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Abstract

Distributed actor garbage collection differs from distitibd object garbage collection in that it needs to consider
in-transit message detection, unordered message reggptid actor migration. In this paper, we propose a new
snapshot-based distributed actor garbage collectiorrittign The algorithm does not require First-In-First-Out o
blocking communication, nor message logging. Furthermaotor migration is allowed while capturing global
snapshots and partial snapshots can be safely used totcgideage, therefore not requiring comprehensive
cooperation among all computing nodes. These features inakigue in the area of distributed garbage collection.
We formally prove the following safety and conditional liess properties of the algorithm: 1) the garbage in a
global snapshot, created by composing several local sp&gstemains the same from the beginning to the end
of the global snapshot algorithm, and 2) garbage is evdgtaallected if the global garbage collection algorithm
is periodically activated and every blocked actor is alwegptured before a global garbage collection phase is
triggered.

Index Terms

D.4.7.b distributed systems, D.4.2.c garbage collectini3.4.f memory management, D.4.m miscellaneous,
distributed snapshot algorithms, actors, active objentshile objects.

I. INTRODUCTION

Automatic memory management, usually called garbage at@le (GC), is a technigue to reclaim
unreferenced memory space. It raises the level of progragtoy preventing programmers’ error-prone
manual memory space manipulations. The problem of garbaljection is to find the complement set
of transitively reachable objects from the root set, whéee root set refers to the set of objects directly
available to access by threads of control. Garbage cadlecti a distributed environment is difficult —
no global clock, no centralized memory, inherent concuayeand possible failures of computing nodes
and the network. These factors complicate detection of aistant global state of a distributed system,
required for finding all distributed garbage.

A. Garbage Collection in Actor Systems

Recently, mobile active objects are becoming more and mmopoitant because of the uprising de-
velopment of grid and pervasive computing. A mobile actilgeot can migrate to another computing
host, which enables runtime application reconfiguratiomtitne reconfiguration is important to improve
computing quality because the state of resources is alwagsging. For example, an active object can
migrate from a busy computing host to another idle host tdexehdynamic load balancing. Another
example is that an active object can migrate from a cell phoraother computing host such as a laptop
in case of low battery.

The most widely adopted model for reasoning about activeatbjisthe actor model of computation
[1], [12]. An actor system is comprised of uniquely namedpaomous reactive active objects, namely
the actors Communication of actors ipurely asynchronous, guaranteed, and fa# they always send
messages in aon-blockingmanner. Even though messages may arrive unordered, thegvantually
delivered. Furthermore, an actor can either send messagesdacquaintancesto whom it has explicit
references, or some predefined special actors such as thet @ervice. An actor consists of an encap-
sulated thread of control, its internal state, and a mesbageto buffer incoming messages. An actor
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Fig. 1. An actor is a reactive entity which communicates vathers by asynchronous messages in a non-blocking mamnersponse to
an incoming message, it can use its thread of control to 1)ifjndd internal state, 2) send messages to other actorsied}e actors, or 4)
migrate to another computing node.

is unblockedif it is processing a message or has messages in its messagetberwise it isblocked
waiting for incoming messages. An actor buffers incomingsages in its message box, and its thread of
control keeps retrieving and processing them. In respomsatincoming message, an actor can use its
thread of control to modify its encapsulated internal staend messages to other actors, create actors,
or migrate to another computing node (see Figure 1).

The actor model of computation provides a natural semaiicslistributed systems because it has
several preferable features: purely asynchronous conuation (non-blocking and unordered commu-
nication), and state encapsulation with an internal thr&¥ith these features, a distributed system can
be easily reconfigured at runtime — migration of an actor iasy as migration of its encapsulated
state and its message box, without worrying about stateipbon. Comparing to the synchronoabject
method invocation moddr the Remote Procedure Call modglthe actor model is more concurrent
because actors do not block for any return value. Additignatate encapsulation facilitates dynamic
load balancing [10] by reallocating the actors during cotapon. Many programming languages have
partial or total support for actor semantics, such as SALS®|,[ABCL [44], THAL [17], and Erlang
[2]. Some libraries also support the actor model of compatatsuch as Actor Foundry [26] for Java,
Broadway [33] for C++, I0S for MPI library [11], and Actalk J[6or Smalltalk.

Distributed garbage collection has been developed for déescaHowever, literature foactive object
garbage collectionis scarce. The problem of actor garbage collection is diffein nature from passive
object garbage collection. Actor computations must be tbtirectly or indirectly provide results to a set
of predefined output devices, such as consoles, printegssyiitems, or databases. Actors may also obtain
information from input devices, such as keyboards or seangoroutput results if they can communicate
with them. As a result, the input or output devices are repres] by aoot set of actorsActors that can
directly or indirectly communicate with the root set of astare live. Figure 2 illustrates a key difference
between actor garbage collection and passive object garbalection.
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Fig. 2. Actors3, 4, and8 are live because they can potentially send messages to dheQbjects3, 4, and8 are garbage because they
are not reachable from the root.

B. Snapshot Algorithm in Actor Garbage Collection

A snapshot algorithm executes in parallel with applicagitmobtain the configuration of a system, also
referred to as thenapshatin a distributed system, active entities, such as MP| @meeg and actors, can
send messages to affect each other, which means a snapgtithah must take care of both in-transit
messages and each local state of the system. A snapshoteraaigally consistent, but different variations
of snapshot algorithms have different requirements of@lacmnsistency. Actor garbage collection requires
that no live actors can be collecteshfety, and garbage is eventually collectdid¢nesy. Sometimes the
ability to collect garbage one chunk at a time (incremetytpls important when a system is large or it
needs interactivity. Snapshots are used in garbage dohddts], [28], [37], [38], as well as in many other
areas, such as distributed termination detection [24] asttlilsited checkpointing for execution rollback
[7], [30].

Snapshot-based algorithms greatly fit in the need of actstesys because they have less interference
with applications than blocking-based algorithms do. Apstet-based actor garbage collection algorithm
first obtains a consistent global state, and then identifeebage over the global state. Snapshot-based
algorithms can detect a causally consistent snapshothwhe&ans each snapshot is causally independent
from each other. However, when a snapshot-based algorglapglied to a mobile actor system, it encoun-
ters difficulties detecting in-transit actors becausedhagors are being transmitted over the network and
are therefore hard to detect. The end result is that glolegdrots may be missing actors or may contain
duplicate actors; both views inconsistent with the glohatem state. In-transit messages cause three
additional difficulties to detect actor garbage in a distt@dal environment. Firstly, in-transit messages may
carry references that can affect the global state. Secpoadlference to an actor can be deleted, while a
message to it is in transit because actor communicationmsbhmcking. This implies that there may exist a
blocked actor such that nobody knows about it but it is liveother words, following references to detect
garbage is not reliable in actor systems. Thirdly, actommroonicate with each other by asynchronous
and non-First-In-First-Out (non-FIFO) messages, whidablates preconditions of most existing garbage
collection algorithms and snapshot algorithms. Usingtexgssnapshot algorithms for distributed garbage
collection tends to be more restrictive — FIFO message églj\blocking communication, huge space
for message and state logging, or a distributed clock musisked. Furthermore, they rely on completely
cooperative computing nodes to maintain safety of garbagjeation.

Incrementality can be provided by using a non-blocking,-RtFFO actor reference listing algorithm
to figure out whether an actor is remotely referenced, eittean in-transit actors or actors at remote
computing nodes. We have developed such an actor referestiog lalgorithm as part of thpseudo-root
approach[40], in order to help building a consistent partial snapgdo actor garbage collection.

The key to make our snapshot algorithm flexible is to utiliaene features of garbage collection. Actor
garbage collection does not care about all the states thggtans maintains. Its interest is the referential
relationship of actors, which can be represented by a conakactor reference graph. The most important
thing is that the snapshot does not need to be strictly dgusahsistent if an actor garbage collection
algorithm can guarantee liveness and correctness. THettriachieve this goal is to use an alternative
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approach to make an actor live, that is, the state of a roogimleto the state of an actor which is
referenced by a root. Starting from this idea, we introduee giseudo-root approach, and then propose
a partial snapshot algorithm for actor garbage collectersnapshot recording model to reason about
the behavior of the snapshot algorithm, and safety and dserproofs for correctness of the snapshot
algorithm.

Our approach is unique and novel since it is purely asyndusn— non-blocking and non-First-
In-First-Out, which means that it preserves the nature efdbtor model. Furthermore, it can support
hierarchical garbage collection [19] in a non-blocking maneven when some actors are migrating.

Outline of This Paper

The remainder of the paper is organized as follows: In Sedtiove give the definition of garbage
actors and the problem of the distributed snapshot for advage collection. In Section Il we describe
the general idea of the snapshot algorithm and the psewstoapproach. In Section IV we present a
computing model and proofs for the proposed snapshot #ihgoriin Section V we discuss related work.
Section VI contains concluding remarks and future work.

[I. PROBLEM DEFINITION

The section introduces the definition of actor garbage cotle, the computing environment for mo-
bile actor systems, and the assumptions for the computimgomments. We also address the causally
inconsistent snapshot problem caused by asynchronousageedslivery.

A. Live Actor Definition

The definition of actor garbage comes from whether or not @or aan possibly perform meaningful
computations, which is defined as having the ability to comicate with any of pre-definemot actors
For example, an actor is considered live if it can possiblydsmessages to any output resource. @
printer) or public serviceife. a web service). Kafura et. al. have provided a definition\a# kctors [16],
which is widely adopted in the literature. Conceptually, aotor is live if it is a root or it can either
potentially: 1) receive messages from the root actors ol snessages to the root actors. The set of
actor garbage is then defined as the complement set of liwesaco formally describe our new actor
GC model, we introduce the following definitions:

« Blocked actor. An actor isblockedif it has no pending messages in its message box, nor any geessa
being processed. Otherwise itusblocked

« Reference A referenceindicates an address of an actor. Actocan only send messages to Actor
b if actor & has a reference pointing to Actér The reference froma to b is denoted ab.

« Inverse reference An inverse references a conceptual reference in the reverse direction of an
existing reference. It is used by a garbage collection mashato figure out whether an actor is
remotely referenced.

« Acquaintance Let Actor a have a reference pointing to Actér Actor b is anacquaintanceof a,
anda is aninverse acquaintancef b.

« Root actor: An actor is aroot actor if it encapsulates a resource, or if it is a public service —ehsu
as 1/0O devices, web services, and databases.

The original definition of live actors is denotational. Weopted Dickman'’s idea of potential live actors
[9] to re-define live actors, as follows:

. Potentially live actor:

— Every unblocked actor and root actorpstentially live
— Every acquaintance of a potentially live actorpistentially live

« Live actor:
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Fig. 3. This figure shows an example of a mobile actor systeomgLiting noded, 2, and3 are connected. Actdr is migrating; Actors
a, ¢, ande are blocked; Actorsl, f, g are unblocked. Messagéd; and M, are in transit but their respective referenegsand ac have
been deleted; notice that referenegsandac had to exist beforél/; and M, were sent. Messagk/s with a reference to actof is sent
towards Actord.

— A root actor islive.
— Every acquaintance of a live actorlige.
— Every potentially live, inverse acquaintance of a live adtdive.

B. The Distributed Mobile Actor Garbage Collection Problem

The problem of mobile actor garbage collection is relatedvdav a distributed mobile actor system
performs computing tasks. We assume that the grid or pes/agmputing environment consists of
computing nodes which provide CPU time and memory spacedimpatations, while there is no specific
topology assumption for how the nodes are connected. Lsgmé the algorithm might be affected
by permanent node failures, but safety is guaranteed ewargthsome computing nodes may become
uncooperative temporarily. Applications, composed of ileodctors, are running on the computing nodes.
Mobile actor garbage collection in such computing envirents can be viewed as followGiven a mobile
actor system, identify actor garbage at some time point aveubset of the computing nod&ge assume
that local snapshots at single computing nodes are giveraemdonsistent with the state at that node
at the beginning of the global snapshot algorithm. We als&enthe assumption that every actor has a
reference to itself.

Mutation operationsare performed by actors to change the conceptual actorerefergraph over the
subset of nodes in consideration. They consist of 1) acteatiom, 2) references passing/reception, 3)
reference deletion, 4) migration, and 5) actor state ttimmsfrom unblocked to blocked and vice versa.
Because actor communication is asynchronous, mutatioratipes can occur out of order. For instance,
an actor can send out a message and then remove the referseheeniessage target before the message
is received. Furthermore, a migrating actor is temporatifiicult to detect because it is in transit. Figure
3 illustrates a mobile actor computing environment.

C. Live Unblocked Actor Principle

A practical actor-oriented programming language shoutivide the ability to access resources, or to
communicate with predefined public services. An importasuanption we make is that every actor has
access rights to the root set. Without program analysisniqales, we must assume that every actor has
persistent references to the root set. This preconditiadddo thdive unblocked actor principlewhich
says that every unblocked actor is live. The live unblocketbraprinciple is easy to prove. Since each
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Fig. 4. Time lines to illustrate late and early messages.hatleft side, Actora sends a message to Actbrat ¢1 and then its state is
recorded at,; the state of Actob is recorded at, and then it receives the messagé-atAt the right side, the state of Acter is recorded
att, and then it sends a message to Adiat t1; Actor b receives it at; and then its state is recorded tat

unblocked actor is: 1) an inverse acquaintance of the rdotsaand 2) defined as potentially live, it is live
according to the live actor definition. The live unblockedoagrinciple makes actor garbage collection
very similar to passive object garbage collection becawseyaunblocked actor can be treated as a root
actor directly without changing the meaning of actor gaebagith the live unblocked actor principle,
every unblocked actor can be viewed as a root. Thereforeay gp@entially live actor is live because
they can possibly receive messages from unblocked actarshem send messages to the root actors.
This idea leads to the core conceptpsfeudo-root actor garbage collectiqd0], which is introduced in
Sub-Section IlI-C. The pseudo-root approach can supporeimental actor garbage collection (a chunk
of garbage at a time) and handle temporarily uncooperatt@sand computing nodes. We assume that
actors migrate in response to a message requesting migratierefore, migrating actors are unblocked,
and by the live unblocked actor principle are also live.

D. Causally Consistent Snapshot

A snapshot algorithm must guarantee the causal consistdritye obtained snapshot. The problem of
causal consistency can be expressed by the order of messadjags message reception, and local state
logging. Let Actora send an application message at titng¢o a remote actob, and Actorb receive the
message at timeé,. Let ¢, andt, be the time points when a snapshot is takend@nd b respectively.
Note thatt, > ¢, is always true because of the causal relationship of messagg#ing. There are two
kinds of inconsistent snapshots caused by different oroersessage delivery (refer to Figure 4):

. Late message (in-flight message)f (1 < t,) A (t, < t2), the message is said to lete. A late

message does not affect causal consistency because eles/ant to the recorded state of Actor
It is only important to a system which needs to replay messaght after a global snapshatg
system rollback upon failures).

. Early message (inconsistent messagdj (¢, < t1) A (t2 < t;), the message is said to kearly. It

is causally inconsistent because a message produced byra tutrecorded state of Actar affects
the recorded state of Actdr

Mobile actor garbage collection must solve the early mesgagblem. A snapshot-based algorithm is
both safe and live if either the snapshot does not contaiy eassages, or early messages do not affect
safety and liveness.

[Il. NON-BLOCKING SNAPSHOTALGORITHM AND PSEUDO-ROOT APPROACH

Given a non-blocking, non-FIFO reference listing algaritisuch as theoseudo-root approacf40],
many actor garbage collection problems can be simplified:
1) In-transit messages and in-transit references aresemied as part of the actor reference graph to
guarantee safety and liveness. For instance, a messageAfitima to Actor b is represented as a
reference from Live acto# to Actor b, and the relationship is detectable in Actor
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2) Remotely referenced actors can be identified by usingseveeferences.

3) Actor garbage collection does not stop applications.

Unfortunately, such a reference listing algorithm canwmientify distributed mutually referenced actor
garbage (distributed cycles). We propose a snapshot #igoffior distributed actor garbage collection
to solve this problem. The fundamental idea is to put a dacbection of actors into a snapshot (the
local actor reference graph) at each computing node, andtth&eep watching the collection until the
snapshot algorithm terminates. The snapshot may mutateevbe any actor belonging to the snapshot
mutates. No new garbage is created in the snapshot by nutapierations, but applications do create
new garbage which will only be detected at the next actoragelrollection phase. To generalize in one
sentence, the goal of the snapshot algorithm is to maintairparset actor reference gra@h of the real
actor reference grap@2 at the time that the snapshot algorithm begins, whbkeeset of pseudo-roots
of Gl is a superset of that o&2 and the set of references Gl is also a superset of that g&. The
proposed snapshot algorithm is obviously safe becauseethef gyarbage ofGl is a subset of that of
@&, but it producedfloating garbage Floating garbage refers to actors which become garbagegdur
a garbage collection phase, but cannot be detected in tlestepli\ny garbage collector that uses this
approach cannot detect floating garbageésbf but it can detect the floating garbage in the next garbage
collection cycle because garbage cannot become live amefon

The non-blocking snhapshot algorithm consists of two pddsal state logging and global synchro-
nization. Local state logging is performed by local garbag#ectors. A global agent is assigned to
initialize and to terminate the snapshot, where two glolyaickronizations are enough for a causally
consistent global snapshot — one to trigger local stateitaggnd the other one to terminate local
state logging. Unlike other distributed snapshot-basgdriahms, our algorithm does not require message
logging. Instead, monitoring mutation operations is eroug

A. Local State Logging

Local state logging is triggered by a global synchronizatagent, which requests the local garbage
collector to form a closed group of actors and then starts @oitor mutation operations on that closed
group. Newly created actors are automatically excludechftbe closed group; migrating or migrated
actors are segregated by the local snapshot procedureeRededeletion is not logged because we want
to ensure a live actor remains live by following the origineth from the beginning to the end of
the local state logging. The state logging procedure foall@mapshot has to ensure that: 1) deleted
references, including inverse references, are loggederadital snapshot, 2) migrating or migrated actors
are segregated dynamically from the closed group and tleguaantances become remotely referenced.
Figure 5 shows an example of how the local state logging wofke local state logging algorithm
is modeled as a special actor which responds to a global garballection request from the global
synchronization agent. Note that it does not stop any nartaiperations, including migration.

B. Global Snapshot Synchronization

The global synchronization agent is devised to coordinatesaningful global snapshot among several
computing nodes. Since each computing node logs local stdegpendently, some kind of global syn-
chronization must be used to ensure that no early messageggmating actors can be received before
the state logging starts. This goal can be achieved by enfptbe participating local snapshots to have
a common overlapping time range during local state logghg.overlapping time range also ensures
that no actor can appear more than once at the participaicad snapshots with the help of local state
logging. Let the common overlapping time range start at timand finish later to become available for
global snapshot merging. It is obvious that the set of gabatgeach local snapshot is fixed after
Our algorithm also guarantees that the set of global garliragke global snapshot, combined by the
participating local snapshots, is fixed after To prevent some kind of temporary failures from stopping
global garbage collection, the synchronization agent canautime-out to keep the global snapshot going.
The pseudo-code is shown in Figure 11I-B and 6.
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Fig. 5. This figure shows an example of local state logginge Tbper part demonstrates the actor reference graph in éhevoeld,
while the lower part illustrates how local state logging ksrAt the beginning of local state logging, Actaris referenced by Actor;
Actor b is referenced by Actou. Actor a and Actorb are put in a closed group for state logging. At the secondestagtor a becomes
unblocked to execute something, and the snapshot showddtdae event. At the third stage, Acterdeletes Referenceb. Although Actor

b becomes garbage at this stage, it is live in the local snagmswause it is reachable from a pseudo-root (unblockedy,akttor a. At the
last stage, Actor migrates away, and the local snapshot should reflect thethattActor a is missing. Meanwhile, all its acquaintances
should become remotely referenced because the local sstapsist not produce new garbage. At this stage, no actor ifotte# snapshot
is garbage. Actor is not garbage either because it does not belong to the ctpsegb.

Algorithm distributedsnapshot
create a unique task number T
for each computing node Xo
asynchronously execute locahonitor(T)
/leach may reply YES or NO
wait until
1) every computing node has repliedgr 2) timeout
for each computing node X which replies YE$
asynchronously execute localnapshot(T)
/leach may reply OK or FAILED
10. wait until
11. 1) all computing nodes have replied OKgr 2) timeout

O©CoO~NOOOUTPA~,WNLPE

Fig. 6. The distributed snapshot algorithm. A meaningfalbgl snapshot consists of the local snapshots of the congpntides that reply
'OK’.

C. The Pseudo-Root Approach

Actor garbage collection is difficult even in a single compgtnode. For instance, incremental garbage
collection under non-blocking and non-FIFO communicati@ad not been solved until recently. Our
previous research, the pseudo-root approach [40], pre\adeasible solution for this problem. With the
pseudo-root approach, the proposed snapshot-based acbagg collection algorithm can be performed
in a non-blocking manner — that is, garbage collection doetsstop the mutation operations of the
application.

The pseudo-root approach, which is based on the live unbtbektor principle, makes actor garbage
collection similar to passive object garbage collectiontok garbage collection starts by identifying some
live (not necessarily root) or even garbage actors as pseaats. There are four types of pseudo-root
actors: 1) root actors (persistent services), 2) unbloekars, 3)sender pseudo-root actqrand 4)global
pseudo-root actorsThe second kind of pseudo-root actor is live according ® live unblocked actor
principle (see Subsection II-C). The last two types of psexgbt actors will be explained in the following
paragraphs.
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/Il Local Snapshot Actor:
1. Working-List L «— EMPTY
2. Groupof_Actors P+ EMPTY
3. SnapshaiTable ST+ EMPTY

Procedure local_-monitor(Task T)

1. if local_-host.status = Cannattake.a_snapshotthen
2 reply NO

3. else

4 L.pushTask(T)

5 if size(L) = 1 then

6 obtain a closed groupof actors P

7. for each actor Ain P

8. if A = NULL then

9 remove A from P// A has migrated away
10 else

11 enable statelogging of A

12. reply YES

Procedure local_snapshot(Task T)

1. if L.find(T) = FALSE then

2 reply FAILED

3. else

4 Snapshot S— empty

5 for each actor Ain P do

6 S.recordActor (A)

7 for each actor Ain P do

8. stop statelogging of A

9. /I save S into the snapshot table ST by
10 /!l denoting the working list L on it (Line 11)
11 ST.add(L,S)

12 L.clear ()

13 reply OK

Fig. 7. The local snapshot actor.

Pseudo-root actors can be treated as roots directly, geadrthe starting points of Depth-First-Search
or Breadth-First-Search (a trace-based algorithm) tositi@ely mark live actors. A trace-based garbage
collection algorithm works perfectly in a synchronous systwith method invocations (or procedure
calls). However, it causes problems on a system with nookiohg message passing. In a non-blocking
communication environment, an actor can send a messageirity aigseference, and immediately delete
the reference before the message has been received. Ablaaed-algorithm may mistake a live actor for
garbage in such scenario. A similar problem can happen vamilactor is passing a message to another
actor and the message contains a reference. The actorneddrdy an in-transit message may not be
marked live by a trace-based algorithm in such case.

We introduce the idea of sender pseudo-roots to prevenheous garbage collection of actors in an
asynchronous communication environment: either targats-toansit messages or actors whose references
are part of in-transit messages. A sender pseudo-root ala@ytains at least on@otected reference—

a reference that has been used to deliver messages whichuaestly in transit, or a reference to
represent an actor referenced by an in-transit message -ehwhe call anin-transit reference Both
cases are illustrated in Figure 8. Deletion of a protectéereace makes the reference unavailable for
the application, but still visible to the garbage collentimechanism. A protected reference can only be
physically deleted when the message sender knows therigitrmessage has been received correctly.
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Fig. 8. Sender pseudo-root actors for in-transit messag@snatransit references.

Global pseudo-root actors consist of remotely referencéatsiand potentially live actors with outgoing
references to remote actors. They are live because theyasaibfy send a message to a root actor. With
the live unblocked actor principle, the second case canmarégl since every potentially live actor is live.
To identify remotely referenced actors, each actor can ta@innverse references to figure out its inverse
acquaintances. Notice that the inverse references areigibtevto applications. Unfortunately, precisely
identifying remote inverse acquaintances in a non-blagkimay is impossible. An alternative approach
must be used — we must guarantee that remotely referencets agther have an inverse reference to
any remote actor, or are transitively reachable from sormal Ipseudo-root actors (including itself).

To guarantee the existence of an inverse reference to aeemtur or reachability from a local pseudo-
root, we only need to consider and constrain three kinds datimin operations: actor creation, reference
deletion, and reference passirfg:

« Actor creation: We restrict actors to always be created locally. When aorastcreated, the created
actor atomically and automatically gets an inverse refegeto the creator. In other words, precise
inverse references are preserved after actor creationo®Resmestor creation can be modeled by local
creation followed by migration.

« Reference deletion To ensure liveness of the pseudo-root approach, referdakion must be
handled carefully. An inverse reference should be deléetetd icorresponding reference has been
deleted. Furthermore, if a protected reference is deleyethé application, the reference should be
preserved by the garbage collection system but should ngetome available to the application.

« Reference passingWe have designed a protocol to support reference passidegr uron-blocking,
non-FIFO communication (see Figure 9). Unlike actor coegtreference passing may create asym-
metric pairs of references and inverse references. Thegbtombines the idea of sender pseudo-
roots and inverse reference registration to ensure thaadher whose reference is being passed is
referred to by a pseudo-root which appears in the actorsrga/reference list. This guarantees the
actor will not be erroneously collected during referencespay.

IV. COMPUTING MODEL AND SNAPSHOT ALGORITHM PROPERTIES

In this section, we define the model of local state loggingl #ren use the reachability relationship
to prove safety and liveness of local garbage collectioretbam the local snapshot. We then formalize
shapshot composition, and provide safety and livenesdpfoosnapshot composition. Proofs of lemmas
can be found in the Appendix.

IMigration is not considered because we treat migratingracés live actors and migration does not affect the existericeverse
references.
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/ 1: Mark Actor a live and protect — \
Reference ab and ac Message
4.2: Resume Actor a Sending

Actor a

and Reference

= 2: Reference

passing
3.2: Inverse reference
4.1: Ack Actor b to resume

1 registration 3.1: Ack Actor a to resume
Reference bc Reference ab and
k protect bc /

Fig. 9. This figure illustrates the protocol of referencegag, in which each state is triggered by asynchronous rgessa.et Actora
send a message to Actbrand the message contain a reference pointing to Actét the beginning, Actor becomes a sender pseudo-root
and protects Refereneg andac from deletion, and then sends the message to Actdvhen Actord receives the message, it 1) gets the
reference pointing to Actoe, 2) sends an asynchronous acknowledgement to Actor change the protected referende from protected

to unprotected, 3) protects Refererizefrom deletion to prevent the race between inverse referesgistration and deletion messages, and
then 4) sends an inverse reference registration messaget@od Upon receiving the inverse reference registration messagtor ¢ knows
that it is referenced by Actob, and then it sends two asynchronous acknowledgements —ooAetor a to change Referencec from
protected to unprotected, and the other one to Aétes change the protected referenizeas well. Note that whenever Actdr has the
reference pointing to Actot, it can use it immediately. This protocol is non-blockingchese no actor is waiting for any other actors; it is
non-FIFO because we do not assume any message reception orde

A. Computing Model

Reachability from an actor to another actor is importantgarbage collection, defined as follows:
Definition 4.1: Transitive reachability
Actor b is transitively reachable from Actar, denoted by
a~> b,
if and only if a = b V (Jc: ac A ¢ ~ b). Otherwise, we say ~ b.
The transitive reachability relationship asymmetric(a ~ b < b ~ a), reflective (¢ ~ a), and
transitive ((a ~ b) A (b~ ¢) = (a ~ ¢)).
Definition 4.2: Actor configuration (snapshot)
An actor configuration (snapshot),

S=(V,E, PS/IR),
is a 4-tuple where

« V is a set of actor names.

« E'is a set of referencedr = {7y |z € V ATy is a referencg.

« PS is a set of pseudo-roots, excluding global pseudo-ra@tsC V.

« IR is a set of inverse references pointing to external actfs= {7y |y € V Az ¢ V}.

Definition 4.3: Receptionists, actor references, localbaceferences, and external inverse references.
Let S be an actor configuration and Actarc S.V. Then we define the set of receptionists (remotely
referenced actorsp.RE, actor references.ref, local actor references.lref, and external inverse
references:.zir.

« S.RE ={y|my € SIR}.

e aref ={ay|ay € S.E}.

e alref ={ay|ay € S.ENy € SV}

e a.xir ={Ta|Ta € S.IR}.

Definition 4.4: Transitive relationship (mutation ope@t) on actor configurations
Let S be an actor configuration (snapshot) and Actat S.V. Then,— is defined as follows:

e a.M1I: Actor migration.
a.MI

(V,E,PS,IR) —— (V —{a}, E —aref, PS — {a},IRU a.lref — a.xir).
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a.CR(b): Reference creation

(v, B, PS,IR) ““V, (v, B U {ab}, PS, IR).
a. CA( ): Actor creation.
v, E, PS, IR) “““Y 1y B U {ab), PS, IR).
« a.M R: Message reception.
(V,E,PS,IR) ™% (v, E, PS U {a}, IR).
a.l RR(b) Inverse reference registration
v, E, PS, IR) “"*Y vy g PS, TRU {ba)).
To concisely describe relatlonshlps of actors under nmutadperations in snapshots, we introduce the
following definitions:
Definition 4.5: Transitive state transition.
Let S; and S, be actor configurations.
51 —* SQ e (Sl = 52) V (E'Sx : (Sl — Sx) VAN (Sx —* 52))
Definition 4.6: Constrained reachability at actor configticms
Let « andb be actor names, anfl be an actor configuration.

a~batS < ((a=bA(aeSV))V
(Jz: (@ € alref) A (x ~ b at s)).

Otherwise, we say ~ b at S.
Definition 4.7: Constrained live actors at actor configurats
Let a be an actor name, angl be an actor configuration.

Live(a) at S <= (3z: (x € S PSUS.RE) A (x ~ a at 5)).

Otherwise, we say-Live(a) at S.
Definition 4.8: Migration during snapshot state transition
Let ¢ be an actor name. Lef, —* S..

Migrated(a, Sy, S.) < 35;,5; : Sy —* 5; <ML 5, —* 5,
Otherwise, we say-Migrated(a, Ss, Se)-

The snapshot mutation operations correspond to real-wamtdputations but have a different effect.
Therefore, they are restricted by the actor model — onlydiet®rs can become unblocked; only unblocked
and root actors can compute; only live actors can becomeerefed. We formalize these restrictions using
the following propositions, wher§, and S, are actor configurations:

Proposition 4.9: Initial state of Ml operatian
a.MI

S, ML S, = (a € S,.PS).

Proposition 4.10: Initial state of CR operation

S, “RO g ((a € S,.PS) A (Live(b) at S,)).

Proposition 4.11: Initial state of CA operation

S, SO g ((a € 8,.PS) A (b S.V)).

Proposition 4.12: Initial state of MR operation
g, LM g (Live(a) at Sy).
Proposition 4.13: Initial state of IRR operation

S, SO, 6 (Live(a) at Sy) A (b ¢ S,.V)).



RENSSELAER POLYTECHNIC INSTITUTE 13

B. Local State Logging Properties

A local actor configuration never produces new garbage asttite mutates. The reason is the model
does not delete references nor makes any actor blockedyteloceactor migration. A migration operation
breaks references and actors from the actor configurati@anMhile, it makes some actors referenced by
an external actor, the migrating actor. We will prove tha kibcal state logging model is correct. That is,
we show that a migration operation does not affect readtyabil actors from pseudo-roots, as formalized
in Lemma 4.14. Therefore, migration does not add new garbagige local snapshot.

Two actor configurations are used in the following lemmas #mebrems, whereS, is the initial
configuration,.S, is the final configuration of the local snapshot, asid —* S.. We will use S, and
S, directly without re-defining them again.

Lemma 4.14: Alternative guaranteed reachability for stamasition.

(a~batS)A(awbatS,) =
(Migrated(b, Ss,S.)) V (Fyz : ((x ~ b at S.) A (yx € S..IR) A (Migrated(y, Ss, Se))))-

With Lemma 4.14, we now prove that the set of garbage is stabtbe actor configuration during
local state logging, as shown in Theorem 4.18. Theorem 4uEtty turns into Corollary 4.19, which
guarantees a stable set of local garbage during local stgtgng.

Lemma 4.15:Live(a) at S, = Live(a) at S;.

Lemma 4.16:Migrated(a, S, S.) = Live(a) at Ss.

Lemma 4.17:Live(a) at Sy = ((Live(a) at S.) V Migrated(a, Ss, Se))-

Theorem 4.18: Coherent live actors in a local snapshot.

Live(a) at Sy <= (Live(a) at S.) V (Migrated(a, Ss, Se)).
Proof: The proof is trivial by Lemma 4.15, 4.16, and 4.17. [ |

Now, we can prove safety of local snapshot-based actor garballection. An actor is live at the
beginning of local state logging if and only if it is live atekend or it has migrated.

Corollary 4.19: The stable property of the set of garbageoextof a local snapshot.

—Live(a) at Sy <= (—Live(a) at S.) A (mMigrated(a, Ss, Se)).
Proof: The proof is trivial by Theorem 4.18. [ ]

C. Global Snapshot Algorithm Properties

Independent local state logging cannot reclaim globalicyydrbage. A coordinated action of local state
logging is required to guarantee a causally consistentagjlefapshot. Let us assume that there are lots of
computing nodes participating in a global snapshot agtifFigure 10 explains how global synchronization
works. Now consider the synchronization pseudo-code inifig. Lett, be the time the last computing
node repliesfES (line 6), andt. the time the last computing node finisHescal snapshot (line 11).
When a computing node finishesl @cal snapshot , the local actor configuration should remain the
same. LetS,; be the actor configuration of the local group of the computioge: at timet,, where
ts < t, < t.. LetS.; be the local actor configuration at time. Local actor configurations &t can
be obtained easily for garbage collectors because they cbemge again, while configurationstatare
only used for proofs because they are volatile. Note that—* S, ;.

With the restriction of global synchronization, the alglonm guarantees that no actor can appear more
than once among the participating local actor configuration

Lemma 4.20: No actor appears more than once among coordifatal actor configurations.

Let 51,5, ...,.5,, be coordinated local actor configurations.
Vi, j: (S;.V NS,V =0)where(i#j)A(m>1i,j>1).

A global snapshot is composed of several different locapshats. We introduce theal-world actor
configurationto represent the computing state, and shapshot-composition operatida compose local
snapshots by identifying some local outgoing inverse egfees as global internal inverse references.

Definition 4.21: Real-world actor configuration.

A real-world actor configuration,
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/ Global Local Local \
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Request Unsafe
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YES @ —_— _ts
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Fig. 10. Different phases of global synchronization.

Ss Se
Snapshot- ) Snapshot-
Composition ~_Mutation Composition
Operation ~ Operations Operation
{ Ss.1, Ss.2, Ss,m,} { Se,1, Se,Z, Se,m,}
S T e

Fig. 11. This figure shows the relationship of mutation oflers, snapshots, and the snapshot-composition operdtimre are two actor
configuration sets in the figure — one{$s;|m > > 1} at timet¢,, and the other i{S.; |m > i > 1} at timet., whereS,; —* Sc;
andt, andt. are defined in Figure 10 as time poins = (Ss,1 || Ss,2 || --- || Ss,m), @andSe = (Se,1 || Se,2 || -+ || Seym)-

R=(V,E, PS,0),
is a special 4-tuple actor configuration which always regmées the current state of the real world
computations.

Definition 4.22: Binary snapshot-composition operation.

Let S, = (V,, E;, PS,, IR,) and S, = (V,, E,, PS,,IR,). Then
Sy || Sy =V, UV, E,UE,,PS, UPS,, (IR, — E,)U(IR, — E,)),
whereV, NV, = 0.

The composition operation on actor configurationscissed (v.S;,S; : S; || S; is also an actor
configuration),commutative(S; || S; = S; || S;), andassociative((S; || S;) || Sk = Si || (S || Sk))- The
relationship of mutation operations, local snapshots,thedgsnapshot-composition operation are shown in
Figure 11. Notice thats does not directly transit t65, and only the sefS.;|n > ¢ > 1} is observable.

The shapshot-composition operation can possibly idemé&w garbage which cannot be detected in
each member of a snapshot set independently. However, thdlooking, non-FIFO reference listing
algorithm, such as the pseudo-root approach, has to geardroposition 4.23 to solve inconsistency
of two actor configurations — one has a reference to the otheramd the other one does not have
a corresponding inverse reference. Then we prove that garbathe global snapshot remains stable
(safety).

Proposition 4.23: Consistency guarantee of remote ref@srand inverse references
Let « andb be actor names§ and.S; ... S,, be coordinated actor configurations, aRde the real-world
actor configuration, then

(a€ RVYAN(b€ESV)A(ab€ RE)A (ab¢ SIR) =
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(Ir:(re S.PS)A(rbe S.E)) Vv
(3r,S;: (r € S;.PS)A (rb € S;.E) A (rb € S.IR) wherem >i > 1) V
(3r: ((rb € S.IR) A (VS; : b ¢ S;.E) wherem > i > 1)).

The following lemmas and theorems require the concepboétrained pathto describe the relationship
of actor reachability in a snapshot. We define them as fotlows

Definition 4.24: Constrained path and its reference. set
GivenS = (V, E, PS,IR), we define a constrained path of a; ~ a,, at S,

P =aay..a, at S
if and only if Vi : @;a;.1 € S.F wheren > i > 1, and we define the reference set/®fas
PathSet(P) = !~ {@a}-

To avoid redundant description in the following proofs, wefide some variables as follows and then
use them directly: LeR be the real-world actor configuration. L&}, Ss, ..., andS;,, be coordinated
local snapshots. Lets = (Ss1 || Ss2 || - || Ss.m) @ndSg = (Se1 || Sea || --- || Se.m), WhereS;; —* S,
m > i > 1. Let P be a path ofr ~ a at Sg s.t. PathSet(P) contains the maximal inter-snapshot
references of all paths of ~ a at Ss. Let the reference set bBathSet(P).IR. That is, the size of
PathSet(P).IR, {cd|cd € PathSet(P) A (Ji : cd € S,;.IR wherem > i > 1)}, is maximal.

Lemma 4.25: Actors which were reachable from a migratedraatcaa local snapshot are reachable
from some global pseudo-root at the merged global snapshot
(a~batSs1)AN(a~wbatS.,) =
Migrated(b, Ss1,Se1) V (3z: (2 € Sg.RE) A (2~ b at Sg)).

Lemma 4.26:((—Live(a) at Sg) A (a € Ss.V)) = By : (y € R.PS) A (y~ a at R)).

Lemma 4.27:(Live(a) at Ss A |PathSet(P).IR| = 0) = (Live(a) at Sg).

Lemma 4.28:Live(a) at S = (Live(a) at Sg) V (i : Migrated(a, Ss,i, Se;i), m > 1> 1).

Lemma 4.29:(Live(a) at Sg) V (3i : Migrated(a, Ss;, Se;), m > i > 1) = Live(a) at Ss.

Theorem 4.30: Coherent live actors in a global merged actmfiguration
Live(a) at Ss <= (Live(a) at Sg)V (3i : Migrated(a, Ss;, Se;), m > i > 1).

Proof: The proof is trivial by Lemma 4.28 and 4.29. [ |

Corollary 4.31: The stable property of the set of garbageoextin a global partial snapshot.
—Live(a) at Sg <= ((—=Live(a) at Sg)A (Bi : Migrated(a, Ss;, Sei), m >1i > 1).

Proof: This follows trivially from Theorem 4.30. [ ]

D. Liveness

The liveness proof of our snapshot model utilizes the pitypefr stable garbage during state logging.
If a garbage collector is periodically activated and all qpseudo-root actors are selected, garbage is
eventually collected.

Theorem 4.32: Conditional liveness of local garbage coitec
Let each local garbage collector be periodically activatett use the local snapshot for actor garbage
collection. If every non-pseudo-root actor is always delecall local garbage is eventually identified by
trace-based algorithms (DFS or BFS).

Proof: Since the set of local garbage actors is a subset of the laralpseudo-root actors, all
garbage actors are selected into the snapshot for garbdigetiom. According to Corollary 4.19, all
garbage in this cycle can be identified and reclaimed in thicdecof garbage collection. The floating
garbage produced during the current cycle can be identifidtieanext cycle because garbage actors
cannot execute mutation operations, which means garbageergually identified. [ |

A global garbage collector can use a distributed tracingrélym to identify global garbage, including
distributed cycles. Liveness of global garbage collechased on the snhapshot algorithm can be proven
in a similar manner of Theorem 4.32, and thus we skip the proof

Theorem 4.33: Conditional liveness of distributed garbaghection that uses the snapshot algorithm
Let the global garbage collection mechanism be periodicattivated, and use the proposed snapshot
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algorithm for distributed actor garbage collection. If gv@on-pseudo-root actor is always selected for
shapshot, all garbage is eventually identified by distedurace-based algorithms (DFS or BFS).

V. RELATED WORK

The most well known snapshot-based garbage collectiorritiigois proposed by Yuasa [45] as part
of the Kyoto Lisp concurrent programming language, degigite passive object garbage collection in
shared memory systems. The algorithm uses the snapstie-beginning strategy to preserve every
reference of the beginning of garbage collection, and nej@otd allocated during garbage collection are
preserved as well. The algorithm is as conservative as cat &iate logging strategy, except that our local
state logging strategy considers migration and state arsacunblocked or blocked). Because Yuasa’s
snapshot-based algorithm is 1) less interfering in apfdina than other kinds of garbage collection and
2) easy to implement and understand, it is used for real tewma Jarbage collection [3].

As mentioned in Section I, two kinds of snapshot algorithmeswsed in distributed garbage collection
— the Chandy-Lamport algorithm [8] and the uncoordinatedpshot algorithm. Venkatasubramanian
et al. [38] proposed a Chandy-Lamport based actor garbaliecwon algorithm, with the assumption
of a fixed network topology. Because it reuses the Chandypaatralgorithm, FIFO communication is
necessary to flush communication channels to capture thesstdchannels. Besides, any uncooperative
computing node can fail a global garbage collection agtiviinother Chandy-Lamport based, distributed
actor garbage collection algorithm is proposed by Kafurale{15], which uses a global collector to
coordinate activities of local state logging and globalbgae collection. The algorithm does not make
any assumption about network topology, but still sharespttodlem of the Chandy-Lamport algorithm.
Neither of [38] and [15] consider the problems of actor miigna

There are several variations of uncoordinated snapshotitdms. The idea is to simulate a global clock,
and to find a causally consistent set of local snapshots amdnge set of uncoordinated snapshots where
each computing node maintains more than one copy of locgstiods. Puaut’s algorithm [28] is based
on this approach. It is client-server based, and requiree eemputing node to maintain a time-stamp
vector to simulate a global clock. Because finding a causalhsistent global snapshot is not easy and
time-consuming, the server only checks once on the locgistids from clients. Therefore, the algorithm
does not guarantee every global garbage collection actah succeed even if every computing host is
cooperative for garbage collection. Puaut’s algorithm @ practical in grid computing environments
because the overhead of messages increases as the numberpoftiog nodes goes up. Besides, it is not
easy to maintain a dynamic vector for each message in opepuwtorg environments where computing
nodes can join and leave dynamically. Veiga et al. [37] ps&gothe distributed cycles detection algorithm
(DCDA) [37], where asynchronous local snapshots have toolated by local mutators to inform changes
in the snapshots. The algorithm starts from suspecting gtibhs garbage, and a heavy cycle detection
messageCDM is then traversed among the snapshots to see if a cycle .eliXisisy traversed object is
modified by the mutators, the current activity for globallggge collection must abort. A critical problem
of this algorithm is that either: 1) stop-the-world synatization for applications is required, or 2) a
global garbage collection activity can be failed by any riataoperations.

There are other kinds of distributed actor garbage coblactlgorithms available in literature. For
example, Vardhan and Agha have proposed a distributed gettwage collection algorithm [34] which
transforms each local actor reference graph into a pasdijectoreference graph, and uses Schelvis’
algorithm [31] for global garbage collection. An implemaindn of this algorithm [35] assumes: FIFO
communication, and periodically performs stop-the-waglitbage collection. All existing actor garbage
collection algorithms in previous work violate the asyrarious, unordered assumption of actor commu-
nication, and none of them supports the concept of actoratagr.

Distributed garbage collection for passive object systeres more common. Some are based on
distributed reference counting [4], [5], [21], [25], [27B2], [42], which cannot detect cyclic garbage
but can serve as a fast mechanism to detect distributediaayatbage. These algorithms cannot be
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directly reused in actor systems because they assume Flf@gnication, or blocking communication
(e.g.remote procedure calls), or even both.

There are various distributed garbage collection algoriththat can detect cyclic garbage for passive
object systems, and lots of them are hybrid with differenprapches. We classify these algorithms
according to their most noticeable feature as follows: 19b@l-time-based algorithms such as Hughes’
algorithm [14], which uses global time-stamp propagati@mmf roots to guarantee event orders. 2) Remote
reference server-based algorithms such as [18] in whicl loallectors have to report remote references
to a server. 3) Trial-deletion-based algorithms such agaVesalgorithm [39], which tries to virtually
delete a reference to see if a garbage cycle can be brokeneut)stics-based algorithms such as [20],
[22], [23]. The idea is to efficiently suspect some objectgabage and then to verify them. 5) Group-
collection-based algorithms such as [13], [19], [29]. THea is to collect garbage in static or dynamic
groups to achieve more incrementality. Dynamic groups atabéished by heuristics such as the age of
objects (generations) or reachability from roots.

VI. CONCLUSION AND FUTURE WORK

The actor model of computation is an excellent reasoning daclopment paradigm for grid and
pervasive computing applications because of its abilityntodel parallel computing [17] and dynamic
application reconfiguration [10], [36]. Since actor gardagllection is required in actor systems, research
in actor garbage collection is imperative as the fields af grid pervasive computing mature. In this paper,
we have proposed a snapshot-based distributed actor gacbdgction algorithm, along with the pseudo-
code, the computing model, and proofs of correctness. Utdiagpseudo-root approach, the snapshot-
based algorithm does not require FIFO or blocking commuimoanor comprehensive cooperation of
each computing node during global snapshot. These featnaée our algorithm unique in the area of
distributed garbage collection. Furthermore, the snapalymrithm supports actor migration and works
concurrently with mutation operations, which reducesriofetion of applications. We have implemented
the algorithm as a logically centralized global garbagdectdr. No message logging is required in our
algorithm which demands less space than traditional sidistsed algorithms.

Global synchronization usually implies long waiting timestead of waiting at each computing node,
the global synchronization service controls the distedujarbage collection flow to enable non-blocking
distributed snapshot. The non-blocking snapshot alguritbr distributed garbage collection has been
implemented as part of the SALSA programming language, wilopen source can be downloaded from
[43]. Our previous research [40], [41] has shown the ovethefadistributed garbage collection to be
acceptable (on average 16.4%).

When resource (root) access restrictions are considectat, garbage collection becomes different from
what we have described: in such case, the live unblocked aditaciple is no longer true. Without the
live unblocked actor principle, active garbage actors assible — they can perform mutation operations
but cannot possibly do any meaningful computation. Actorbgge collection in this context has not
been explored and further research is needed to study theaation of garbage collection with practical
security models.
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APPENDIX

In this appendix, we provide proofs for the proposed snapsbimputing model. The proofs for local
state logging properties can be found in Sub-Section A; thefp for global snapshot algorithm properties
are described in Sub-Section B.

A. Local State Logging Properties

Two actor configurations are used in the following lemmasemstt, is the initial configuration,S,
is the final configuration of the local snapshot, ahd—* S.. We will use S, and S, directly without
re-defining them again in this Sub-Section.

To concisely describe a sequence of state transitionsueliefj migration, we provide the definition of
no-migration transitive state transition as follows:

Definition 1.1: No-migration transitive state transition.

Let S; and S, be actor configurations.

5 M’ o

(S = S) V ((Va: S ™ S, wheremo # a.MI) A (S, ZM0, 5.
Similarly, .
St —)(;éa.MI) Sy <— o,
(S = S) V ((Sy ™ S, wheremo # a.MI) A (S, T 50)).

Lemma 4.14 Alternative guaranteed reachability for stategition.
(a~batS)AN(awbatS,) =
(Migrated(b, Ss,S.)) V (Fyz : (x ~ b at S.) A (yx € Sc.IR) N\ (Migrated(y, Ss, Se))).
Proof: The only operation to remove a reference or an actor from psémwd isM . There are two
cases to be considered:

. Case 1: Let(b ¢ S..V). Since the only operation to removds b.1/ I, then there must exist;, S,

sit. Sy —* 8 XML g+ 5, whereb € S,.V Ab ¢ S;.V. ThenMigrated(b, S, S.).

. Case 2: Letb € S..V). Becausga ~ b at S,), there exists a reference &t and it is removed by
a M1 operation during state transitions, makiag¢ b. This case can be proven by induction. Let
the number of performed/ operations be: during state transitions where> 1.

Basis: Prove that the statement is true foe 1.
Let 5, —* 5; LML S; —* S. where((a ~ y) A (x ~ b) A (gz € S;.F)) and (a ~ b at

S;). Therefore, 1) € S;.RE, 2) x ~ b at S;, and 3)yz € S;.I R. Because no more Ml is

performed,((z ~ b at S,) A (gZ € Sc.IR) A (Ss —* S; CELLR ;, —* S.)) which proves the

basis.

Induction step: Assume the statement is truesfowherek > n > 1, and show that it is
true forn =k + 1.

Let S; be the state right before the lakt/ is performed. That isjy : .S; yMI, S;. Because
(b e S..V), b.MI cannot be the last// operation.

Let 7 be the reference removed by the 1481, y.M I. According to the induction hypothe-

sis,3zw, S, Sy : (W~ y~ x~batsS;) ANZw € S;. IR)A(Ss —* Sk ML g Si))-

Now consider the following sub-cases:
Sub-case 1: Lefw ~ b at S;), which meang(w ~ b at S;)A(Zw € S;.IR)A\(Ss —*

S, ML g S;))). Since(S; FMD) S.) do not remove any references or actor
names,((w ~ b at S.) A (zw € S..IR) A (S, —* Sp 225 8, —* 5,))). Thus the
lemma is true for Sub-case 1.

Sub-case 2: The concept of this sub-case is shown in FigureetZ2w ~» b at S;).

Since ((w ~ b at S;) A (w ~ b at S;)) and only oneM is performed during
(S y.MI S (#FMI) *
i J

S.), the statement can be proven by re-using the basis.
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Fig. 12. Sub-case 2 of the induction step of the proof for Lenthi4.

Therefore, one can conclude that the statement is true ciioh.

[
Lemma 4.18ive(a) at S, = Live(a) at Ss.

Proof: The statement can be proven by contradiction. Assume thens¢at is wrong, which means
(mLive(a) at Ss) = Vy : (y € (5;,.PSUSs.RE)) A (y ~ a at Sy). According to Proposition 4.9, 4.10,
4.11, 4.12, and 4.13; cannot execute any mutation operation, and must remaindine state at..
By proposition 4.10y cannot create a reference éobecauseg Live(a) at S) is required. Therefore,
(Vy : (y € (Se.PSUS..RE)) A (y~ a atS,)) = (—Live(a) at S.), which contradicts the premisem

Lemma 4.16\/igrated(a, Ss, S.) = Live(a) at Si.

Proof: (Migrated(a, Ss, S.) implies (3S;,5; : S, —* S; —— S§; —* S.)). By Proposition 4.9,

a € S;.PS. By Definition 4.6 and 4.7 Live(a) at S;. By Lemma 4. lS,Lwe a) at Ss. u
Lemma 4.17Live(a) at Sy = ((Live(a) at S.) V Migrated(a, Ss, Se)).

Proof: By Definition 4.6, Live(a) at S, <= 3z : (z € (S..PS U S..RE)) A (x ~ a at S,). By

Definition 4.8, Migrated(a, Ss, S.) <= (35;,5; : Ss —=* 5, M S; —* S.)). Assume the statement is

wrong, which means:

Assumption 1Vzx : (z € (S..PSU S..RE)) A (x ~ a at S,) and

Assumption 2VS;, S; : S; —* S; oM, S; —* S, is false, which means € S..V/

Let z € S;.V and (z € (Ss.PS U Ss.RE)) A (2 ~ a at Ss) from the premise. One can conclude from
Assumption 1 and Assumption 2 that € (S..PS U S..RE)) A (z ~ a at S.). By using Lemma 4.14,

we know that(z ~ a at Si) A (2~ a at S.) implies either:

Conclusion 139;, S; : Sy —* S, MS —* S, or
d.MI

Conclusion 23dc : ((c~ a at S.) A (dc € S..IR) A (35;,S; : Sy —* S; === S; —* S,)).

Conclusion 1 contradicts Assumption 2. Conclusion 2 calitta Assumption 1 becauske : ¢ € S..RE A
(¢~ a at S.). Therefore, the lemma is true. u

a.MI

B. Global Snapshot Algorithm Properties

We define some variables as follows and then use them directthis sub-section: LefR be the
real-world actor configuration. Le§;;, S;2, ..., andS;,,, be coordinated local snapshots. L& =
(Ssa Il Ss2 || - || Ss,m) @and Sg = (Seq || Se2 || - || Sem), WhereSg; —* S.;, m > i > 1. Let
P be a path ofr ~ a at Sg s.t. PathSet(P) contains the maximal inter-snapshot references of all
paths ofz ~ a at Sg. Let the reference set bBathSet(P).IR. That is, the size ofPathSet(P).IR,
{cd|cd € PathSet(P) A (Ji: ed € S,;. IR wherem > i > 1)}, is maximal.

Lemma 4.20 No actor appears more than once among coordinatadl actor configurations.

Let 51,9, ...,.S,, be coordinated local actor configurations.
Vi, j: (S;. VNS,V =0)where(i # j)A(m>i,j>1).
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Proof: Only migration can cause an actor to appear twice in diffel@ations. Let computing node
v andj be two arbitrary computing nodes whose final local actor goméitions are5; and.S; respectively.
Assume{a} C (5;.VV N S;.V) and the last two logged appearanceszdbe in computing node, and
then migrate toj. Also let¢,; be the time computing nodestarts state logging,; computing node
finishes state logging,; the time computing nodg starts state logging, and, the time computing node
J finishes state logging. Let the time to migrate from nedee ¢,,,,,, and to arrive at nodg be ¢,,;,.
Case litgmig > tei-
Now consider three sub-cases:
Sub-case 1.1, > t.;.
a cannot be logged ity;.
Sub-case 1.2t.; > tepmig > ts;-
S; cannot include any new actor during this period of time.
Sub-case 1.3t,; > t..;, (an early message of migration).
Consideringts; > temigs temig > tsmigs @aNdign, > te;, We getty; > t.;. However, the
global synchronization mechanism guarantees that ¢,; because snapshot termina-
tion must wait for a consensus of all participating compgitimodes. Therefore, this
sub-case is impossible due to a contradiction.
Case 2t > tomig > tsi
The M operation guarantees thi} ¢ S;.V.
Case 3, > tomig-
a cannot be logged ity;.
u
Lemma 4.25 Actors which were reachable from a migrated aatoa local snapshot are reachable
from some global pseudo-root at the merged global snapshot
(a ~ b at 5571) AN (CL ~» b at Se,l) —
Migrated(b, Ss1,S.1) V (3z: (2 € Sg.RE) A (2~ b at Sg)).

Proof: According to Lemma 4.14, one of the following statementsug.t

Case 1.3S5;,5; : Ss1 —=* 5 b MI, Sy —* Se.1 by Definition 4.8.
w.MI

Case 2:35;, Sk, wz : (x~bat Seq1) A (WT € Se1IR) A (S50 = S; —— Sk —=* Se1)).
Figure 13 helps understand the proof. If Case 1 is true, #iersent to prove is also true. Now consider
the Case 2. LetS;, = (Sea || Ses || - || Sem). Let S}, Sy, be the actor configurations andz be the
reference to make Case 2 true. Becaus& S;;.V and no duplicate actor name is allowed (Lemma
4.20), we know(w ¢ S;,;.V wherem > i > 1). Consequentlyw ¢ S.;.V wherem > i > 1 because
no mutation operation can add any new actor name. Sface S.;.V wherem > i > 1), we get
(wz ¢ S.;.E whereVi : m > ¢ > 1), which also implies thatwz ¢ S},.E. From Case 2 we know
(wz € S.1.IR), and thus we getz € (S.1./R — S.E).
Now let us composg. ; andSy. We find that(@wz < (S, || S%).IR), which is equal tqwz € Sg.IR).
Therefore(z € Sg.RE). Case 2 also says thd@t: ~ b at S, 1), indicating((x ~ b at Sg.E). By replacing
x with z, we finish the proof. [ ]
Lemma 4.26(—~Live(a) at Sg) A (a € S5.V)) = (By : (y € R.PS) A (y ~ a at R)).
Proof: Assume the lemma is wrong, which meafi% : (y € R.PS) A (y ~ a at R)) =
(Fw,z,y: (y~wat R)AN(wz ¢ Ss.E)N(x ~ aatSg)). Sincewz € Sg./R = ((x € Ss.RE)A(x ~ a
at Sg)) = Live(a) at Sg which contradicts the premise, we kn@w ¢ Ss.I R. According to Proposition
4.23,(3z : (z € Ss.IRUSs.PS)\(z ~ a at Ss)) = (Live(a) at Sg) which also contradicts the premise.
u
Lemma 4.27 Live(a) at Ss A |PathSet(P).IR| = 0) = (Live(a) at Sg).
Proof: Leta € S;;,.V without losing generality|PathSet(P).IR| = 0 implies that(PathSet(P) N
Ss1.IR) U (PathSet(P) N Ss2.IR) U ... U (PathSet(P) N Ss».IR) = 0. Consequentlydz : (z €
(Ss.PSUSs.RE)) A (x ~ a at Ss1).
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Fig. 13. This figure shows two different possible global actonfigurations wherél Sy, Sy, : Ss,1 —™ Sk Mg Se,1-

Case 1: Now consider the case that» o at S, ;.
Sub-case 1.1: Letr € Ss.PS), which implies(z € S, ;.PS) since(z ~ a at Ss ;).
Becauser € S.;.V, no migration operation is executed. Sirfeec S;;.P.S), we know
(x € S.1.PS) such that((z € (Sg.PSUSE.RE)) A (x ~ a at Sg)), implying Live(a)
at SE

Sub-case 1.2: Let € Sg.RE. This implies thatdzz : (zz € S;1.IR) A (ZT ¢ Ss;.F
wherem > i > 1). x € S.,.V implies thatsS; ; FaMI, Se1. Therefore,(x € S.1.V)

which also implies3zz : (zz € S.1.IR) A (zz ¢ S.;.E wherem > i > 1). Then
3zz : zx € Sg.IR. To concludedz : (z € Sg.IR) A (v ~ a at Sg), implying Live(a)
at Sg.

Case 2: Now consider the case that- a at S, ;. According to Lemma 4.14, eithédigrated(a, Ss 1, Se1)

. MI
which means3sS,,., Smp : Ssq —* Sima L S —* Se,1, OF
c.MI

3Sma, Smp, €0 : ((w ~> a @t Se 1) A (Cw € Se1. IR)N(Ss1 —* Sina — Smp —* Se.1)). Because
(c € Ss1.V), we know ¢ ¢ S, ;.V wherem > ¢ > 2), which also means that¢ S.;.V where
m>1i>2. (c¢ S.;.V wherem > i > 1) implies (Vd : cd ¢ Sei-E2 wherem >4 > 1). Since
cw € S,;. IR and(Vd : cd ¢ S.,.E wherem > i > 1), we getew € Si.IR which also means
w € Sg.RE. Therefore,(w € (Sg.PS U Sg.RE)) A (w~ a at Sg)), implying Live(a) at Sg.
[
Lemma 4.28Live(a) at S = (Live(a) at Sg) V (i : Migrated(a, Ss,i, Se;), m > 1> 1).
Proof: Leta € S;,.V without losing generality. LetPathSet(P).IR| = n.

Basis: The case af = 0 is proven by Lemma 4.27.

Induction step: For each > 0 assume the statement is true, and prove the casé: + 1.

Let pg be any inter-snapshot referencewof» a at Sg s.t. ((z ~ p at Ss)A (¢ € Ss1. V)N (Fj :p € S,V

wherem > j > 2)A (¢~ a at Ss;)). Consequently, the induction assumption indicates eithérive(p)

at Sp, OF 2) i, Spsss Smest : (Ssi —* Smsi 2o Spes —* Ses), m > i > 1 by Definition 4.8.

These cases are discussed as follows:
Case 1:(3f : (f € (Sg.PSUSE.RE))A\(f ~ p at Sg)). There are two sub-cases to deal with:
Sub-case 1.1: Lef ~ a at S, ;. This meansLive(a) at Sg.

Sub-case 1.2: Lej + a at S.;. By Lemma 4.25, we know

a.MI
. E|Sms,17 Sme,l : Ss,l —* Sms,l B Sme,l —* Se,ly or

o Live(a) at Sg.
p.MI

Case 2: Now consider thati, S,.s i, Sme,i : (Ssi =" Smsi — Smei = Sei), m > i > 1.
There are two sub-cases:

Sub-case 2.1: Assume~ a at S. ;. Let Sy, have transitted t&),,,; and S, ; have transitted to
Sms1 at timet,. Notice thatS,; —* S,,s; —* Se; andS; 1 —* Sps1 —* Se1.
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Sub-case 2.1.1: Assumg € S,,s1.IR. Sinceq € S, 1, we getpg € S.,.IR. Becausey € S;;.V
and no duplicate actor name is allowed (Lemma 4.20), we kfpo@ S, ;.V wherem > j > 1).
Consequentlyp ¢ S.;.V wherem > i > 1 because no mutation operation can add any new
actor name. Sincép ¢ S.,.V wherem > i > 1), we get(pg ¢ S.;.E whereVi:m >i>1).
Therefore,(q € Sg.RE N q~ a at Sg) = Live(a) at Sg.
Sub-case 2.1.2: Assunp@ ¢ S,,s1./R. According to Proposition 4.23, there are three cases to
consider as follows:
o Let (37’ : (’f’ c Sm&l.PS) A (m € Sms,l-E)) be true. If (HS,nm&l, Srme,l : Sm&l —*
Srms 1 LR Srms1 —* Se1) IS true, we can prove the statement by Lemma 4.25. Otherwise,
r.M1 has never been executed. Therefafe, € S.,1.PS) A (r ~ g~ a at S.)), which
implies Live(a) at Sg.
o« Let (El’f’, Sms,j : (’f’ € Sm&j.PS) AN (m € Sm&j.E) VAN (m € Sms,l-]R) WhereSmsJ' 7£ Sms,l)
be true. First assumes, s j, Srme,j @ Smsj —* Srms.j LN Srms; — Se,j. SINCETq €
Smsi- IR andq € Sy,51.V, we knowrg € S 1.1 R. BecausevS, yewj : 7 ¢ Senewj-V Where
m > newj > 1 and7q € S,,s1.1 R, we getrqg € Sg.IR. Therefore,(q € Sg.RE) A (¢~ a
at Sg), indicating Live(a) at Sg. Now consider the other case thafi// has never been
executed. We find thatr € Sg.PS) A (r ~ ¢~ a at Sg), implying Live(a) at Sg.
o Letdr: VS, (T4 € Sps1 IR)AN (TG ¢ Sisi-E) WhereS,,.; # Sy.s.1 be true, which implies
that(7qg € Sc1. IR)A\(VS.; : 7q ¢ S...E) whereS, ; # S. 1. Therefore(q € Sp.RE)\(q ~
a at Sg), implying Live(a) at Sg.
Sub-case 2.2: Leg ~ a at S.;. Sub-case 2.2 can be proven by reusing the proof of Lemma
4.27.
We conclude the statement is true by induction.
u
Lemma 4.29 Live(a) at Sg) V (3i : Migrated(a, Ss;, Se;), m > i > 1) = Live(a) at Ss.

Proof: The lemma can be proven by contradiction. Assurigve(a) at Ss wherea € Sg.V. By
Lemma 4.26, we getvy : (y € R.PS) A (y ~+ a at R)). Since local state logging corresponds to the
real world computing, Actot cannot execute any mutation operations, which meaise(a) at S and
thus contradicts the premise. [ |



