses that appear when a local is
set to point to an object, and disappear when the method
enclosing the local finishes execution.

In accordance with the owners-as-dominators model, we
say that o owns o′ if and only if o is the immediate dominator
of o′ in the object graph at all execution points.3 Consider
the object graph in Figure 3; it is a summary graph which

1The rest of the paper focuses on permanent associations
(implemented with instance fields). Although our models
and analyses are general and can handle temporary depen-
dencies, we omit their discussion for clarity.
2We require that there is explicit reference variable for every
accessed object (i.e., statements r.m().n() are re-written into
an equivalent sequence r1 = r.m(); r1.n();).
3Node m dominates node n if every path from the root of the
graph that reaches node n has to pass through node m. The
root dominates all nodes. Node m immediately dominates
node n if m dominates n and there is no node p such that
m dominates p and p dominates n.

public class Vector {
protected Object[] data;
public Vector(int size) {

1 data = new Object[size]; }
public void add(Object e,int at) {

2 data[at] = e; }
public Object elementAt(int at) {

3 return data[at]; }
public Iterator iterator() {

4 return new VIterator(this); }
}
final class VIterator implements Iterator {
Vector vector;
int count;
VIterator(Vector v) {

5 this.vector = v;
6 this.count = 0; }
Object next() {

7 Object[] data = vector.data;
8 int i = this.count;
9 this.count++;
10 return data[i]; }
}
main() {
11 Vector v = new Vector(100);
12 X x = new X();
13 v.add(x,0);
14 Iterator i = v.iterator();
15 x = (X) i.next();
16 x.m();
}

Figure 2: Simplified vector and its iterator.

root

X Vector VIter

Object[]

vector

data[]

Figure 3: Object graph for Figure 2.

includes all object graphs during the execution of main in
Figure 2. Node root represents the start of program execu-
tion. The other nodes correspond to the objects created at
the appropriate allocation sites in Figure 2. We have that
Vector does not own Object[] because during the execu-
tion of next there is a stack access from VIter to Object[].
We would have that Vector does own Object[] if next is
never executed (i.e., line 15 is removed from main).

The ownership inference problem therefore is to find the

fields f such that for each run-time edge o
f→ o′ o owns o′

according to the above definition. The associations through
these fields are marked as owned.

3.2 Immutability Model
Let e be an execution of a method m on receiver object o; e

modifies an object o′ if and only if it triggers a change in the
object structure rooted at o′—that is, e leads to a statement
p.f = q which modifies an object o′′ reachable from o′. For
example, the execution of method add with receiver Vector
(line 13 in Figure 2) modifies Object[]. We say that o has
read-only access to o′ if no execution of a method m on
receiver o modifies o′. Thus, in the above example Vector



does not have read-only access to Object[].
The model does not treat constructor invocations and the

corresponding initialization statements this.f=q as modi-
fications of the newly constructed object. This is done in
order to capture better the intuitive meaning of immutabil-
ity in the context of class diagrams.

The immutability inference problem therefore is to find

the fields f such that for each run-time edge o
f→ o′ o has

read-only access to o′. The associations through these fields
are marked as read-only.

4. OWNERSHIP AND IMMUTABILITY
ANALYSES

The ownership and immutability analyses can be applied
on complete programs, as well as on incomplete programs
(i.e., components); intuitively, the whole-program analysis
can be adapted to work on incomplete programs by utiliz-
ing a technique called fragment analysis [37, 40, 38, 27]. We
present the analyses in the whole-program setting in order
to (i) emphasize the underlying algorithms, and (ii) demon-
strate scalability on real, large-size Java benchmarks.

The ownership and immutability analyses are built as in-
dependent clients of a points-to analysis. Points-to analysis
determines the set of objects that a given reference vari-
able or a reference object field may refer to. For the pur-
poses of the ownership client, points-to analysis information
is needed to construct a graph that approximates all possible
object graphs that can happen during program execution;
subsequently the graph is used to reason about ownership.
For the purposes of the immutability client, points-to in-
formation is used to approximate the objects mutated in
the methods of a class, and subsequently reason about im-
mutability of fields. There is a large body of work on points-
to and related class analysis with different trade-offs between
cost and precision. [31, 33, 4, 6, 17, 41, 46, 48, 47, 26, 39,
16, 28, 29, 51, 24, 8, 52]. For this work we consider own-
ership and immutability inference based on the well-known
Andersen-style flow- and context-insensitive points-to anal-
ysis for Java [39, 51, 24].4

4.1 Points-to Analysis
The points-to analysis is defined in terms of three sets. Set

R is the set of locals, formals and static fields of reference
type. Set O is the set of object names; the objects created
at an allocation site si are represented by object name hi ∈
O. Set F contains all instance fields in program classes.
The analysis solution is a points-to graph where the edges
represent the following ”may-refer-to” relationships.

• Let r ∈ R and h ∈ O. An edge (r, h) in the points-
to graph means that at run time r may refer to some
object that is represented by h.

• Let f ∈ F be a reference instance field in objects rep-
resented by some h ∈ O. An edge (h.f, h2) means that

4Flow-insensitive analyses do not take into account the
flow of control between program points and are less precise
and less expensive than flow-sensitive analyses. Context-
sensitive analyses distinguish between different calling con-
texts of a method and are more precise and more expensive
than context-insensitive ones.

at run time field f of some object represented by h
may refer to some object represented by h2.

• Let h represent array objects. An edge (h[], h2) shows
that some element of some array represented by h may
refer at run time to an object represented by h2.

The Andersen-style points-to analysis is an inclusion-based
analysis. It propagates may-refer-to relationships by ana-
lyzing program statements. For example, when it analyzes
statement ”p = q” it infers that p may refer to any object
that q may refer to.

For the rest of the paper we use notation o to refer to
run-time objects (e.g., o, o′, oi, etc.); we use notation h to
refer to analysis names that abstract the run-time objects
(e.g., h, h′, hi, etc.).

4.2 Ownership Client
The output of the points-to analysis is needed to construct

the approximate object graph Ag which approximates all pos-
sible run-time object graphs. Subsequently, Ag is used for
ownership inference.

4.2.1 Approximate Object Graph
The nodes in Ag are taken from the set of object names

O and the edges represent ”may-access” relationships. Fig-
ure 4 outlines the construction of Ag given a points-to graph
Pt . Intuitively, the algorithm tracks flow of objects from
one context to another context. Lines 1-2 account for edges
due to object creation; at object allocation sites (i.e., con-
structor calls), the newly created object becomes available
in the context of the caller. The contexts of the caller m
are stored in set Cm. If m is an instance method, Cm equals
to the points-to set of the implicit parameter this of m.
If m is a static method, Cm includes the points-to sets of
all implicit parameters this of instance methods n reach-
able backwards from m on a chain of static calls (i.e., Cm

includes the closest instance contexts enclosing m); if main

is reachable backwards from m on a chain of static calls,
Cm includes the special context root as well. At allocation
sites new edges are added to Ag from each context of the
enclosing method m to the object name that represents the
newly created object. Lines 3-4 account for edges due to flow
out from other contexts to the context of m. For example,
at an instance call not through this new edges are added
from each context of m to each returned object. Finally,
lines 5-6 account for edges due to flow from the contexts
of m into other contexts. For example, at an instance call,
edges are added from each object in the points-to set of the
receiver to each object in the points-to set of a reference
argument. Finally, line 7 labels with field identifier f each
edge hi → hj ∈ Ag for which there is an edge (hi.f, hj) ∈ Pt .

As an example, consider the code in Figure 2. In this case,
the algorithm in Figure 4 constructs precisely the summary
run-time object graph in Figure 3. Edges root→Vector,
root→X and Vector→Object[] are due to code lines 11,
12 and 1 respectively (lines 1-2 in the algorithm). Edge
Vector→X is due to code line 13 (lines 5-6 in the algo-
rithm). Edge Object[]→X is due to code line 2. Further-
more, edge root→VIter is due to code line 14, and edges
Vector→VIter and VIter→Vector are due to line 4. Fi-
nally, edges VIter→Object[] and VIter→X are due respec-
tively to lines 7 and 10 in next.



input Stmt : set of statements Pt : R ∪O → P(O)
output Ag : O → P(O)
[1] foreach statement s in method m

si : l = new C(...)
[2] add {c → hi | c∈Cm} to Ag

//creation flow into caller contexts
[3] foreach statement s in method m

s : l = r.n(...) s.t. r 6= this,
s : l = r.f s.t. r 6= this

[4] add {c → hj | c∈Cm ∧ (l, hj)∈Pt} to Ag
//outflow from callee contexts to caller contexts

[5] foreach statement s in method m
s : l = new C(r),
s : l.n(r) s.t. l 6= this,
s : l.f = r s.t. l 6= this

[6] add {hi → hj | (l, hi)∈Pt ∧ (r, hj)∈Pt} to Ag
//inflow into callee contexts from caller contexts

[7] label with f each hi → hj ∈ Ag s.t. (hi.f, hj) ∈ Pt

Figure 4: Construction of Ag. P(X) denotes the
power set of X. Ag is initially empty.

Hv HitHs

Hsli Hobj[]

Hr

HmHps1

root

Figure 5: Partial Ag for Section 2.

The object graph construction and ownership inference
need to consider two special cases: (i) static fields and (ii)
self-references (i.e., when an object references itself through
this as in r.m(this)). For brevity, we do not discuss these
cases; our implementation handles them correctly.

4.2.2 Ownership Inference
The ownership inference uses Ag to reason about object

ownership. Consider the object graph in Figure 5, extracted
from the code for Section 2 from [23]; the code is given
in Appendix A. Node root represents the special context
of main and node Hr represents the Register object (cre-
ated in main). Hps1 represents ProductSpec objects (cre-
ated in ProductCatalog), Hm represents Money objects (cre-
ated in main), and Hs represents Sale objects (created in
Register.makeNewSale). Hsli represents SaleLineItem ob-
jects (created in Sale.makeLineItem) and Hv represents the
collection needed to store the SaleLineItems. Finally, Hit
represents iterators over the collection of SaleLineItems
(used in Sale.getTotal).

The inference analysis (Figure 6) examines an edge hi →
hj in the object graph and attempts to prove that for each
run-time instance oi → oj of that edge oi dominates oj ; in-
tuitively, it reasons about the flow of run-time objects based
on the object graph abstraction of this flow. The inference
is based on the following intuition: an object oj can flow
from oi into some ok only if one of the following is true: (1)
ok has a handle to both oi and oj (and hence Ag contains

input Ag : O → P(O) hi → hj : O ×O
output Closure: O → P(O), isClosed: boolean
[0] if isOutside(hi → hj) return false
[1] Closure={hi, hj}, W ={hi}
[2] while W not empty
[3] take hk from W
[4] foreach hm ∈ Tgts(hk) ∩ Closure
[5] foreach hn ∈ Tgts(hk) ∩ Srcs(hm), hn /∈ Closure
[6] if isOutside(hi → hn) return false
[7] if valid(hk, hn, hm) add hn to Closure and to W
[8] foreach hm ∈ Srcs(hk) ∩ Closure
[9] foreach hn ∈ Tgts(hm) ∩ Srcs(hk), hn /∈ Closure
[10] if isOutside(hi → hn) return false
[11] if valid(hm, hn, hk) add hn to Closure and to W
[12] return true

procedure valid
input hi, hk, hj , where hi → hj , hi → hk, hk → hj

output isValid: boolean
[1] if isIn(hk → hj) and hi ∈ In(hk → hj) return true
[2] if isOut(hi → hj) and hk ∈ Out(hi → hj) return true
[3] return false

Figure 6: Ownership inference: computing the clo-
sure of edge hi → hj. Tgts(h) stands for {h′ | h → h′ ∈
Ag} and Srcs(h) stands for {h′ | h′ → h ∈ Ag}.

edges hk → hi, hk → hj and hi → hj), or (2) oi has a handle
to both hk and hj (and hence Ag contains edges hi → hk,
hi → hj , hk → hj). Thus, to track flow, the analysis con-
siders edge triples hm → ho, hm → hn, and hn → ho in
Ag . In Figure 5 edge triple Hr→Hps1, Hr→Hs, Hs→Hps1
represents the fact that a ProductSpec object flows into a
Sale object from the Register object. Note that if an edge
hi → hj in Ag does not have an hk such that either (1) hk

has handles to both hi and hj , or (2) hi has handles to both
hk and hj , we have that each oi exclusively owns each oj it
refers to (i.e., oi is the only object that has a reference to
oj). In Figure 5 Hr→Hs is such an edge; it represents that
the Register exclusively owns the Sale objects it creates.

Consider the algorithm in Figure 6, lines 0 to 12, assum-
ing that valid always returns true; the role of valid will be
explained in Section 4.2.3. The algorithm makes use of a
predicate isOutside(hi → hj) (lines 0, 6 and 10)—an edge
hi → hj is an outside edge if there exists an hk such that hk

has handles to both hi and hj . Intuitively, isOutside conser-
vatively captures the situation when some oj flows from (or
into) an ”outside” object ok and therefore there might be an
access path to oj that does not pass through oi. In Figure 5,
edge Hs→Hm is an outside edge. It capture the situation
that a Money object is passed from the Register to a Sale;
clearly, the Sale object does not own the Money object. If
the edge that is examined, namely hi → hj , is not an out-
side edge, the algorithm proceeds to compute the Closure of
hi → hj . The algorithm examines the paths from hi to hj .
If at some point it detects a path that originates in an out-
side edge, it returns false (lines 6 and 10) and the partially
computed closure. Otherwise, it returns true and computes
the entire closure—the closure represents all paths from oi

to oj for each run-time edge oi → oj ; it is guaranteed that
all paths from oi to oj are internal, and thus oi owns oj .



We illustrate the algorithm with edge Hr→Hps1 in Fig-
ure 5. At the first iteration of the while loop hk is Hr and
Hs is added to Closure and the worklist due to lines 4-7. At
the second iteration, hk is Hs and Hsli is added due to lines
4-7. At the third iteration, hk is Hsli. In this case, lines
4-7 do not yield new nodes; lines 8-11 however, yield two
new nodes, Hv, and Hit. At the next iteration hk is Hv and
lines 4-7 yield node Hobj[]. At the next two iterations no
new nodes are added and the algorithm returns true. The
closure consists of nodes Hr, Hs, Hsli, Hv, Hit, Hobj[] and
Hps1, and the edges between them.

Let the algorithm return true for some edge hi → hj .
Then we have that for each oi → oj represented by hi → hj ,
oi dominates oj .

We give the correctness argument for this statement. Let
oi → oj be an edge represented by hi → hj and let K(oi →
oj) denote the paths from oi to oj at execution point p,
whose representative is in Closure(hi → hj). Suppose that
for some ok ∈ K there is a path root... → ox → ok that
does not pass through oi—that is, we have that oi does not
dominate ok. We say that ok is an exposed node. Without
loss of generality we may assume that ox is not in K (clearly,
if we continue on the path we will reach root which is not
in K). The only way ok may flow from K into ox (or from
ox into K) is through a ”parent”—that is, there must be an
edge triple such that on ∈ K, and ox → on, ox → ok and
on → ok. To see this, suppose that ok flows to (or from) ox

in the other possible way, through a ”sibling”, and there we
have on ∈ K and on → ox, on → ok and ox → ok. This is
impossible, because the representatives of these edges would
have been processed at either lines 4-7 or 8-11, and thus we
would have the representative of ox in Closure, and thus ox

in K. We say that edge on → ok ∈ K is an exposed edge.
Thus, on is an exposed node as well. Making the argument

that node on can only be exposed through a ”parent” leads
to an exposed edge on−1 → on. Repeating the argument
leads to an exposed edge oi → o1 whose representative hi →
h1 is an outside edge. Thus, there is a contradiction because
if the computation of Closure encounters such an edge, the
algorithm returns false (lines 6 and 10).

Next, note that there is an order of exposure—that is,
when ok is exposed through node on we must have that on

is exposed before ok. Clearly, if there is a cycle of exposed
edges, the cycle is ordered as well (i.e., edge on−1 → on was
exposed before on → ok, etc.). Therefore, some node must
be exposed due to an exposed edge not in the cycle. Since
at execution point p there are finite number of nodes and
edges in K, the exposed path will reach oi.

If the algorithm in Figure 6 returns true for every edge
labeled with f , the ownership analysis concludes that the
association through f is owned.

4.2.3 Improved Ownership Inference
Note that the analysis, as described above will likely incur

substantial imprecision and cost. This is due to the fact that
not all edge triples hi → hj , hi → hk, hk → hj represent
valid flow. For example, suppose that edges hi → hj and
hk → hj are due to object creation (lines 1-2 in the algo-
rithm in Figure 4) and hi → hk is due to inflow (lines 5-6).
Clearly, edges hi → hj and hk → hj refer to two distinct
run-time objects that are represented with the same name,
hj . However, the analysis concludes that there might be an

input Pt : R → P(O)
output Mod : m → P(R)
[0] foreach instance field write s: p.f = q

where p 6=this OR EnclMethod(s) is not a constructor
[1] add p to Mod(EnclMethod(s))
[2] while changes occur in Mod
[3] foreach call s: C.m() or r.m()
[4] foreach target m′ of the call
[5] add Mod(m′) to Mod(EnclMethod(s))

input hi → hj ∈ O ×O Mod : m → P(R)
output readOnly: boolean
[6] foreach call s: r.m(...) s.t. r 6= this and hi ∈ Pt(r)
[7] if TrClosure(hj) ∩ Pt(Mod(target(hi, m))) 6= ∅
[8] return false
[9] return true;

Figure 7: Immutability inference: computing the
read-only status of hi → hj.

oj that flows from some oi into some ok and erroneously
infers that edge hi → hj is not owned. Invalid triples affect
not only precision but cost as well. In the above example,
when reasoning about edge hi → hj the analysis needs to
reason about edges hi → hk and hk → hj , which is clearly
redundant as these edges are irrelevant to hi → hj .

The edges in the object graph may be characterized as
creation (due to lines 1-2 in Figure 4), outflow (due to lines
3-4) and inflow (due to lines 5-6). First, let hi → hj be an
outflow edge. A triple with hk (i.e., hi → hj , hi → hk and
hk → hj) will be a valid triple only if for some statement
l = r.n() that produces outflow edge hi → hj we have that r
point to hk. Second, let hk → hj be an inflow edge. A triple
with hi (i.e., hk → hj , hi → hk and hi → hj) will be a valid
triple only if for some statement l.m(r) that produces this
edge we have that the this pointer of the enclosing method
of l.n(r), point to hi.

The algorithm in Figure 4 is augmented to track valid
sources for outflow and inflow edges. Lines 4’ and 6’ below
are added respectively after lines 4 and 6; there is a set Out
for each outflow edge and a set In for each inflow edge.

[4’] add Pt(r) to Out(c → hj)
[6’] add Pt(thism) to In(hi → hj)
Subsequently, the ownership inference in Figure 6 uses

procedure valid to filter out invalid triples. For example, if
hk → hj is an inflow edge, hi must appear in In(hk → hj).
The actual implementation stores variables (i.e., r and this)
rather than objects in the In and Out sets which turns out
to be more efficient in terms of memory; procedure valid
checks the points-to sets of the stored variables.

4.3 Immutability Client
4.3.1 Immutability Inference

The immutability inference is presented in Figure 7. Lines
0-5 perform standard side-effect analysis [43, 28, 38] which
computes a Mod set for each method m. Lines 0-1 process
each statement s: p.f = q and store p in the Mod set for the
enclosing method of s. Subsequently, lines 2-5 propagate the
Mod sets backwards on the call graph. Set Mod(m) contains
all reference variables p on the left-hand-side of an instance
field write, reachable on a call chain from m. The union of



class A {
B b1;
A(B b1) { b1 = b1; ... }
m() { B b2 = new B(); b2.setField(10); ... }
}

main() {
B b1 = new B(); b1.setField(5);
A a = new A(b1); a.m();
}
Figure 8: Imprecision of immutability inference.

the points-to sets of these variables approximates the set of
objects that may by modified during the invocation of m.

Finally, lines 6-9 take an edge hi → hj ∈ Ag as input
and attempt to show that for all run-time edges oi → oj

represented by this edge oi has read-only access to oj . The
analysis examines each method call r.m(...) on receiver hi

(i.e., hi ∈ Pt(r)). TrClosure(hj) denotes the transitive clo-
sure of hj on the points-to graph—that is, the set of all nodes
reachable from hj on a path of field edges. Pt(S) extends the
Pt notation over sets as follows: Pt(S) =

⋃
p∈S Pt(p). If for

some call the transitive closure of hj intersects with the set
of modified objects of the run-time target of the call (i.e.,
target(hi, m)), the analysis determines that edge hi → hj

is not immutable. If this intersection is always empty, the
analysis determines that hi → hj is immutable.

Consider the Point-of-Sale code in Appendix A. In method
getSubtotal in class SaleLineItem, spec points to Hps1
and field price of Hps1 points to Hm1 (Hm1 represents the
Money object that holds the price of the product). Thus,
getSubtotal calls method times on Hm1. The analysis cor-
rectly determines that Mod(times) equals {times.this}—
that is, times changes the value of the receiver object. Thus,
Mod(getSubtotal) equals {times.this} and we have that
Hm1 is included in set Pt(Mod(getSubtotal)).

Now consider the call to getSubtotal in getTotal in class

Sale, and the effect of this call on edge Hsli
spec→ Hps1. The

intersection of the set of objects modified by getSubtotal

and the transitive closure of Hps1 is non-empty; it includes
Hm1. The analysis determines that a SaleLineItem object
can modify a ProductSpec object which is a violation of
the immutability constraint specified in Figure 1. Further
examination revealed that this was a serious bug in the code
in [23]; it caused subsequent sales to fetch wrong product
prices and compute incorrect totals. The bug can be fixed
by changing method getSubtotal as follows:

Money subtotal = new Money(spec.getPrice());

return subtotal.times(quantity);

If the procedure for checking an edge returns true for every
edge labeled with f , the immutability analysis concludes
that the association through f is read-only.

4.3.2 Improved Immutability Inference
It is easy to see that the algorithm in Figure 7 may in-

cur substantial imprecision. Consider the code in Figure 8.
Field b1 is immutable in A. The B object created in main

and referred by field b1 is denoted by name Hb1, and the
B object created in m is denoted by Hb2. Mod(setField)
equals {setField.this}; it is propagated to Mod(m) and
we have that Mod(m) equals {setField.this} as well. The
points-to set of setField.this contains both Hb1 and Hb2

and the analysis concludes imprecisely that b1 is mutable.
To improve the analysis we introduce a limited form of

context sensitivity. The main idea is that when propagat-
ing the Mod set of the callee (line 5), the analysis ”maps”
modified formal parameters to their corresponding actuals.
More precisely, it examines every variable v ∈ Mod(m′). If
v is an unassigned formal parameter of m′, v is mapped
to the corresponding actual at the call and the actual is
added to Mod(EnclMethod(s)); otherwise v itself is added
to Mod(EnclMethod(s)).5 Consider again the code in Fig-
ure 8. When propagating Mod(setField) to Mod(m) the
analysis maps setField.this to the actual argument at the
call, namely variable b2. As a result Mod(m) equals {b2}.
Since b2 points to Hb2 only, the intersection of the tran-
sitive closure of Hb1 and {Hb2} is empty and the analysis
concludes that b1 is immutable in A.

It is easy to see that this improvement preserves the cor-
rectness of the analysis. In the same time, we observed that
it had substantial impact on precision. This is due to the
fact that objects are typically modified through setters and
statements this.f=... and the inexpensive technique pre-
sented in this section targets precisely such mutations.

4.4 Analysis Complexity
Let N be the size of the program being analyzed—that is,

the number of statements, the number of object names and
the number of variables is of order N . The complexity of the
underlying Andersen-style points-to analysis is O(N3). It
remains to analyze the ownership and immutability clients.

The complexity of the ownership client is dominated by
the ownership inference in Figure 6. For each edge hi → hj

there are at most O(N) objects hk that are processed on the
worklist. Furthermore, for each ok there are at most O(N)
hj objects and at most O(N) hn objects (processed at lines
4-7 and at lines 8-11). Thus, for each edge the analysis
does O(N3) work. There are O(N2) edges and therefore the
complexity of ownership inference is O(N5).

The complexity of the immutability client is dominated
by the checking of edges (lines 6-9 in Figure 7). The compu-
tation of the transitive closures of all nodes is O(N3). For
each edge hi → hj the analysis processes at most O(N) calls.
For each call it does O(N) work at line 8 checking whether
each h′ ∈ Pt(Mod(target(hi, m))) is in TrClosure(hj). Since
there are O(N2) edges, the complexity of immutability in-
ference is O(N4). The entire analysis is dominated by the
ownership client and therefore has complexity O(N5).

5. EXPERIMENTAL RESULTS
The goal of the empirical study is to address three ques-

tions. First, do the analyses scale to large Java applications?
Second, how often do our analyses discover owned and im-
mutable fields? Third, how imprecise the analyses are—that
is, how often they miss owned or immutable fields?

The ownership and immutability clients are implemented
in Java using the Soot 2.2.3 [50] and Spark [24] frameworks;
specifically they are implemented as clients of the Andersen-
style points-to analysis provided by Spark. We performed
whole-program analysis with the Sun JDK 1.4.1 libraries.
All experiments were done on a 900MHz Sun Fire 380R
machine with 4GB of RAM. The implementation which in-
cludes Soot and Spark was run with a max heap size of 1GB.

5Implicit parameter this cannot be assigned, and other for-
mal parameters are rarely assigned.



(1)Program (2)Description (3)Size
#User Classes #User Methods #Reachable Methods

jdepend-2.9.1 A quality metrics suite for Java 17 225 3962
javad Classfile decompiler 41 156 3838
JATLite-0.4 Template for writing software agents 45 442 6279
undo Undo functionality for sysadmins 237 1709 5644
hsqldb-1.8.0 Relational database engine and tools 196 3743 7177

soot-c Analysis framework for Java 579 2935 6046
sablecc-j Java parser generator 300 2024 7970
polyglot-1.3.2 Framework for Java language extensions 267 3418 7449

antlr Parser and lexical analyzer generator 126 1738 5102
bloat Java bytecode optimizer 289 3232 6402
jython Python interpreter 163 2892 5606
pmd Java source code analyzer 718 7057 8653
ps Postscript interpreter 200 908 5396

Table 1: Information about the Java benchmarks.

Native methods are handled by utilizing the models pro-
vided by Soot. Reflection is handled by specifying the dy-
namically loaded classes which Spark uses to appropriately
resolve reflection calls. This approach is used in other whole-
program analyses based on Soot and Spark [25, 45].

Our benchmark suite includes several relatively small ap-
plications, soot-c and sablecc-j from the Ashes suite [1],
several benchmarks from the DaCapo benchmark suite ver-
sion beta051009 [2] and the Polyglot Java front-end. The
suite is described in Table 1. The number of user classes
and user methods fetched by Soot are shown in the first
two columns of multicolumn (3); these numbers exclude the
standard libraries but include other libraries shipped with
the application. The last column shows the number of meth-
ods (user and library), determined to be reachable by Spark.

5.1 Results
We applied the ownership and immutability inference al-

gorithms on instance fields of reference type in user classes
to determine which fields accounted for owned associations
and which accounted for read-only associations.6 Table 2
shows the running time of the analysis. The first column
shows the running time for Soot and Spark, and the two sub-
sequent columns show the running times for the ownership
and immutability clients. Clearly, our analyses scale well,
even on applications with close to 9000 reachable methods.
The combined time for ownership and immutability analysis
does not exceed 7 minutes on twelve out of thirteen bench-
marks; on the most expensive benchmark, pmd, it still runs
in under 11 minutes.

The first column of Table 3 shows the number of refer-
ence instance fields in user classes. On average, the owner-
ship analysis identified 28% of the fields as owned (column
#Owned).Also, on average, the immutability analysis iden-
tified 27% of the fields as read-only (column #Immutable).

5.2 Analysis Precision
The issue of analysis precision is of crucial importance for

software tools. For example, if the ownership analysis is im-
precise, it may report that an association is non-owned while

6Our experiments exclude fields of type String because they
do not correspond to associations in the UML class diagram.

Program Points-to Ownership Immutability
Analysis Analysis Analysis

jdepend 1m35s 32s 10s
javad 1m33s 27s 3s
JATLite 2m37s 1m29s 35s
undo 3m3s 1m52s 37s
hsqldb 2m57s 2m15s 2m31s
soot 2m23s 1m13s 1m38s
sablecc 3m5s 1m49s 1m30s
polyglot 9m39s 2m44s 3m38s
antlr 2m25s 1m4s 35s
bloat 2m36s 1m57s 3m8s
jython 1m58s 1m21s 3m9s
pmd 4m17s 2m22s 8m16s
ps 2m19s 1m51s 29s

Table 2: Analysis times.

in reality it is owned (i.e., the analysis reports that certain
representation may be exposed while in fact it is not). Simi-
larly, the immutability analysis may report that an associa-
tion is non-read-only, while in reality it is. Such information
is not useful and may confuse the user. For example, if a
user attempts to verify lack of representation exposure, im-
precision will mean that potentially large amount of code
will have to be examined manually. Therefore, imprecision
must be carefully evaluated by analysis designers.

We performed a study of absolute precision [40, 38, 27] on
a subset of the fields. Specifically, we considered all fields
in the two smallest benchmarks, jdepend and javad, and
all fields in the class with the largest number of fields for
the four largest benchmarks, hsqldb, polyglot, sablecc

and pmd (the size metric that we used was the number of
reachable methods, shown in Column (3) of Figure 1). This
accounted for a set of 153 instance fields. For this set, we
examined manually each non-owned field and attempted to
prove exposure (i.e., that there is an execution such that
an object stored in this field would be exposed outside of
its enclosing object). In all cases we were able to show
exposure—that is, for this set of fields the ownership analysis



Program #Fields #Owned #Immutable

jdepend 33 19 (58%) 6 (18%)
javad 40 19 (48%) 40 (100%)
JATLite 142 35 (27%) 13 (9%)
undo 325 73 (22%) 162 (50%)
hsqldb 383 89 (23%) 70 (18%)
soot 340 77 (23%) 57 (17%)
sablecc 304 30 (10%) 40 (13%)
polyglot 435 51 (12%) 92 (21%)
antlr 161 45 (28%) 25 (16%)
bloat 529 81 (15%) 73 (14%)
jython 215 69 (32%) 21 (10%)
pmd 914 318 (35%) 162 (18%)
ps 19 7 (37%) 8 (42%)

Average 28% 27%

Table 3: Ownership and immutability results.

achieved perfect precision. Similarly, we examined each non-
read-only field and attempted to prove mutability (i.e., that
there is an execution for which an object stored in this field
will be mutated by its enclosing object). In all but 7 cases
we were able to show mutability—that is, the immutability
analysis achieved very good precision as well.

In short, the majority of imprecisions are due to context-
insensitive object naming in the underlying points-to analy-
sis. However, using context-sensitive object naming, which
is expensive, may not be justified—it will likely improve
precision only marginally over the current practical analysis
which is already adequately precise.

The imprecisions in the immutability analysis were due
to two reasons: (i) context-insensitive object naming in the
underlying points-to analysis, and (ii) imprecise treatment
of polymorphic calls by the immutability inference. We il-
lustrate only the first case, which is more problematic and
accounted for 5 of the 7 cases of imprecision; the second
case can be addressed by a minor modification of the anal-
ysis described in Section 4.3. Recall Figure 8 and consider
the following definition of class B:

class B {

C c;

B() { this.c = new C(); }

setField(int x) { ... c.setField(x+10); ... }

}

Clearly, field b1 is immutable in A. However, the analysis
does not distinguish between the C object allocated by H b1

and the C object allocated by H b2 and it appears that m

can modify the C object of H b1. This imprecision can be
addressed by employing context-sensitive object naming in
certain cases. However, using expensive context-sensitive
object naming may not be justified—it will likely improve
precision only marginally over the current practical analysis
which is already adequately precise.

5.3 Conclusions
Our results demonstrate that owned and immutable fields

occur often in Java code. The precision study indicates that
(1) our ownership and immutability models capture well the
notions of ownership and immutability in modeling, and (2)

that the analysis is relatively precise and can provide useful
information for reverse engineering tools. If integrated in a
tool for the reverse engineering of UML class diagrams, the
analysis will help verify important security-related proper-
ties and help improve software quality and software security.

Overall, the analysis scales well to large programs analyz-
ing close to ten thousand methods in only several minutes.
It is significant that the cost of obtaining precise results
is practical; clearly, practicality is as crucial as precision
for the successful integration of an analysis in a software
tool. Note that the analysis works on complete as well as
incomplete programs (i.e., software components). Ideally, it
will be applied primarily on partially developed subsystems
within an iterative development process, and on software
components—that is, systems likely substantially smaller
than the programs in this study. This study focuses on
safe analysis of relatively large complete programs in order
to emphasize the scalability and precision of the analysis.

One disadvantage of our current analysis is the need to an-
alyze large libraries. Libraries are typically irrelevant to the
properties of interest but in certain cases require significant
CPU and memory resources. For example, the immutabil-
ity client takes 8 minutes on the pmd benchmark due to the
processing of the transitive closures of library fields that are
irrelevant to the immutability of user fields. This problem is
inherent in all safe whole-program analyses; it can be solved
(or alleviated) by summarizing the effects of library meth-
ods, or proving them irrelevant with respect to the proper-
ties of interest. This paper focuses on safe whole-program
analysis and addressing this problem is beyond its scope.

6. RELATED WORK
The ownership and immutability inference analyses im-

prove substantially upon our previous work on composition
inference [27] and side-effect analysis [28] respectively. The
main new analysis idea is to employ an inexpensive context-
insensitive points-to analysis and improve precision by lim-
ited context sensitivity in the clients. This was crucial for
precision and scalability; in fact, the old analysis was not
only potentially imprecise, but it did not scale beyond the
smallest benchmarks in our suite. Further, the analyses are
employed towards a new practical purpose—improving the
capabilities of UML tools, which will enhance alias control
and thus software security and software quality in practice.

Ownership and immutability type systems. Our
work is related to work on ownership type systems [30, 13,
5, 12, 10, 22] and work on immutability type systems [20,
32, 9, 49]. Similarly to our work, these articles emphasize
the importance of the concepts of ownership and immutabil-
ity in software development. Unlike our work they focus
on type-theoretic approaches and require type annotations
provided by the programmer; generally, these approaches
require extensions of the language, compiler and run-time
environment and therefore will be difficult to adopt in prac-
tice. In contrast, our approach uses automatic inference and
works directly on Java code; it is based on the universally-
known UML and therefore may help advance alias control
through ownership and immutability in practice.

Ownership inference. Grothoff et al. [15] present an
analysis for Java that infers whether a class is confined
within its package. Clarke et al. [14] present a confinement



checking tool for Java, related to [15], that warns against
certain kinds of violating program statements; essentially,
they solve a checking problem while our analysis solves an
inference problem. These analyses work on the class level
while our analyses work on the object level. They are more
restrictive than ours (e.g., they do not handle pseudo-generic
containers well), and do not address the kind of ownership
needed for UML-based alias control.

Heine and Lam [19] present an ownership inference al-
gorithm for the purposes of memory leak detection. Their
notion of ownership is substantially different than the notion
of owners-as-dominators used in our work.

Aldrich et al. [5] present a type inference analysis in ac-
cordance with a type system that they develop. Again, our
analysis solves a different problem—ownership inference in
accordance with the owners-as-dominators model which is
different than the type system in [5] (e.g., the owned type
in [5] captures exclusive ownership only, although access can
be allowed through user-specified alias parameters). The in-
ference analysis in [5] is conceptually different than ours; it
infers type annotations at a fine level of granularity (i.e., for
each variable and expression) and that appears to hinder
scalability. Our analysis, which is based on Soot, and the
efficient inclusion-based Andersen-style points-to analysis in
Spark, appears to scale substantially better, both in terms
of time and memory.

Agarwal and Stoller [3] infer ownership types for race-
free Java. Their inference algorithm is based on dynamic
analysis and thus the inferred types may be unsound. In
contrast, our analysis is a safe static analysis and our study
indicates that it may be adequately precise.

Recent work by Rayside et al. [36] emphasizes the rel-
evance of ownership inference and visualization. The pa-
per however, appears to be preliminary because it does not
present empirical results. Our work uses a related owner-
ship model, but a conceptually different inference analysis.
It presents a detailed empirical investigation that indicates
that the analyses are practical and adequately precise.

Immutability inference. Porat et al. [34] describe an
analysis that detects immutable fields. Their analysis is
context-insensitive, libraries are not analyzed and the paper
discusses only static fields. Our immutability analysis incor-
porates limited context sensitivity, analyses large libraries
and focuses on instance fields.

Ryder et al. [43] present a framework for side-effect anal-
ysis for C that is parameterized by points-to analysis. Our
inference analysis uses the same general idea for propagation
of side-effects. However, we consider underlying context-
insensitive points-to analysis combined with limited con-
text sensitivity during propagation; this combination helps
achieve scalable analysis.

Rountev [38], and Salcianu and Rinard [44] present anal-
yses that identify side-effect-free methods in Java programs.
In both cases the analyses are applied on relatively small
programs (hundreds of reachable methods). Our analysis
identifies immutable fields and is applied on substantially
larger programs (close to ten thousand reachable methods).

UML class diagrams. Various researchers have stud-
ied formalizations of the notions of composition, aggrega-
tion and association in the UML [11, 7, 21, 18]. Our work
focuses on static analyses that enhance associations, a rela-

tively well-defined concept in the UML.

7. CONCLUSIONS AND FUTURE WORK
We present a mechanism for alias control that is based

on the use of ownership and immutability constraints on as-
sociations in UML class diagrams. We propose ownership
and immutability models and and develop corresponding in-
ference analyses. We perform an empirical study which in-
dicates that the analyses are precise and practical and can
support model-driven development and effective reasoning
about software quality and software security.

In the future, we plan to perform experiments on more
benchmarks; clearly, the results need to be confirmed on a
larger code base and by additional studies of absolute pre-
cision. Also, we will investigate techniques for further re-
duction of analysis cost; the cost can be reduced by proving
large portions of the library code irrelevant to the ownership
and immutability properties. Most importantly, we plan to
integrate the analyses into an open-source UML tool.

8. REFERENCES

[1] Ashes suite collection.
http://www.sable.mcgill.ca/software.

[2] Dacapo benchmakr suite.
http://www-ali.cs.umass.edu/dacapo/gcbm.html.

[3] R. Agarwal and S. Stoller. Type inference for
parameterized race-free Java. In VMCAI, pages
149–160, 2004.

[4] O. Agesen. The cartesian product algorithm: Simple
and precise type inference of parametric
polymorphism. In ECOOP, pages 2–26, 1995.

[5] J. Aldrich, V. Kostadinov, and C. Chambers. Alias
annotations for program understanding. In OOPSLA,
pages 311–330, 2002.

[6] D. Bacon and P. Sweeney. Fast static analysis of C++
virtual function calls. In OOPSLA, pages 324–341,
1996.

[7] F. Barbier, B. Henderson-Sellers, A. L.
Parc-Lacayrelle, and J.-M. Bruel. Formalization of the
whole-part relationship in the unified modeling
language. IEEE TSE, 29(5):459–470, 2003.

[8] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and
N. Umanee. Points-to analysis using BDD’s. In PLDI,
pages 103–114, 2003.

[9] A. Birka and M. D. Ernst. A practical type system
and language for reference immutability. In OOPSLA,
pages 35–49, 2004.

[10] C. Boyapati, B. Liskov, and L. Shrira. Ownership
types for object encapsulation. In POPL, pages
213–223, 2003.

[11] J.-M. Bruel, B. Henderson-Sellers, F. Barbier, A. L.
Parc, and R. B. France. Improving the UML
metamodel to rigorously specify aggregation and
composition. In International Conference on
Object-Oriented Information Systems, pages 5–14,
2001.

[12] D. Clarke and S. Drossopoulou. Ownership,
encapsulation and the disjointness of type and effect.
In OOPSLA, pages 292–310, 2002.



[13] D. Clarke, J. Potter, and J. Noble. Ownership types
for flexible alias protection. In OOPSLA, pages 48–64,
1998.

[14] D. Clarke, M. Richmond, and J. Noble. Saving the
world from bad beans: Deployment time confinment
checing. In OOPSLA, pages 374–387, 2003.

[15] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating
objects with confined types. In OOPSLA, pages
241–253, 2001.

[16] D. Grove and C. Chambers. Call graph construction
in object-oriented languages. ACM TOPLAS,
23(6):685–746, Nov. 2001.

[17] D. Grove, G. DeFouw, J. Dean, and C. Chambers.
Call graph construction in object-oriented languages.
In OOPSLA, pages 108–124, 1997.

[18] Y.-G. Guéhéneuc and H. Albin-Amiot. Recovering
binary class relationships: Putting icing on the UML
cake. In OOPSLA, pages 301–314, 2004.

[19] D. Heine and M. Lam. A practical flow-sensitive and
context-sensitive C and C++ memory leak detector.
In PLDI, pages 168–181, 2003.

[20] G. Kniesel and D. Theisen. JAC-access right based
encapsulation for Java. Software: Practice and
Experience, 31(6):555–576, 2001.

[21] R. Kollmann and M. Gogolla. Application of UML
associations and their adornments in design recovery.
In Working Conference on Reverse Engineering, pages
81–91, 2001.

[22] P. Lam and M. Rinard. A type system and analysis
for the automatic extraction and enforcement of
design information. In ECOOP, pages 275–302, 2003.

[23] C. Larman. Applying UML and Patterns. Prentice
Hall, 2nd edition, 2002.

[24] O. Lhotak and L. Hendren. Scaling Java points-to
analysis using Spark. In CC, pages 153–169, 2003.

[25] O. Lhotak and L. Hendren. Context-sensitive points-to
analysis: Is it worth it? In CC, pages 47–64, 2006.

[26] D. Liang, M. Pennings, and M. J. Harrold. Extending
and evaluating flow-insensitive and context-insensitive
points-to analyses for Java. In PASTE, pages 73–79,
2001.

[27] A. Milanova. Precise identification of composition
relationships for UML class diagrams. In ASE, pages
76–85, 2005.

[28] A. Milanova, A. Rountev, and B. Ryder.
Parameterized object-sensitivity for points-to and
side-effect analyses for Java. In ISSTA, pages 1–12,
2002.

[29] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to analysis
for Java. ACM TOSEM, 14(1):1–42, 2005.

[30] J. Noble, J. Vitek, and J. Potter. Flexible alias
protection. In ECOOP, pages 158–185, 1998.

[31] J. Palsberg and M. Schwartzbach. Object-oriented
type inference. In OOPSLA, pages 146–161, 1991.

[32] I. Pechtchanski and V. Sarkar. Immutability
specification and its applications. In In Joint
ACM-ISCOPE Java Grande Conference, pages
202–211, 2002.

[33] J. Plevyak and A. Chien. Precise concrete type
inference for object-oriented languages. In OOPSLA,
pages 324–340, 1994.

[34] S. Porat, M. Biberstein, L. Koved, and B. Mendelson.
Automatic detection of immutable fields in Java. In
CASCON, 2000.

[35] J. Potter, J. Noble, and D. Clarke. The ins and outs of
objects. In Australian Software Engineering
Conference, pages 80–89, 1998.

[36] D. Rayside, L. Mendel, R. Seater, and D. Jackson. An
analysis and visualization for revealing object sharing.
In Workshop on Eclipse technology eXchange, pages
11–15, 2005.

[37] A. Rountev. Dataflow Analysis of Software Fragments.
PhD thesis, Rutgers University, 2002.

[38] A. Rountev. Precise identification of side-effect free
methods. In ICSM, pages 82–91, 2004.

[39] A. Rountev, A. Milanova, and B. G. Ryder. Points-to
analysis for Java using annotated constraints. In
OOPSLA, pages 43–55, 2001.

[40] A. Rountev, A. Milanova, and B. G. Ryder. Fragment
class analysis for testing of polymorphism in Java
softwhare. IEEE TSE, 30(6):372–386, June 2004.

[41] E. Ruf. Effective synchronization removal for Java. In
PLDI, pages 208–218, 2000.

[42] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual.
Addison-Wesley, 2nd edition, 2004.

[43] B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and
R. Altucher. A schema for interprocedural
modification side-effect analysis with pointer aliasing.
ACM TOPLAS, 23(2):105–186, Mar. 2001.

[44] A. Salcianu and M. Rinard. A combined pointer and
purity analysis for Java programs. In VMCAI, pages
199–215, 2005.

[45] M. Sridharan and R. Bodik. Refinement-based
context-sensitive points-to analysis for Java. In PLDI,
pages 387–400, 2006.

[46] M. Streckenbach and G. Snelting. Points-to for Java:
A general framework and an emprirical comparison.
Technical report, U. Passau, Sept. 2000.

[47] V. Sundaresan, L. Hendren, C. Razafimahefa,
R. Vallee-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical virtual method call resolution for Java. In
OOPSLA, pages 264–280, 2000.

[48] F. Tip and J. Palsberg. Scalable propagation-based
call graph construction algorithms. In OOPSLA,
pages 281–293, 2000.

[49] M. Tschantz and M. D. Ernst. Javari: Adding
reference immutability to Java. In OOPSLA, pages
211–230, 2005.

[50] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing Java
bytecode using the Soot framework: Is it feasible? In
CC, LNCS 1781, pages 18–34, 2000.

[51] J. Whaley and M. Lam. An efficient inclusion-based
points-to analysis for strictly-typed languages. In SAS,
pages 180–195, 2002.

[52] J. Whaley and M. Lam. Cloning-based



context-sensitive pointer alias analysis using binary
decision diagrams. In PLDI, pages 131–144, 2004.

Appendix A
class Register {

private ProductCatalog catalog;

private Sale sale;

public Register() {

catalog=new ProductCatalog(); }

public void enterItem(Integer id, int q) {

ProductSpec spec = catalog.getSpec(id);

sale.makeLineItem(spec, q); }

public void makeNewSale() {

sale = new Sale(); }

public void makePayment(Money cash) {

sale.makePayment(cash);

Money balance = sale.getBalance(); }

public void endSale() {

sale.becomeComplete(); }

}

class ProductCatalog {

private Hashtable specs = new Hashtable();

ProductCatalog() {

ProductSpec ps;

ps = new ProductSpec(100,3,"1stItem");

specs.put(new Integer(100),ps); }

ProductSpec getSpec(Integer id) {

return (ProductSpec) specs.get(id); }

}

class Sale {

private Vector lineItems = new Vector();

private Payment payment;

public Money getBalance() {

return payment.getAmount().minus(getTotal()); }

public void makeLineItem(ProductSpec s, int q) {

lineItems.add(new SalesLineItem(s,q)); }

public Money getTotal() {

Money total = new Money();

Iterator i = lineItems.iterator();

while (i.hasNext()) {

SaleLineItem sli = (SaleLineItem) i.next();

total.add(sli.getSubtotal()); }

return total; }

public void makePayment(Money cash) {

payment = new Payment(cash); }

public void becomeComplete() { //log... }

}

class SaleLineItem {

private int quantity;

private ProductSpec spec;

public SaleLineItem(ProductSpec s, int q) {

this.spec = s; this.quantity = q; }

public Money getSubtotal() {

return spec.getPrice().times(quantity); } BAD!!!

}

public static void main() {

Register register = new Register();

while (...more sales...) {

register.makeNewSale();

while (...more items...) {

register.enterItem(new Integer(id),q); }

register.makePayment(new Money(amount));

register.endSale(); }

}


