
RENSSELAER POLYTECHNIC INSTITUTE 1

A Non-blocking Snapshot Algorithm for Distributed
Garbage Collection of Mobile Active Objects

Wei-Jen Wang and Carlos A. Varela

Abstract

Distributed actor garbage collection differs from distributed object garbage collection in that it needs to consider
in-transit message detection, unordered message reception, and actor migration. In this paper, we propose a new
snapshot-based distributed actor garbage collection algorithm. The algorithm does not require First-In-First-Out or
blocking communication, nor message logging. Furthermore, actor migration is allowed while capturing global
snapshots and partial snapshots can be safely used to collect garbage, therefore not requiring comprehensive
cooperation among all computing nodes. These features makeit unique in the area of distributed garbage collection.
We formally prove the following safety and conditional liveness properties of the algorithm: 1) the garbage in a
global snapshot, created by composing several local snapshots, remains the same from the beginning to the end
of the global snapshot algorithm, and 2) garbage is eventually collected if the global garbage collection algorithm
is periodically activated and every blocked actor is alwayscaptured before a global garbage collection phase is
triggered.

Index Terms

D.4.7.b distributed systems, D.4.2.c garbage collection,D.3.4.f memory management, D.4.m miscellaneous,
distributed snapshot algorithms, actors, active objects,mobile objects.

I. INTRODUCTION

Automatic memory management, usually called garbage collection (GC), is a technique to reclaim
unreferenced memory space. It raises the level of programming by preventing programmers’ error-prone
manual memory space manipulations. The problem of garbage collection is to find the complement set
of transitively reachable objects from the root set, where the root set refers to the set of objects directly
available to access by threads of control. Garbage collection in a distributed environment is difficult —
no global clock, no centralized memory, inherent concurrency, and possible failures of computing nodes
and the network. These factors complicate detection of a consistent global state of a distributed system,
required for finding all distributed garbage.

A. Garbage Collection in Actor Systems

Recently, mobile active objects are becoming more and more important because of the uprising de-
velopment of grid and pervasive computing. A mobile active object can migrate to another computing
host, which enables runtime application reconfiguration. Runtime reconfiguration is important to improve
computing quality because the state of resources is always changing. For example, an active object can
migrate from a busy computing host to another idle host to achieve dynamic load balancing. Another
example is that an active object can migrate from a cell phoneto another computing host such as a laptop
in case of low battery.

The most widely adopted model for reasoning about active objects isthe actor model of computation
[1], [12]. An actor system is comprised of uniquely named, autonomous reactive active objects, namely
the actors. Communication of actors ispurely asynchronous, guaranteed, and fair— they always send
messages in anon-blockingmanner. Even though messages may arrive unordered, they areeventually
delivered. Furthermore, an actor can either send messages to its acquaintances, to whom it has explicit
references, or some predefined special actors such as the output service. An actor consists of an encap-
sulated thread of control, its internal state, and a messagebox to buffer incoming messages. An actor

RENSSELAER POLYTECHNIC INSTITUTE 2

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)

(3)

Message

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)
(3)

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)
(3)

(4)

Node 2

Node 1

Fig. 1. An actor is a reactive entity which communicates withothers by asynchronous messages in a non-blocking manner. In response to
an incoming message, it can use its thread of control to 1) modify its internal state, 2) send messages to other actors, 3) create actors, or 4)
migrate to another computing node.

is unblockedif it is processing a message or has messages in its message box; otherwise it isblocked
waiting for incoming messages. An actor buffers incoming messages in its message box, and its thread of
control keeps retrieving and processing them. In response to an incoming message, an actor can use its
thread of control to modify its encapsulated internal state, send messages to other actors, create actors,
or migrate to another computing node (see Figure 1).

The actor model of computation provides a natural semanticsfor distributed systems because it has
several preferable features: purely asynchronous communication (non-blocking and unordered commu-
nication), and state encapsulation with an internal thread. With these features, a distributed system can
be easily reconfigured at runtime — migration of an actor is aseasy as migration of its encapsulated
state and its message box, without worrying about state corruption. Comparing to the synchronousobject
method invocation model(or the Remote Procedure Call model), the actor model is more concurrent
because actors do not block for any return value. Additionally, state encapsulation facilitates dynamic
load balancing [10] by reallocating the actors during computation. Many programming languages have
partial or total support for actor semantics, such as SALSA [36], ABCL [44], THAL [17], and Erlang
[2]. Some libraries also support the actor model of computation, such as Actor Foundry [26] for Java,
Broadway [33] for C++, IOS for MPI library [11], and Actalk [6] for Smalltalk.

Distributed garbage collection has been developed for decades. However, literature foractive object
garbage collectionis scarce. The problem of actor garbage collection is different in nature from passive
object garbage collection. Actor computations must be ableto directly or indirectly provide results to a set
of predefined output devices, such as consoles, printers, file systems, or databases. Actors may also obtain
information from input devices, such as keyboards or sensors, to output results if they can communicate
with them. As a result, the input or output devices are represented by aroot set of actors. Actors that can
directly or indirectly communicate with the root set of actors are live. Figure 2 illustrates a key difference
between actor garbage collection and passive object garbage collection.

RENSSELAER POLYTECHNIC INSTITUTE 3

Blocked ActorRoot Actor Unblocked Actor Reference

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

1 2 3 4

5 6 7

Actor Reference Graph

Root Object Object Reference

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx1 2 3 4

5 6 7

Passive Object Reference Graph

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

8

9
xxxx
x
x
x
x
x
x
x
xxxx

8

9
xxxx
x
x
x
x
x
x
x
xxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

Live Actor
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

Live Object

Fig. 2. Actors3, 4, and8 are live because they can potentially send messages to the root. Objects3, 4, and8 are garbage because they
are not reachable from the root.

B. Snapshot Algorithm in Actor Garbage Collection

A snapshot algorithm executes in parallel with applications to obtain the configuration of a system, also
referred to as thesnapshot. In a distributed system, active entities, such as MPI processes and actors, can
send messages to affect each other, which means a snapshot algorithm must take care of both in-transit
messages and each local state of the system. A snapshot must be causally consistent, but different variations
of snapshot algorithms have different requirements of causal consistency. Actor garbage collection requires
that no live actors can be collected (safety), and garbage is eventually collected (liveness). Sometimes the
ability to collect garbage one chunk at a time (incrementality) is important when a system is large or it
needs interactivity. Snapshots are used in garbage collection [15], [28], [37], [38], as well as in many other
areas, such as distributed termination detection [24] and distributed checkpointing for execution rollback
[7], [30].

Snapshot-based algorithms greatly fit in the need of actor systems because they have less interference
with applications than blocking-based algorithms do. A snapshot-based actor garbage collection algorithm
first obtains a consistent global state, and then identifies garbage over the global state. Snapshot-based
algorithms can detect a causally consistent snapshot, which means each snapshot is causally independent
from each other. However, when a snapshot-based algorithm is applied to a mobile actor system, it encoun-
ters difficulties detecting in-transit actors because these actors are being transmitted over the network and
are therefore hard to detect. The end result is that global snapshots may be missing actors or may contain
duplicate actors; both views inconsistent with the global system state. In-transit messages cause three
additional difficulties to detect actor garbage in a distributed environment. Firstly, in-transit messages may
carry references that can affect the global state. Secondly, a reference to an actor can be deleted, while a
message to it is in transit because actor communication is non-blocking. This implies that there may exist a
blocked actor such that nobody knows about it but it is live. In other words, following references to detect
garbage is not reliable in actor systems. Thirdly, actors communicate with each other by asynchronous
and non-First-In-First-Out (non-FIFO) messages, which violates preconditions of most existing garbage
collection algorithms and snapshot algorithms. Using existing snapshot algorithms for distributed garbage
collection tends to be more restrictive — FIFO message delivery, blocking communication, huge space
for message and state logging, or a distributed clock must beused. Furthermore, they rely on completely
cooperative computing nodes to maintain safety of garbage collection.

Incrementality can be provided by using a non-blocking, non-FIFO actor reference listing algorithm
to figure out whether an actor is remotely referenced, eitherfrom in-transit actors or actors at remote
computing nodes. We have developed such an actor reference listing algorithm as part of thepseudo-root
approach[40], in order to help building a consistent partial snapshot for actor garbage collection.

The key to make our snapshot algorithm flexible is to utilize some features of garbage collection. Actor
garbage collection does not care about all the states that a system maintains. Its interest is the referential
relationship of actors, which can be represented by a conceptual actor reference graph. The most important
thing is that the snapshot does not need to be strictly causally consistent if an actor garbage collection
algorithm can guarantee liveness and correctness. The trick to achieve this goal is to use an alternative

RENSSELAER POLYTECHNIC INSTITUTE 4

approach to make an actor live, that is, the state of a root is equal to the state of an actor which is
referenced by a root. Starting from this idea, we introduce the pseudo-root approach, and then propose
a partial snapshot algorithm for actor garbage collection,a snapshot recording model to reason about
the behavior of the snapshot algorithm, and safety and liveness proofs for correctness of the snapshot
algorithm.

Our approach is unique and novel since it is purely asynchronous — non-blocking and non-First-
In-First-Out, which means that it preserves the nature of the actor model. Furthermore, it can support
hierarchical garbage collection [19] in a non-blocking manner even when some actors are migrating.

Outline of This Paper

The remainder of the paper is organized as follows: In Section II we give the definition of garbage
actors and the problem of the distributed snapshot for actorgarbage collection. In Section III we describe
the general idea of the snapshot algorithm and the pseudo-root approach. In Section IV we present a
computing model and proofs for the proposed snapshot algorithm. In Section V we discuss related work.
Section VI contains concluding remarks and future work.

II. PROBLEM DEFINITION

The section introduces the definition of actor garbage collection, the computing environment for mo-
bile actor systems, and the assumptions for the computing environments. We also address the causally
inconsistent snapshot problem caused by asynchronous message delivery.

A. Live Actor Definition

The definition of actor garbage comes from whether or not an actor can possibly perform meaningful
computations, which is defined as having the ability to communicate with any of pre-definedroot actors.
For example, an actor is considered live if it can possibly send messages to any output resource (i.e. a
printer) or public service (i.e. a web service). Kafura et. al. have provided a definition of live actors [16],
which is widely adopted in the literature. Conceptually, anactor is live if it is a root or it can either
potentially: 1) receive messages from the root actors or 2) send messages to the root actors. The set of
actor garbage is then defined as the complement set of live actors. To formally describe our new actor
GC model, we introduce the following definitions:

• Blocked actor: An actor isblockedif it has no pending messages in its message box, nor any message
being processed. Otherwise it isunblocked.

• Reference: A referenceindicates an address of an actor. Actora can only send messages to Actor
b if actor a has a reference pointing to Actorb. The reference froma to b is denoted asab.

• Inverse reference: An inverse referenceis a conceptual reference in the reverse direction of an
existing reference. It is used by a garbage collection mechanism to figure out whether an actor is
remotely referenced.

• Acquaintance: Let Actor a have a reference pointing to Actorb. Actor b is an acquaintanceof a,
anda is an inverse acquaintanceof b.

• Root actor: An actor is aroot actor if it encapsulates a resource, or if it is a public service — such
as I/O devices, web services, and databases.

The original definition of live actors is denotational. We adopted Dickman’s idea of potential live actors
[9] to re-define live actors, as follows:

• Potentially live actor:
– Every unblocked actor and root actor ispotentially live.
– Every acquaintance of a potentially live actor ispotentially live.

• Live actor:

RENSSELAER POLYTECHNIC INSTITUTE 5

a

b

c

d

e f

g

M3

M1

NODE 1 NODE 2 NODE 3

In-Transit In-Transit

Abstract
System

Computing
Environment

Blocked
Actor

Unblocked
Actor

Reference
Deleted

Reference
Computing

Node
Message

M2

Fig. 3. This figure shows an example of a mobile actor system. Computing nodes1, 2, and3 are connected. Actorb is migrating; Actors
a, c, ande are blocked; Actorsd, f , g are unblocked. MessagesM1 andM2 are in transit but their respective referencesab andac have
been deleted; notice that referencesab andac had to exist beforeM1 andM2 were sent. MessageM3 with a reference to actorf is sent
towards Actord.

– A root actor islive.
– Every acquaintance of a live actor islive.
– Every potentially live, inverse acquaintance of a live actor is live.

B. The Distributed Mobile Actor Garbage Collection Problem

The problem of mobile actor garbage collection is related tohow a distributed mobile actor system
performs computing tasks. We assume that the grid or pervasive computing environment consists of
computing nodes which provide CPU time and memory space for computations, while there is no specific
topology assumption for how the nodes are connected. Liveness of the algorithm might be affected
by permanent node failures, but safety is guaranteed even though some computing nodes may become
uncooperative temporarily. Applications, composed of mobile actors, are running on the computing nodes.
Mobile actor garbage collection in such computing environments can be viewed as follows:Given a mobile
actor system, identify actor garbage at some time point overa subset of the computing nodes. We assume
that local snapshots at single computing nodes are given andare consistent with the state at that node
at the beginning of the global snapshot algorithm. We also make the assumption that every actor has a
reference to itself.

Mutation operationsare performed by actors to change the conceptual actor reference graph over the
subset of nodes in consideration. They consist of 1) actor creation, 2) references passing/reception, 3)
reference deletion, 4) migration, and 5) actor state transition from unblocked to blocked and vice versa.
Because actor communication is asynchronous, mutation operations can occur out of order. For instance,
an actor can send out a message and then remove the reference to the message target before the message
is received. Furthermore, a migrating actor is temporarilydifficult to detect because it is in transit. Figure
3 illustrates a mobile actor computing environment.

C. Live Unblocked Actor Principle

A practical actor-oriented programming language should provide the ability to access resources, or to
communicate with predefined public services. An important assumption we make is that every actor has
access rights to the root set. Without program analysis techniques, we must assume that every actor has
persistent references to the root set. This precondition leads to thelive unblocked actor principle, which
says that every unblocked actor is live. The live unblocked actor principle is easy to prove. Since each

RENSSELAER POLYTECHNIC INSTITUTE 6

a

b

t1

t2

ta

tb

a

b

t1

t2

ta

tb

Early MessageLate Message

Fig. 4. Time lines to illustrate late and early messages. At the left side, Actora sends a message to Actorb at t1 and then its state is
recorded atta; the state of Actorb is recorded attb and then it receives the message att2. At the right side, the state of Actora is recorded
at ta and then it sends a message to Actorb at t1; Actor b receives it att2 and then its state is recorded attb.

unblocked actor is: 1) an inverse acquaintance of the root actors and 2) defined as potentially live, it is live
according to the live actor definition. The live unblocked actor principle makes actor garbage collection
very similar to passive object garbage collection because every unblocked actor can be treated as a root
actor directly without changing the meaning of actor garbage. With the live unblocked actor principle,
every unblocked actor can be viewed as a root. Therefore, every potentially live actor is live because
they can possibly receive messages from unblocked actors and then send messages to the root actors.
This idea leads to the core concept ofpseudo-root actor garbage collection[40], which is introduced in
Sub-Section III-C. The pseudo-root approach can support incremental actor garbage collection (a chunk
of garbage at a time) and handle temporarily uncooperative actors and computing nodes. We assume that
actors migrate in response to a message requesting migration. Therefore, migrating actors are unblocked,
and by the live unblocked actor principle are also live.

D. Causally Consistent Snapshot

A snapshot algorithm must guarantee the causal consistencyof the obtained snapshot. The problem of
causal consistency can be expressed by the order of message sending, message reception, and local state
logging. Let Actora send an application message at timet1 to a remote actorb, and Actorb receive the
message at timet2. Let ta and tb be the time points when a snapshot is taken fora and b respectively.
Note thatt2 > t1 is always true because of the causal relationship of messagesending. There are two
kinds of inconsistent snapshots caused by different ordersof message delivery (refer to Figure 4):

• Late message (in-flight message): If (t1 < ta) ∧ (tb < t2), the message is said to belate. A late
message does not affect causal consistency because it is irrelevant to the recorded state of Actorb.
It is only important to a system which needs to replay messages right after a global snapshot (i.e.
system rollback upon failures).

• Early message (inconsistent message): If (ta < t1) ∧ (t2 < tb), the message is said to beearly. It
is causally inconsistent because a message produced by a future unrecorded state of Actora, affects
the recorded state of Actorb.

Mobile actor garbage collection must solve the early message problem. A snapshot-based algorithm is
both safe and live if either the snapshot does not contain early messages, or early messages do not affect
safety and liveness.

III. N ON-BLOCKING SNAPSHOT ALGORITHM AND PSEUDO-ROOT APPROACH

Given a non-blocking, non-FIFO reference listing algorithm such as thepseudo-root approach[40],
many actor garbage collection problems can be simplified:

1) In-transit messages and in-transit references are represented as part of the actor reference graph to
guarantee safety and liveness. For instance, a message fromActor a to Actor b is represented as a
reference from Live actora to Actor b, and the relationship is detectable in Actora.

RENSSELAER POLYTECHNIC INSTITUTE 7

2) Remotely referenced actors can be identified by using inverse references.
3) Actor garbage collection does not stop applications.
Unfortunately, such a reference listing algorithm cannot identify distributed mutually referenced actor

garbage (distributed cycles). We propose a snapshot algorithm for distributed actor garbage collection
to solve this problem. The fundamental idea is to put a partial collection of actors into a snapshot (the
local actor reference graph) at each computing node, and then to keep watching the collection until the
snapshot algorithm terminates. The snapshot may mutate whenever any actor belonging to the snapshot
mutates. No new garbage is created in the snapshot by mutation operations, but applications do create
new garbage which will only be detected at the next actor garbage collection phase. To generalize in one
sentence, the goal of the snapshot algorithm is to maintain asuperset actor reference graphG1 of the real
actor reference graphG2 at the time that the snapshot algorithm begins, wherethe set of pseudo-roots
of G1 is a superset of that ofG2 and the set of references ofG1 is also a superset of that ofG2. The
proposed snapshot algorithm is obviously safe because the set of garbage ofG1 is a subset of that of
G2, but it producesfloating garbage. Floating garbage refers to actors which become garbage during
a garbage collection phase, but cannot be detected in that phase. Any garbage collector that uses this
approach cannot detect floating garbage ofG1, but it can detect the floating garbage in the next garbage
collection cycle because garbage cannot become live any longer.

The non-blocking snapshot algorithm consists of two parts:local state logging and global synchro-
nization. Local state logging is performed by local garbagecollectors. A global agent is assigned to
initialize and to terminate the snapshot, where two global synchronizations are enough for a causally
consistent global snapshot — one to trigger local state logging and the other one to terminate local
state logging. Unlike other distributed snapshot-based algorithms, our algorithm does not require message
logging. Instead, monitoring mutation operations is enough.

A. Local State Logging

Local state logging is triggered by a global synchronization agent, which requests the local garbage
collector to form a closed group of actors and then starts to monitor mutation operations on that closed
group. Newly created actors are automatically excluded from the closed group; migrating or migrated
actors are segregated by the local snapshot procedure. Reference deletion is not logged because we want
to ensure a live actor remains live by following the originalpath from the beginning to the end of
the local state logging. The state logging procedure for local snapshot has to ensure that: 1) deleted
references, including inverse references, are logged in the local snapshot, 2) migrating or migrated actors
are segregated dynamically from the closed group and their acquaintances become remotely referenced.
Figure 5 shows an example of how the local state logging works. The local state logging algorithm
is modeled as a special actor which responds to a global garbage collection request from the global
synchronization agent. Note that it does not stop any mutation operations, including migration.

B. Global Snapshot Synchronization

The global synchronization agent is devised to coordinate ameaningful global snapshot among several
computing nodes. Since each computing node logs local stateindependently, some kind of global syn-
chronization must be used to ensure that no early messages ormigrating actors can be received before
the state logging starts. This goal can be achieved by enforcing the participating local snapshots to have
a common overlapping time range during local state logging.An overlapping time range also ensures
that no actor can appear more than once at the participating local snapshots with the help of local state
logging. Let the common overlapping time range start at timet1 and finish later to become available for
global snapshot merging. It is obvious that the set of garbage at each local snapshot is fixed aftert1.
Our algorithm also guarantees that the set of global garbagein the global snapshot, combined by the
participating local snapshots, is fixed aftert1. To prevent some kind of temporary failures from stopping
global garbage collection, the synchronization agent can use a time-out to keep the global snapshot going.
The pseudo-code is shown in Figure III-B and 6.

RENSSELAER POLYTECHNIC INSTITUTE 8

c

a b

Initial State
Actor a

Becomes Unblocked

Blocked
Actor

Unblocked
Actor

Reference Inverse
Reference

Reference a to b
Is Deleted

Actor a
Migrates Away

c

a b

c

a b

c a

b

c

a b

c

a b

c

a b

a

b

REAL
STATE

SNAPSHOT

Snapshot
Region

Fig. 5. This figure shows an example of local state logging. The upper part demonstrates the actor reference graph in the real world,
while the lower part illustrates how local state logging works. At the beginning of local state logging, Actora is referenced by Actorc;
Actor b is referenced by Actora. Actor a and Actorb are put in a closed group for state logging. At the second stage, Actor a becomes
unblocked to execute something, and the snapshot should detect the event. At the third stage, Actora deletes Referenceab. Although Actor
b becomes garbage at this stage, it is live in the local snapshot because it is reachable from a pseudo-root (unblocked) actor, Actor a. At the
last stage, Actora migrates away, and the local snapshot should reflect the factthat Actora is missing. Meanwhile, all its acquaintances
should become remotely referenced because the local snapshot must not produce new garbage. At this stage, no actor in thelocal snapshot
is garbage. Actora is not garbage either because it does not belong to the closedgroup.

�
Algor i thm d i s t r i b u t e d s n a p s h o t

1 . c r e a t e a un ique t a s k number T
2 . f o r each comput ing node Xdo
3 . a s y n c h r o n o us l y e x e c u t e l o c a lm o n i t o r (T)
4 . / / each may r e p l y YES or NO
5 . wa i t u n t i l
6 . 1) eve ry comput ing node has r e p l i e d ,or 2) t i m e o u t
7 . f o r each comput ing node X which r e p l i e s YESdo
8 . a s y n c h r o n o us l y e x e c u t e l o c a ls n a p s h o t (T)
9 . / / each may r e p l y OK or FAILED

10 . wa i t u n t i l
11 . 1) a l l comput ing nodes have r e p l i e d OK,or 2) t i m e o u t

� �

Fig. 6. The distributed snapshot algorithm. A meaningful global snapshot consists of the local snapshots of the computing nodes that reply
’OK’.

C. The Pseudo-Root Approach

Actor garbage collection is difficult even in a single computing node. For instance, incremental garbage
collection under non-blocking and non-FIFO communicationhad not been solved until recently. Our
previous research, the pseudo-root approach [40], provides a feasible solution for this problem. With the
pseudo-root approach, the proposed snapshot-based actor garbage collection algorithm can be performed
in a non-blocking manner — that is, garbage collection does not stop the mutation operations of the
application.

The pseudo-root approach, which is based on the live unblocked actor principle, makes actor garbage
collection similar to passive object garbage collection. Actor garbage collection starts by identifying some
live (not necessarily root) or even garbage actors as pseudo-roots. There are four types of pseudo-root
actors: 1) root actors (persistent services), 2) unblockedactors, 3)sender pseudo-root actors, and 4)global
pseudo-root actors. The second kind of pseudo-root actor is live according to the live unblocked actor
principle (see Subsection II-C). The last two types of pseudo-root actors will be explained in the following
paragraphs.

RENSSELAER POLYTECHNIC INSTITUTE 9

�
/ / Loca l Snapsho t Ac to r :
1 . Work ing L i s t L ← EMPTY
2 . G r o u p o f A c t o r s P← EMPTY
3 . S n a p s h o tT a b l e ST← EMPTY

Procedure l o c a l m o n i t o r (Task T)
1 . i f l o c a l h o s t s t a t u s = C a n n o tt a k e a s n a p s h o t then
2 . r e p l y NO
3 . e l s e
4 . L . pushTask (T)
5 . i f s i z e (L) = 1 then
6 . o b t a i n a c l o s e d groupo f a c t o r s P
7 . f o r each a c t o r A i n P
8 . i f A = NULL then
9 . remove A from P / / A has mig ra ted away

10 . e l s e
11 . enab le s t a t e l o g g i n g o f A
12 . r e p l y YES

Procedure l o c a l s n a p s h o t (Task T)
1 . i f L . f i n d (T) = FALSE then
2 . r e p l y FAILED
3 . e l s e
4 . Snapsho t S← empty
5 . f o r each a c t o r A i n P do
6 . S . r e c o r d A c t o r (A)
7 . f o r each a c t o r A i n P do
8 . s top s t a t e l o g g i n g o f A
9 . / / save S i n t o t h e snapsho t t a b l e ST by

10 . / / d e n o t i n g t h e work ing l i s t L on i t (L ine 11)
11 . ST . add (L , S)
12 . L . c l e a r ()
13 . r e p l y OK

� �

Fig. 7. The local snapshot actor.

Pseudo-root actors can be treated as roots directly, serving as the starting points of Depth-First-Search
or Breadth-First-Search (a trace-based algorithm) to transitively mark live actors. A trace-based garbage
collection algorithm works perfectly in a synchronous system with method invocations (or procedure
calls). However, it causes problems on a system with non-blocking message passing. In a non-blocking
communication environment, an actor can send a message by using a reference, and immediately delete
the reference before the message has been received. A trace-based algorithm may mistake a live actor for
garbage in such scenario. A similar problem can happen whilean actor is passing a message to another
actor and the message contains a reference. The actor referenced by an in-transit message may not be
marked live by a trace-based algorithm in such case.

We introduce the idea of sender pseudo-roots to prevent erroneous garbage collection of actors in an
asynchronous communication environment: either targets of in-transit messages or actors whose references
are part of in-transit messages. A sender pseudo-root always contains at least oneprotected reference—
a reference that has been used to deliver messages which are currently in transit, or a reference to
represent an actor referenced by an in-transit message — which we call anin-transit reference. Both
cases are illustrated in Figure 8. Deletion of a protected reference makes the reference unavailable for
the application, but still visible to the garbage collection mechanism. A protected reference can only be
physically deleted when the message sender knows the in-transit message has been received correctly.

RENSSELAER POLYTECHNIC INSTITUTE 10

Case 1

Blocked Actor Pseudo Root
Actor

Message

B

A

B

A

C

Case 2

In-transit
Reference

Protected
Reference

Fig. 8. Sender pseudo-root actors for in-transit messages and in-transit references.

Global pseudo-root actors consist of remotely referenced actors and potentially live actors with outgoing
references to remote actors. They are live because they can possibly send a message to a root actor. With
the live unblocked actor principle, the second case can be ignored since every potentially live actor is live.
To identify remotely referenced actors, each actor can maintain inverse references to figure out its inverse
acquaintances. Notice that the inverse references are not visible to applications. Unfortunately, precisely
identifying remote inverse acquaintances in a non-blocking way is impossible. An alternative approach
must be used — we must guarantee that remotely referenced actors either have an inverse reference to
any remote actor, or are transitively reachable from some local pseudo-root actors (including itself).

To guarantee the existence of an inverse reference to a remote actor or reachability from a local pseudo-
root, we only need to consider and constrain three kinds of mutation operations: actor creation, reference
deletion, and reference passing:1

• Actor creation: We restrict actors to always be created locally. When an actor is created, the created
actor atomically and automatically gets an inverse reference to the creator. In other words, precise
inverse references are preserved after actor creation. Remote actor creation can be modeled by local
creation followed by migration.

• Reference deletion: To ensure liveness of the pseudo-root approach, referencedeletion must be
handled carefully. An inverse reference should be deleted if its corresponding reference has been
deleted. Furthermore, if a protected reference is deleted by the application, the reference should be
preserved by the garbage collection system but should no longer be available to the application.

• Reference passing: We have designed a protocol to support reference passing under non-blocking,
non-FIFO communication (see Figure 9). Unlike actor creation, reference passing may create asym-
metric pairs of references and inverse references. The protocol combines the idea of sender pseudo-
roots and inverse reference registration to ensure that theactor whose reference is being passed is
referred to by a pseudo-root which appears in the actor’s inverse reference list. This guarantees the
actor will not be erroneously collected during reference passing.

IV. COMPUTING MODEL AND SNAPSHOT ALGORITHM PROPERTIES

In this section, we define the model of local state logging, and then use the reachability relationship
to prove safety and liveness of local garbage collection based on the local snapshot. We then formalize
snapshot composition, and provide safety and liveness proofs for snapshot composition. Proofs of lemmas
can be found in the Appendix.

1Migration is not considered because we treat migrating actors as live actors and migration does not affect the existenceof inverse
references.

RENSSELAER POLYTECHNIC INSTITUTE 11

2: Reference
 passing

Actor a

Actor bActor c

1: Mark Actor a live and protect
Reference ab and ac

3.2: Inverse reference
registration

4.2: Resume Actor a
and Reference
ac

3.1: Ack Actor a to resume
 Reference ab and
 protect bc

4.1: Ack Actor b to resume
 Reference bc

Message
Sending

Fig. 9. This figure illustrates the protocol of reference passing, in which each state is triggered by asynchronous messages. Let Actora
send a message to Actorb and the message contain a reference pointing to Actorc. At the beginning, Actora becomes a sender pseudo-root
and protects Referenceab andac from deletion, and then sends the message to Actorb. When Actorb receives the message, it 1) gets the
reference pointing to Actorc, 2) sends an asynchronous acknowledgement to Actora to change the protected referenceab from protected
to unprotected, 3) protects Referencebc from deletion to prevent the race between inverse referenceregistration and deletion messages, and
then 4) sends an inverse reference registration message to Actor c. Upon receiving the inverse reference registration message, Actorc knows
that it is referenced by Actorb, and then it sends two asynchronous acknowledgements — one to Actor a to change Referenceac from
protected to unprotected, and the other one to Actorb to change the protected referencebc as well. Note that whenever Actorb has the
reference pointing to Actorc, it can use it immediately. This protocol is non-blocking because no actor is waiting for any other actors; it is
non-FIFO because we do not assume any message reception order.

A. Computing Model

Reachability from an actor to another actor is important forgarbage collection, defined as follows:
Definition 4.1: Transitive reachability

Actor b is transitively reachable from Actora, denoted by
a ; b,

if and only if a = b ∨ (∃c : ac ∧ c ; b). Otherwise, we saya Y; b.
The transitive reachability relationship isasymmetric(a ; b < b ; a), reflective (a ; a), and

transitive ((a ; b) ∧ (b ; c)⇒ (a ; c)).
Definition 4.2: Actor configuration (snapshot).

An actor configuration (snapshot),

S = 〈V, E, PS, IR〉,
is a 4-tuple where

• V is a set of actor names.
• E is a set of references.E = {xy | x ∈ V ∧ xy is a reference.}
• PS is a set of pseudo-roots, excluding global pseudo-roots.PS ⊆ V .
• IR is a set of inverse references pointing to external actors.IR = {xy | y ∈ V ∧ x /∈ V }.
Definition 4.3: Receptionists, actor references, local actor references, and external inverse references.

Let S be an actor configuration and Actora ∈ S.V . Then we define the set of receptionists (remotely
referenced actors)S.RE, actor referencesa.ref , local actor referencesa.lref , and external inverse
referencesa.xir.

• S.RE = {y | xy ∈ S.IR}.
• a.ref = {ay | ay ∈ S.E}.
• a.lref = {ay | ay ∈ S.E ∧ y ∈ S.V }.
• a.xir = {xa | xa ∈ S.IR}.
Definition 4.4: Transitive relationship (mutation operation) on actor configurations.

Let S be an actor configuration (snapshot) and Actora ∈ S.V . Then,→ is defined as follows:
• a.MI: Actor migration.
〈V, E, PS, IR〉

a.MI
−−−→ 〈V − {a}, E − a.ref, PS − {a}, IR ∪ a.lref − a.xir〉.

RENSSELAER POLYTECHNIC INSTITUTE 12

• a.CR(b): Reference creation.

〈V, E, PS, IR〉
a.CR(b)
−−−−→ 〈V, E ∪ {ab}, PS, IR〉.

• a.CA(b): Actor creation.

〈V, E, PS, IR〉
a.CA(b)
−−−−→ 〈V, E ∪ {ab}, PS, IR〉.

• a.MR: Message reception.
〈V, E, PS, IR〉

a.MR
−−−→ 〈V, E, PS ∪ {a}, IR〉.

• a.IRR(b): Inverse reference registration.

〈V, E, PS, IR〉
a.IRR(b)
−−−−−→ 〈V, E, PS, IR ∪ {ba}〉.

To concisely describe relationships of actors under mutation operations in snapshots, we introduce the
following definitions:

Definition 4.5: Transitive state transition.
Let S1 andS2 be actor configurations.

S1 →
∗ S2 ⇐⇒ (S1 = S2) ∨ (∃Sx : (S1 −→ Sx) ∧ (Sx →

∗ S2)).
Definition 4.6: Constrained reachability at actor configurations

Let a andb be actor names, andS be an actor configuration.

a ; b at S ⇐⇒ ((a = b) ∧ (a ∈ S.V)) ∨

(∃x : (ax ∈ a.lref) ∧ (x ; b at S)).

Otherwise, we saya Y; b at S.
Definition 4.7: Constrained live actors at actor configurations.

Let a be an actor name, andS be an actor configuration.

Live(a) at S ⇐⇒ (∃x : (x ∈ S.PS ∪ S.RE) ∧ (x ; a at S)).

Otherwise, we say¬Live(a) at S.
Definition 4.8: Migration during snapshot state transition.

Let a be an actor name. LetSs →
∗ Se.

Migrated(a, Ss, Se)⇐⇒ ∃Si, Sj : Ss →
∗ Si

a.MI
−−−→ Sj →

∗ Se.

Otherwise, we say¬Migrated(a, Ss, Se).
The snapshot mutation operations correspond to real-worldcomputations but have a different effect.

Therefore, they are restricted by the actor model — only liveactors can become unblocked; only unblocked
and root actors can compute; only live actors can become referenced. We formalize these restrictions using
the following propositions, whereSs andSe are actor configurations:

Proposition 4.9: Initial state of MI operation.
Ss

a.MI
−−−→ Se =⇒ (a ∈ Ss.PS).

Proposition 4.10: Initial state of CR operation.

Ss

a.CR(b)
−−−−→ Se =⇒ ((a ∈ Ss.PS) ∧ (Live(b) at Ss)).

Proposition 4.11: Initial state of CA operation.

Ss

a.CA(b)
−−−−→ Se =⇒ ((a ∈ Ss.PS) ∧ (b /∈ Ss.V)).

Proposition 4.12: Initial state of MR operation.
Ss

a.MR
−−−→ Se =⇒ (Live(a) at Ss).

Proposition 4.13: Initial state of IRR operation.

Ss

a.IRR(b)
−−−−−→ Se =⇒ ((Live(a) at Ss) ∧ (b /∈ Ss.V)).

RENSSELAER POLYTECHNIC INSTITUTE 13

B. Local State Logging Properties

A local actor configuration never produces new garbage as thestate mutates. The reason is the model
does not delete references nor makes any actor blocked, except for actor migration. A migration operation
breaks references and actors from the actor configuration. Meanwhile, it makes some actors referenced by
an external actor, the migrating actor. We will prove that the local state logging model is correct. That is,
we show that a migration operation does not affect reachability of actors from pseudo-roots, as formalized
in Lemma 4.14. Therefore, migration does not add new garbagein the local snapshot.

Two actor configurations are used in the following lemmas andtheorems, whereSs is the initial
configuration,Se is the final configuration of the local snapshot, andSs →

∗ Se. We will use Ss and
Se directly without re-defining them again.

Lemma 4.14: Alternative guaranteed reachability for statetransition.
(a ; b at Ss) ∧ (a Y; b at Se) =⇒
(Migrated(b, Ss, Se)) ∨ (∃yx : ((x ; b at Se) ∧ (yx ∈ Se.IR) ∧ (Migrated(y, Ss, Se)))).

With Lemma 4.14, we now prove that the set of garbage is stablein the actor configuration during
local state logging, as shown in Theorem 4.18. Theorem 4.18 directly turns into Corollary 4.19, which
guarantees a stable set of local garbage during local state logging.

Lemma 4.15:Live(a) at Se =⇒ Live(a) at Ss.
Lemma 4.16:Migrated(a, Ss, Se) =⇒ Live(a) at Ss.
Lemma 4.17:Live(a) at Ss =⇒ ((Live(a) at Se) ∨ Migrated(a, Ss, Se)).
Theorem 4.18: Coherent live actors in a local snapshot.

Live(a) at Ss ⇐⇒ (Live(a) at Se) ∨ (Migrated(a, Ss, Se)).
Proof: The proof is trivial by Lemma 4.15, 4.16, and 4.17.

Now, we can prove safety of local snapshot-based actor garbage collection. An actor is live at the
beginning of local state logging if and only if it is live at the end or it has migrated.

Corollary 4.19: The stable property of the set of garbage actors of a local snapshot.
¬Live(a) at Ss ⇐⇒ (¬Live(a) at Se) ∧ (¬Migrated(a, Ss, Se)).

Proof: The proof is trivial by Theorem 4.18.

C. Global Snapshot Algorithm Properties

Independent local state logging cannot reclaim global cyclic garbage. A coordinated action of local state
logging is required to guarantee a causally consistent global snapshot. Let us assume that there are lots of
computing nodes participating in a global snapshot activity. Figure 10 explains how global synchronization
works. Now consider the synchronization pseudo-code in Figure 6. Letts be the time the last computing
node repliesYES (line 6), andte the time the last computing node finisheslocal snapshot (line 11).
When a computing node finishes alocal snapshot, the local actor configuration should remain the
same. LetSs,i be the actor configuration of the local group of the computingnode i at time tx, where
ts ≤ tx ≤ te. Let Se,i be the local actor configuration at timete. Local actor configurations atte can
be obtained easily for garbage collectors because they never change again, while configurations attx are
only used for proofs because they are volatile. Note thatSs,i →

∗ Se,i.
With the restriction of global synchronization, the algorithm guarantees that no actor can appear more

than once among the participating local actor configurations.
Lemma 4.20: No actor appears more than once among coordinated local actor configurations.

Let S1, S2, ..., Sm be coordinated local actor configurations.
∀i, j : (Si.V ∩ Sj .V = ∅) where(i 6= j) ∧ (m ≥ i, j ≥ 1).

A global snapshot is composed of several different local snapshots. We introduce thereal-world actor
configurationto represent the computing state, and thesnapshot-composition operationto compose local
snapshots by identifying some local outgoing inverse references as global internal inverse references.

Definition 4.21: Real-world actor configuration.
A real-world actor configuration,

RENSSELAER POLYTECHNIC INSTITUTE 14

Global
Synchronization

Local
Snapshot 1

Local
Snapshot i

Request
Monitoring

YESYES

Local
Snapshot

OK

OK

x

t

Unsafe

Stable
Snapshot

(Ss,i)

s

e (Se,i)

t

t

Fig. 10. Different phases of global synchronization.

Ss,1{ , Ss,2 , ... Ss,m,}

Mutation
Operations

Se,1{ , Se,2, ... Se,m,}

S
Snapshot-

Composition
Operation

S

Ts Tx Te
time

S E

Snapshot-
Composition

Operation

Fig. 11. This figure shows the relationship of mutation operations, snapshots, and the snapshot-composition operation. There are two actor
configuration sets in the figure — one is{Ss,i |m ≥ i ≥ 1} at time tx, and the other is{Se,i |m ≥ i ≥ 1} at timete, whereSs,i →

∗ Se,i

and tx and te are defined in Figure 10 as time points.SS = (Ss,1 ‖ Ss,2 ‖ ... ‖ Ss,m), andSE = (Se,1 ‖ Se,2 ‖ ... ‖ Se,m).

R = 〈V, E, PS, ∅〉,
is a special 4-tuple actor configuration which always represents the current state of the real world
computations.

Definition 4.22: Binary snapshot-composition operation.
Let Sx = 〈Vx, Ex, PSx, IRx〉 andSy = 〈Vy, Ey, PSy, IRy〉. Then

Sx ‖ Sy = 〈Vx ∪ Vy, Ex ∪ Ey, PSx ∪ PSy, (IRx −Ey) ∪ (IRy − Ex)〉,
whereVx ∩ Vy = ∅.

The composition operation on actor configurations isclosed (∀Si, Sj : Si ‖ Sj is also an actor
configuration),commutative(Si ‖ Sj = Sj ‖ Si), andassociative((Si ‖ Sj) ‖ Sk = Si ‖ (Sj ‖ Sk)). The
relationship of mutation operations, local snapshots, andthe snapshot-composition operation are shown in
Figure 11. Notice thatSS does not directly transit toSE, and only the set{Se,i |n ≥ i ≥ 1} is observable.

The snapshot-composition operation can possibly identifynew garbage which cannot be detected in
each member of a snapshot set independently. However, the non-blocking, non-FIFO reference listing
algorithm, such as the pseudo-root approach, has to guarantee Proposition 4.23 to solve inconsistency
of two actor configurations — one has a reference to the other one and the other one does not have
a corresponding inverse reference. Then we prove that garbage in the global snapshot remains stable
(safety).

Proposition 4.23: Consistency guarantee of remote references and inverse references.
Let a andb be actor names,S andS1 ... Sm be coordinated actor configurations, andR be the real-world
actor configuration, then

(a ∈ R.V) ∧ (b ∈ S.V) ∧ (ab ∈ R.E) ∧ (ab /∈ S.IR) =⇒

RENSSELAER POLYTECHNIC INSTITUTE 15

(∃r : (r ∈ S.PS) ∧ (rb ∈ S.E)) ∨
(∃r, Si : (r ∈ Si.PS) ∧ (rb ∈ Si.E) ∧ (rb ∈ S.IR) wherem ≥ i ≥ 1) ∨

(∃r : ((rb ∈ S.IR) ∧ (∀Si : rb /∈ Si.E) wherem ≥ i ≥ 1)).
The following lemmas and theorems require the concept ofconstrained pathsto describe the relationship

of actor reachability in a snapshot. We define them as follows:
Definition 4.24: Constrained path and its reference set.

Given S = 〈V, E, PS, IR〉, we define a constrained pathP of a1 ; an at S,
P = a1a2...an at S

if and only if ∀i : aiai+1 ∈ S.E wheren > i ≥ 1, and we define the reference set ofP as
PathSet(P) =

⋃n−1
i=1 {aiai+1}.

To avoid redundant description in the following proofs, we define some variables as follows and then
use them directly: LetR be the real-world actor configuration. LetSs,1, Ss,2, ..., andSs,m be coordinated
local snapshots. LetSS = (Ss,1 ‖ Ss,2 ‖ ... ‖ Ss,m) andSE = (Se,1 ‖ Se,2 ‖ ... ‖ Se,m), whereSs,i →

∗ Se,i,
m ≥ i ≥ 1. Let P be a path ofx ; a at SS s.t. PathSet(P) contains the maximal inter-snapshot
references of all paths ofx ; a at SS. Let the reference set bePathSet(P).IR. That is, the size of
PathSet(P).IR, {cd | cd ∈ PathSet(P) ∧ (∃i : cd ∈ Ss,i.IR wherem ≥ i ≥ 1)}, is maximal.

Lemma 4.25: Actors which were reachable from a migrated actor at a local snapshot are reachable
from some global pseudo-root at the merged global snapshot.
(a ; b at Ss,1) ∧ (a Y; b at Se,1) =⇒
Migrated(b, Ss,1, Se,1) ∨ (∃z : (z ∈ SE.RE) ∧ (z ; b at SE)).

Lemma 4.26:((¬Live(a) at SS) ∧ (a ∈ SS.V)) =⇒ (∄y : (y ∈ R.PS) ∧ (y ; a at R)).
Lemma 4.27:(Live(a) at SS ∧ |PathSet(P).IR| = 0) =⇒ (Live(a) at SE).
Lemma 4.28:Live(a) at SS =⇒ (Live(a) at SE) ∨ (∃i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1).
Lemma 4.29:(Live(a) at SE) ∨ (∃i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1) =⇒ Live(a) at SS.
Theorem 4.30: Coherent live actors in a global merged actor configuration.

Live(a) at SS ⇐⇒ (Live(a) at SE)∨ (∃i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1).
Proof: The proof is trivial by Lemma 4.28 and 4.29.

Corollary 4.31: The stable property of the set of garbage actors in a global partial snapshot.
¬Live(a) at SS ⇐⇒ ((¬Live(a) at SE)∧ (∄i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1).

Proof: This follows trivially from Theorem 4.30.

D. Liveness

The liveness proof of our snapshot model utilizes the property of stable garbage during state logging.
If a garbage collector is periodically activated and all non-pseudo-root actors are selected, garbage is
eventually collected.

Theorem 4.32: Conditional liveness of local garbage collection.
Let each local garbage collector be periodically activated, and use the local snapshot for actor garbage
collection. If every non-pseudo-root actor is always selected, all local garbage is eventually identified by
trace-based algorithms (DFS or BFS).

Proof: Since the set of local garbage actors is a subset of the local non-pseudo-root actors, all
garbage actors are selected into the snapshot for garbage collection. According to Corollary 4.19, all
garbage in this cycle can be identified and reclaimed in this cycle of garbage collection. The floating
garbage produced during the current cycle can be identified at the next cycle because garbage actors
cannot execute mutation operations, which means garbage iseventually identified.

A global garbage collector can use a distributed tracing algorithm to identify global garbage, including
distributed cycles. Liveness of global garbage collectionbased on the snapshot algorithm can be proven
in a similar manner of Theorem 4.32, and thus we skip the proof.

Theorem 4.33: Conditional liveness of distributed garbagecollection that uses the snapshot algorithm.
Let the global garbage collection mechanism be periodically activated, and use the proposed snapshot

RENSSELAER POLYTECHNIC INSTITUTE 16

algorithm for distributed actor garbage collection. If every non-pseudo-root actor is always selected for
snapshot, all garbage is eventually identified by distributed trace-based algorithms (DFS or BFS).

V. RELATED WORK

The most well known snapshot-based garbage collection algorithm is proposed by Yuasa [45] as part
of the Kyoto Lisp concurrent programming language, designed for passive object garbage collection in
shared memory systems. The algorithm uses the snapshot-at-the-beginning strategy to preserve every
reference of the beginning of garbage collection, and new objects allocated during garbage collection are
preserved as well. The algorithm is as conservative as our local state logging strategy, except that our local
state logging strategy considers migration and state of actors (unblocked or blocked). Because Yuasa’s
snapshot-based algorithm is 1) less interfering in applications than other kinds of garbage collection and
2) easy to implement and understand, it is used for real time Java garbage collection [3].

As mentioned in Section I, two kinds of snapshot algorithms are used in distributed garbage collection
— the Chandy-Lamport algorithm [8] and the uncoordinated snapshot algorithm. Venkatasubramanian
et al. [38] proposed a Chandy-Lamport based actor garbage collection algorithm, with the assumption
of a fixed network topology. Because it reuses the Chandy-Lamport algorithm, FIFO communication is
necessary to flush communication channels to capture the status of channels. Besides, any uncooperative
computing node can fail a global garbage collection activity. Another Chandy-Lamport based, distributed
actor garbage collection algorithm is proposed by Kafura etal. [15], which uses a global collector to
coordinate activities of local state logging and global garbage collection. The algorithm does not make
any assumption about network topology, but still shares theproblem of the Chandy-Lamport algorithm.
Neither of [38] and [15] consider the problems of actor migration.

There are several variations of uncoordinated snapshot algorithms. The idea is to simulate a global clock,
and to find a causally consistent set of local snapshots amonga huge set of uncoordinated snapshots where
each computing node maintains more than one copy of local snapshots. Puaut’s algorithm [28] is based
on this approach. It is client-server based, and requires each computing node to maintain a time-stamp
vector to simulate a global clock. Because finding a causallyconsistent global snapshot is not easy and
time-consuming, the server only checks once on the local snapshots from clients. Therefore, the algorithm
does not guarantee every global garbage collection activity can succeed even if every computing host is
cooperative for garbage collection. Puaut’s algorithm is not practical in grid computing environments
because the overhead of messages increases as the number of computing nodes goes up. Besides, it is not
easy to maintain a dynamic vector for each message in open computing environments where computing
nodes can join and leave dynamically. Veiga et al. [37] proposed the distributed cycles detection algorithm
(DCDA) [37], where asynchronous local snapshots have to be updated by local mutators to inform changes
in the snapshots. The algorithm starts from suspecting an object as garbage, and a heavy cycle detection
messageCDM is then traversed among the snapshots to see if a cycle exists. If any traversed object is
modified by the mutators, the current activity for global garbage collection must abort. A critical problem
of this algorithm is that either: 1) stop-the-world synchronization for applications is required, or 2) a
global garbage collection activity can be failed by any mutation operations.

There are other kinds of distributed actor garbage collection algorithms available in literature. For
example, Vardhan and Agha have proposed a distributed actorgarbage collection algorithm [34] which
transforms each local actor reference graph into a passive object reference graph, and uses Schelvis’
algorithm [31] for global garbage collection. An implementation of this algorithm [35] assumes: FIFO
communication, and periodically performs stop-the-worldgarbage collection. All existing actor garbage
collection algorithms in previous work violate the asynchronous, unordered assumption of actor commu-
nication, and none of them supports the concept of actor migration.

Distributed garbage collection for passive object systemsare more common. Some are based on
distributed reference counting [4], [5], [21], [25], [27],[32], [42], which cannot detect cyclic garbage
but can serve as a fast mechanism to detect distributed acyclic garbage. These algorithms cannot be

RENSSELAER POLYTECHNIC INSTITUTE 17

directly reused in actor systems because they assume FIFO communication, or blocking communication
(e.g. remote procedure calls), or even both.

There are various distributed garbage collection algorithms that can detect cyclic garbage for passive
object systems, and lots of them are hybrid with different approaches. We classify these algorithms
according to their most noticeable feature as follows: 1) Global-time-based algorithms such as Hughes’
algorithm [14], which uses global time-stamp propagation from roots to guarantee event orders. 2) Remote
reference server-based algorithms such as [18] in which local collectors have to report remote references
to a server. 3) Trial-deletion-based algorithms such as Vestal’s algorithm [39], which tries to virtually
delete a reference to see if a garbage cycle can be broken. 4) Heuristics-based algorithms such as [20],
[22], [23]. The idea is to efficiently suspect some objects asgarbage and then to verify them. 5) Group-
collection-based algorithms such as [13], [19], [29]. The idea is to collect garbage in static or dynamic
groups to achieve more incrementality. Dynamic groups are established by heuristics such as the age of
objects (generations) or reachability from roots.

VI. CONCLUSION AND FUTURE WORK

The actor model of computation is an excellent reasoning anddevelopment paradigm for grid and
pervasive computing applications because of its ability tomodel parallel computing [17] and dynamic
application reconfiguration [10], [36]. Since actor garbage collection is required in actor systems, research
in actor garbage collection is imperative as the fields of grid and pervasive computing mature. In this paper,
we have proposed a snapshot-based distributed actor garbage collection algorithm, along with the pseudo-
code, the computing model, and proofs of correctness. Usingthe pseudo-root approach, the snapshot-
based algorithm does not require FIFO or blocking communication, nor comprehensive cooperation of
each computing node during global snapshot. These featuresmake our algorithm unique in the area of
distributed garbage collection. Furthermore, the snapshot algorithm supports actor migration and works
concurrently with mutation operations, which reduces interruption of applications. We have implemented
the algorithm as a logically centralized global garbage collector. No message logging is required in our
algorithm which demands less space than traditional snapshot-based algorithms.

Global synchronization usually implies long waiting time.Instead of waiting at each computing node,
the global synchronization service controls the distributed garbage collection flow to enable non-blocking
distributed snapshot. The non-blocking snapshot algorithm for distributed garbage collection has been
implemented as part of the SALSA programming language, whose open source can be downloaded from
[43]. Our previous research [40], [41] has shown the overhead of distributed garbage collection to be
acceptable (on average 16.4%).

When resource (root) access restrictions are considered, actor garbage collection becomes different from
what we have described: in such case, the live unblocked actor principle is no longer true. Without the
live unblocked actor principle, active garbage actors are possible — they can perform mutation operations
but cannot possibly do any meaningful computation. Actor garbage collection in this context has not
been explored and further research is needed to study the interaction of garbage collection with practical
security models.

REFERENCES

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.
[2] J. Armstrong, R. Virding, C. Wikström, and M. Williams.Concurrent Programming in Erlang. Prentice Hall, 2nd edition, 1996.
[3] D. F. Bacon, P. Cheng, and V. T. Rajan. Controlling fragmentation and space consumption in the Metronome, a real-timegarbage

collector for Java. InProceedings of the Conference on Languages, Compilers, andTools for Embedded Systems, pages 81–92, San
Diego, California, June 2003.

[4] D. I. Bevan. Distributed garbage collection using reference counting. InPARLE’87, volume 258/259 ofLecture Notes in Computer
Science, pages 176–187, Eindhoven, The Netherlands, June 1987. Springer-Verlag.

[5] A. Birrell, D. Evers, G. Nelson, S. Owicki, and E. Wobber.Distributed garbage collection for network objects. Technical Report 116,
DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, Dec. 1993.

[6] J.-P. Briot. Actalk: a testbed for classifying and designing actor languages in the Smalltalk-80 environment. InProceedings of the
European Conference on Object Oriented Programming (ECOOP’89), pages 109–129. Cambridge University Press, 1989.

RENSSELAER POLYTECHNIC INSTITUTE 18

[7] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated application-level checkpointing of MPI programs. InProceedings
of the 2003 ACM SIGPLAN Symposium on Principles of Parallel Programming (PPoPP-03), pages 84–94. ACM Press, 2003.

[8] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems.ACM Transactions on Computer
Systems, 3(1):63–75, 1985.

[9] P. Dickman. Incremental, distributed orphan detectionand actor garbage collection using graph partitioning and Euler cycles. In
WDAG’96, volume 1151 ofLecture Notes in Computer Science, Bologna, Oct. 1996. Springer-Verlag.

[10] K. El Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela. The Internet Operating System: Middleware for adaptive distributed
computing, 2006. To appear in International Journal of HighPerformance Computing Applications (IJHPCA).

[11] K. El Maghraoui, B. Szymanski, and C. Varela. An architecture for reconfigurable iterative MPI applications in dynamic environments.
In R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski,editors, Proc. of the Sixth International Conference on Parallel
Processing and Applied Mathematics (PPAM’2005), number 3911 in LNCS, pages 258–271, Poznan, Poland, September 2005.

[12] Hewitt, C. Viewing control structures as patterns of passing messages.Journal of Artificial Intelligence, 8(3):323–364, June 1977.
[13] R. L. Hudson, R. Morrison, J. E. B. Moss, and D. S. Munro. Garbage collecting the world: One car at a time.SIGPLAN Not.,

32(10):162–175, 1997.
[14] J. Hughes. A distributed garbage collection algorithm. In Record of the 1985 Conference on Functional Programming andComputer

Architecture, volume 201 ofLNCS, pages 256–272, Nancy, France, Sept. 1985. Springer-Verlag.
[15] D. Kafura, M. Mukherji, and D. Washabaugh. Concurrent and distributed garbage collection of active objects.IEEE TPDS, 6(4), April

1995.
[16] D. Kafura, D. Washabaugh, and J. Nelson. Garbage collection of actors. InOOPSLA’90 ACM Conference on Object-Oriented Systems,

Languages and Applications, pages 126–134. ACM Press, October 1990.
[17] W. Kim. THAL: An Actor System for Efficient and Scalable Concurrent Computing. PhD thesis, University of Illinois at Urbana-

Champaign, May 1997.
[18] R. Ladin and B. Liskov. Garbage collection of a distributed heap. InInternational Conference on Distributed Computing Systems,

Yokohama, June 1992.
[19] B. Lang, C. Queinnec, and J. Piquer. Garbage collectingthe world. InPOPL’92 ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 39–50. ACM Press, 1992.
[20] F. Le Fessant. Detecting distributed cycles of garbagein large-scale systems. InPrinciples of Distributed Computing (PODC), Rhodes

Island, Aug. 2001.
[21] C. Lermen and D. Maurer. A protocol for distributed reference counting. InACM Symposium on Lisp and Functional Programming,

ACM SIGPLAN Notices, pages 343–350, Cambridge, MA, Aug. 1986. ACM Press.
[22] U. Maheshwari and B. Liskov. Collecting cyclic distributed garbage by controlled migration. InPODC’95 Principles of Distributed

Computing, 1995.
[23] U. Maheshwari and B. Liskov. Collecting cyclic distributed garbage by back tracing. InPODC’97 Principles of Distributed Computing,

pages 239–248, Santa Barbara, CA, 1997. ACM Press.
[24] J. Misra. Detecting termination of distributed computations using markers. In2nd ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, pages 290–294, 1983.
[25] L. Moreau. Tree rerooting in distributed garbage collection: Implementation and performance evaluation.Higher-Order and Symbolic

Computation, 14(4):357–386, 2001.
[26] Open Systems Lab. The Actor Foundry: A Java-based ActorProgramming Environment, 1998. http://osl.cs.uiuc.edu/foundry/.
[27] J. M. Piquer. Indirect reference counting: A distributed garbage collection algorithm. InPARLE’91, volume 505 ofLecture Notes in

Computer Science, Eindhoven, The Netherlands, June 1991. Springer-Verlag.
[28] I. Puaut. A distributed garbage collector for active objects. InOOPSLA’94 ACM Conference on Object-Oriented Systems, Languages

and Applications, pages 113–128. ACM Press, 1994.
[29] H. Rodrigues and R. Jones. A cyclic distributed garbagecollector for Network Objects. InWDAG’96, volume 1151 ofLecture Notes

in Computer Science, pages 123–140, Bologna, Oct. 1996. Springer-Verlag.
[30] Y. Sato, M. Inoue, T. Masuzawa, and H. Fujiwara. A snapshot algorithm for distributed mobile systems. InICDCS ’96: Proceedings

of the 16th International Conference on Distributed Computing Systems (ICDCS ’96), pages 734–743. IEEE Computer Society, 1996.
[31] M. Schelvis. Incremental distribution of timestamp packets — a new approach to distributed garbage collection.ACM SIGPLAN

Notices, 24(10):37–48, 1989.
[32] M. Shapiro, P. Dickman, and D. Plainfossé. SSP chains:Robust, distributed references supporting acyclic garbage collection. Rapports

de Recherche 1799, INRIA, Nov. 1992.
[33] D. C. Sturman.Modular Specification of Interaction Policies in Distributed Computing. PhD thesis, University of Illinois at Urbana-

Champaign, May 1996. TR UIUCDCS-R-96-1950.
[34] A. Vardhan. Distributed garbage collection of active objects: A transformation and its applications to java programming. Master’s

thesis, UIUC, Urbana Champaign, Illinois, 1998.
[35] A. Vardhan and G. Agha. Using passive object garbage collection algorithms. InISMM’02, ACM SIGPLAN Notices, pages 106–113,

Berlin, June 2002. ACM Press.
[36] C. A. Varela and G. Agha. Programming dynamically reconfigurable open systems with SALSA.ACM SIGPLAN Notices. OOPSLA’2001

ACM Conference on Object-Oriented Systems, Languages and Applications, 36(12):20–34, Dec. 2001.
[37] L. Veiga and P. Ferreira. Asynchronous complete distributed garbage collection. In O. Babaoglu and K. Marzullo, editors, IPDPS

2005, Denver, Colorado, USA, Apr. 2005.
[38] N. Venkatasubramanian, G. Agha, and C. Talcott. Scalable distributed garbage collection for systems of active objects. InIWMM’92,

volume 637 ofLecture Notes in Computer Science. Springer-Verlag, 1992.
[39] S. C. Vestal.Garbage collection: An exercise in distributed, fault-tolerant programming. PhD thesis, University of Washington, Seattle,

WA, 1987.

RENSSELAER POLYTECHNIC INSTITUTE 19

[40] W. Wang and C. A. Varela. Distributed garbage collection for mobile actor systems: The pseudo root approach. InAdvances in
Grid and Pervasive Computing, First International Conference, GPC 2006, volume 3947 ofLecture Notes in Computer Science, pages
360–372. Springer, May 2006.

[41] W. Wang and C. A. Varela. Distributed garbage collection for mobile actor systems: The pseudo root approach. Technical Report
06-04, Dept. of Computer Science, R.P.I., Feb. 2006. Extended Version of the GPC’06 Paper.

[42] P. Watson and I. Watson. An efficient garbage collectionscheme for parallel computer architectures. InPARLE’87, volume 258/259
of Lecture Notes in Computer Science, pages 432–443, Eindhoven, The Netherlands, June 1987. Springer-Verlag.

[43] Worldwide Computing Laboratory. The SALSA Programming Language, 2005. http://wcl.cs.rpi.edu/salsa/.
[44] A. Yonezawa, editor.ABCL An Object-Oriented Concurrent System. MIT Press, Cambridge, Mass., 1990.
[45] T. Yuasa. Real-time garbage collection on general-purpose machines.Journal of Software and Systems, 11(3):181–198, 1990.

RENSSELAER POLYTECHNIC INSTITUTE 20

APPENDIX

In this appendix, we provide proofs for the proposed snapshot computing model. The proofs for local
state logging properties can be found in Sub-Section A; the proofs for global snapshot algorithm properties
are described in Sub-Section B.

A. Local State Logging Properties

Two actor configurations are used in the following lemmas, where Ss is the initial configuration,Se

is the final configuration of the local snapshot, andSs →
∗ Se. We will useSs and Se directly without

re-defining them again in this Sub-Section.
To concisely describe a sequence of state transitions excliuding migration, we provide the definition of

no-migration transitive state transition as follows:
Definition 1.1: No-migration transitive state transition.

Let S1 andS2 be actor configurations.

S1
(6=MI)
−−−−→

∗

S2 ⇐⇒

(S1 = S2) ∨ ((∀a : S1
mo
−→ Sx wheremo 6= a.MI) ∧ (Sx

(6=MI)
−−−−→

∗

S2)).
Similarly,

S1
(6=a.MI)
−−−−−→

∗

S2 ⇐⇒

(S1 = S2) ∨ ((S1
mo
−→ Sx wheremo 6= a.MI) ∧ (Sx

(6=a.MI)
−−−−−→

∗

S2)).
Lemma 4.14 Alternative guaranteed reachability for state transition.

(a ; b at Ss) ∧ (a Y; b at Se) =⇒
(Migrated(b, Ss, Se)) ∨ (∃yx : (x ; b at Se) ∧ (yx ∈ Se.IR) ∧ (Migrated(y, Ss, Se))).

Proof: The only operation to remove a reference or an actor from a snapshot isMI. There are two
cases to be considered:

• Case 1: Let(b /∈ Se.V). Since the only operation to removeb is b.MI, then there must existSi, Sj

s.t. Ss →
∗ Si

b.MI
−−−→ Sj →

∗ Se, whereb ∈ Si.V ∧ b /∈ Sj.V . ThenMigrated(b, Ss, Se).
• Case 2: Let(b ∈ Se.V). Because(a Y; b at Se), there exists a reference atSs and it is removed by

a MI operation during state transitions, makinga Y; b. This case can be proven by induction. Let
the number of performedMI operations ben during state transitions wheren ≥ 1.

Basis: Prove that the statement is true forn = 1.
Let Ss →

∗ Si
y.MI
−−−→ Sj →

∗ Se where((a ; y) ∧ (x ; b) ∧ (yx ∈ Si.E)) and (a Y; b at
Sj). Therefore, 1)x ∈ Sj .RE, 2) x ; b at Sj , and 3)yx ∈ Sj .IR. Because no more MI is

performed,((x ; b at Se) ∧ (yx ∈ Se.IR) ∧ (Ss →
∗ Si

y.MI
−−−→ Sj →

∗ Se)) which proves the
basis.
Induction step: Assume the statement is true forn wherek ≥ n ≥ 1, and show that it is
true for n = k + 1.
Let Si be the state right before the lastMI is performed. That is,∃y : Si

y.MI
−−−→ Sj . Because

(b ∈ Se.V), b.MI cannot be the lastMI operation.
Let yx be the reference removed by the lastMI, y.MI. According to the induction hypothe-
sis,∃zw, Sk, Sm : ((w ; y ; x ; b at Si) ∧(zw ∈ Si.IR)∧ (Ss →

∗ Sk
z.MI
−−−→ Sm →

∗ Si)).
Now consider the following sub-cases:

Sub-case 1: Let(w ; b at Sj), which means((w ; b at Sj)∧(zw ∈ Sj.IR)∧(Ss →
∗

Sk
z.MI
−−−→ Sm →

∗ Sj))). Since(Sj

(6=MI)
−−−−→

∗

Se) do not remove any references or actor

names,((w ; b at Se) ∧ (zw ∈ Se.IR) ∧ (Ss →
∗ Sk

z.MI
−−−→ Sm →

∗ Se))). Thus the
lemma is true for Sub-case 1.
Sub-case 2: The concept of this sub-case is shown in Figure 12. Let (w Y; b at Sj).
Since ((w ; b at Si) ∧ (w Y; b at Sj)) and only oneMI is performed during

(Si
y.MI
−−−→ Sj

(6=MI)
−−−−→

∗

Se), the statement can be proven by re-using the basis.

RENSSELAER POLYTECHNIC INSTITUTE 21

Actor
Directly
Reach

a

b

w

y

x

b

z y

x

b

y

x

b

S S S S

Transitively
Reach

1 i j 2

Fig. 12. Sub-case 2 of the induction step of the proof for Lemma 4.14.

Therefore, one can conclude that the statement is true by induction.

Lemma 4.15Live(a) at Se =⇒ Live(a) at Ss.
Proof: The statement can be proven by contradiction. Assume the statement is wrong, which means

(¬Live(a) at Ss) =⇒ ∀y : (y ∈ (Ss.PS ∪ Ss.RE)) ∧ (y Y; a at Ss). According to Proposition 4.9, 4.10,
4.11, 4.12, and 4.13,a cannot execute any mutation operation, and must remain the same state atSe.
By proposition 4.10,y cannot create a reference toa because(Live(a) at Ss) is required. Therefore,
(∀y : (y ∈ (Se.PS ∪ Se.RE)) ∧ (y Y; a at Se)) =⇒ (¬Live(a) at Se), which contradicts the premise.

Lemma 4.16Migrated(a, Ss, Se) =⇒ Live(a) at Ss.
Proof: (Migrated(a, Ss, Se) implies (∃Si, Sj : Ss →

∗ Si
a.MI
−−−→ Sj →

∗ Se)). By Proposition 4.9,
a ∈ Si.PS. By Definition 4.6 and 4.7,Live(a) at Si. By Lemma 4.15,Live(a) at Ss.

Lemma 4.17Live(a) at Ss =⇒ ((Live(a) at Se) ∨ Migrated(a, Ss, Se)).
Proof: By Definition 4.6,Live(a) at Se ⇐⇒ ∃x : (x ∈ (Se.PS ∪ Se.RE)) ∧ (x ; a at Se). By

Definition 4.8,Migrated(a, Ss, Se) ⇐⇒ (∃Si, Sj : Ss →
∗ Si

a.MI
−−−→ Sj →

∗ Se)). Assume the statement is
wrong, which means:

Assumption 1:∀x : (x ∈ (Se.PS ∪ Se.RE)) ∧ (x Y; a at Se) and
Assumption 2:∀Si, Sj : Ss →

∗ Si
a.MI
−−−→ Sj →

∗ Se is false, which meansa ∈ Se.V

Let z ∈ Ss.V and (z ∈ (Ss.PS ∪ Ss.RE)) ∧ (z ; a at Ss) from the premise. One can conclude from
Assumption 1 and Assumption 2 that(z ∈ (Se.PS ∪ Se.RE)) ∧ (z Y; a at Se). By using Lemma 4.14,
we know that(z ; a at Ss) ∧ (z Y; a at Se) implies either:

Conclusion 1:∃Si, Sj : Ss →
∗ Si

a.MI
−−−→ Sj →

∗ Se, or

Conclusion 2:∃dc : ((c ; a at Se) ∧ (dc ∈ Se.IR) ∧ (∃Si, Sj : Ss →
∗ Si

d.MI
−−−→ Sj →

∗ Se)).
Conclusion 1 contradicts Assumption 2. Conclusion 2 contradicts Assumption 1 because∃c : c ∈ Se.RE∧
(c ; a at Se). Therefore, the lemma is true.

B. Global Snapshot Algorithm Properties

We define some variables as follows and then use them directlyin this sub-section: LetR be the
real-world actor configuration. LetSs,1, Ss,2, ..., andSs,m be coordinated local snapshots. LetSS =
(Ss,1 ‖ Ss,2 ‖ ... ‖ Ss,m) and SE = (Se,1 ‖ Se,2 ‖ ... ‖ Se,m), whereSs,i →

∗ Se,i, m ≥ i ≥ 1. Let
P be a path ofx ; a at SS s.t. PathSet(P) contains the maximal inter-snapshot references of all
paths ofx ; a at SS. Let the reference set bePathSet(P).IR. That is, the size ofPathSet(P).IR,
{cd | cd ∈ PathSet(P) ∧ (∃i : cd ∈ Ss,i.IR wherem ≥ i ≥ 1)}, is maximal.

Lemma 4.20 No actor appears more than once among coordinatedlocal actor configurations.
Let S1, S2, ..., Sm be coordinated local actor configurations.
∀i, j : (Si.V ∩ Sj .V = ∅) where(i 6= j) ∧ (m ≥ i, j ≥ 1).

RENSSELAER POLYTECHNIC INSTITUTE 22

Proof: Only migration can cause an actor to appear twice in different locations. Let computing node
i andj be two arbitrary computing nodes whose final local actor configurations areSi andSj respectively.
Assume{a} ⊆ (Si.V ∩ Sj.V) and the last two logged appearances ofa be in computing nodei, and
then migrate toj. Also let tsi be the time computing nodei starts state logging,tei computing nodei
finishes state logging,tsj the time computing nodej starts state logging, andtej the time computing node
j finishes state logging. Let the time to migrate from nodei be tsmig, and to arrive at nodej be temig.

Case 1:tsmig > tei.
Now consider three sub-cases:

Sub-case 1.1:temig > tej.
a cannot be logged inSj.
Sub-case 1.2:tej ≥ temig ≥ tsj.
Sj cannot include any new actor during this period of time.
Sub-case 1.3:tsj > temig (an early message of migration).
Consideringtsj > temig, temig > tsmig, and tsmig > tei, we gettsj > tei. However, the
global synchronization mechanism guarantees thattei ≥ tsj because snapshot termina-
tion must wait for a consensus of all participating computing nodes. Therefore, this
sub-case is impossible due to a contradiction.

Case 2:tei ≥ tsmig ≥ tsi.
The MI operation guarantees that{a} /∈ Si.V .
Case 3:tsi > tsmig.
a cannot be logged inSi.

Lemma 4.25 Actors which were reachable from a migrated actorat a local snapshot are reachable
from some global pseudo-root at the merged global snapshot.
(a ; b at Ss,1) ∧ (a Y; b at Se,1) =⇒
Migrated(b, Ss,1, Se,1) ∨ (∃z : (z ∈ SE.RE) ∧ (z ; b at SE)).

Proof: According to Lemma 4.14, one of the following statements is true.

Case 1:∃Sj , Sk : Ss,1 →
∗ Sj

b.MI
−−−→ Sk →

∗ Se,1 by Definition 4.8.

Case 2:∃Sj , Sk, wx : ((x ; b at Se,1) ∧ (wx ∈ Se,1.IR) ∧ (Ss,1 →
∗ Sj

w.MI
−−−→ Sk →

∗ Se,1)).
Figure 13 helps understand the proof. If Case 1 is true, the statement to prove is also true. Now consider

the Case 2. LetS ′
E = (Se,2 ‖ Se,3 ‖ ... ‖ Se,m). Let Sj, Sk be the actor configurations andwx be the

reference to make Case 2 true. Becausew ∈ Ss,1.V and no duplicate actor name is allowed (Lemma
4.20), we know(w /∈ Ss,i.V wherem ≥ i > 1). Consequently,w /∈ Se,i.V wherem ≥ i > 1 because
no mutation operation can add any new actor name. Since(w /∈ Se,i.V where m ≥ i > 1), we get
(wx /∈ Se,i.E where∀i : m ≥ i > 1), which also implies thatwx /∈ S ′

E .E. From Case 2 we know
(wx ∈ Se,1.IR), and thus we getwx ∈ (Se,1.IR− S ′

E .E).
Now let us composeSe,1 andS ′

E. We find that(wx ∈ (Se,1 ‖ S ′
E).IR), which is equal to(wx ∈ SE .IR).

Therefore,(x ∈ SE .RE). Case 2 also says that((x ; b at Se,1), indicating((x ; b at SE.E). By replacing
x with z, we finish the proof.

Lemma 4.26((¬Live(a) at SS) ∧ (a ∈ SS.V)) =⇒ (∄y : (y ∈ R.PS) ∧ (y ; a at R)).
Proof: Assume the lemma is wrong, which means(∃y : (y ∈ R.PS) ∧ (y ; a at R)) =⇒

(∃w, x, y : (y ; w at R)∧(wx /∈ SS.E)∧(x ; a at SS)). Sincewx ∈ SS.IR =⇒ ((x ∈ SS.RE)∧(x ; a
at SS)) =⇒ Live(a) at SS which contradicts the premise, we knowwx /∈ SS.IR. According to Proposition
4.23,(∃z : (z ∈ SS.IR∪SS.PS)∧(z ; a at SS)) =⇒ (Live(a) at SS) which also contradicts the premise.

Lemma 4.27(Live(a) at SS ∧ |PathSet(P).IR| = 0) =⇒ (Live(a) at SE).
Proof: Let a ∈ Ss,1.V without losing generality.|PathSet(P).IR| = 0 implies that(PathSet(P)∩

Ss,1.IR) ∪ (PathSet(P) ∩ Ss,2.IR) ∪ ... ∪ (PathSet(P) ∩ Ss,m.IR) = ∅. Consequently,∃x : (x ∈
(SS.PS ∪ SS.RE)) ∧ (x ; a at Ss,1).

RENSSELAER POLYTECHNIC INSTITUTE 23

Actor

a b

w

Transitively
Reach

Se,1

Ss,1

Actor
Configuration

b

b

Se,1

Premise 1 Premise 2
SE SE

Fig. 13. This figure shows two different possible global actor configurations where∃Sk, Sm : Ss,1 →∗ Sk
a.MI
−−−→ Sm →∗ Se,1.

Case 1: Now consider the case thatx ; a at Se,1.
Sub-case 1.1: Let(x ∈ SS.PS), which implies(x ∈ Ss,1.PS) since(x ; a at Ss,1).
Becausex ∈ Se,1.V , no migration operation is executed. Since(x ∈ Ss,1.PS), we know
(x ∈ Se,1.PS) such that((x ∈ (SE .PS∪SE .RE))∧ (x ; a at SE)), implying Live(a)
at SE.
Sub-case 1.2: Letx ∈ SS.RE. This implies that∃zx : (zx ∈ Ss,1.IR) ∧ (zx /∈ Ss,i.E

wherem ≥ i ≥ 1). x ∈ Se,1.V implies thatSs,1
6=x.MI
−−−−→

∗

Se,1. Therefore,(x ∈ Se,1.V)
which also implies∃zx : (zx ∈ Se,1.IR) ∧ (zx /∈ Se,i.E where m ≥ i ≥ 1). Then
∃zx : zx ∈ SE.IR. To conclude,∃x : (x ∈ SE.IR)∧ (x ; a at SE), implying Live(a)
at SE.

Case 2: Now consider the case thatx Y; a at Se,1. According to Lemma 4.14, eitherMigrated(a, Ss,1, Se,1)

which means∃Sma, Smb : Ss,1 →
∗ Sma

a.MI
−−−→ Smb →

∗ Se,1, or

∃Sma, Smb, cw : ((w ; a at Se,1)∧(cw ∈ Se,1.IR)∧(Ss,1 →
∗ Sma

c.MI
−−−→ Smb →

∗ Se,1)). Because
(c ∈ Ss,1.V), we know (c /∈ Ss,i.V wherem ≥ i ≥ 2), which also means thatc /∈ Se,i.V where
m ≥ i ≥ 2. (c /∈ Se,i.V wherem ≥ i ≥ 1) implies (∀d : cd /∈ Se,i.E wherem ≥ i ≥ 1). Since
cw ∈ Ss,1.IR and (∀d : cd /∈ Se,i.E wherem ≥ i ≥ 1), we getcw ∈ SE.IR which also means
w ∈ SE .RE. Therefore,(w ∈ (SE .PS ∪ SE.RE)) ∧ (w ; a at SE)), implying Live(a) at SE.

Lemma 4.28Live(a) at SS =⇒ (Live(a) at SE) ∨ (∃i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1).
Proof: Let a ∈ Ss,1.V without losing generality. Let|PathSet(P).IR| = n.

Basis: The case ofn = 0 is proven by Lemma 4.27.
Induction step: For eachk ≥ 0 assume the statement is true, and prove the casen = k + 1.
Let pq be any inter-snapshot reference ofx ; a at SS s.t.((x ; p at SS)∧ (q ∈ Ss,1.V)∧ (∃j : p ∈ Ss,j.V
wherem ≥ j ≥ 2)∧ (q ; a at Ss,1)). Consequently, the induction assumption indicates either1) Live(p)

at SE, or 2) ∃i, Sms,i, Sme,i : (Ss,i →
∗ Sms,i

p.MI
−−−→ Sme,i →

∗ Se,i), m ≥ i ≥ 1 by Definition 4.8.
These cases are discussed as follows:

Case 1:(∃f : (f ∈ (SE .PS ∪SE .RE))∧ (f ; p at SE)). There are two sub-cases to deal with:
Sub-case 1.1: Letq ; a at Se,1. This meansLive(a) at SE.
Sub-case 1.2: Letq Y; a at Se,1. By Lemma 4.25, we know

• ∃Sms,1, Sme,1 : Ss,1 →
∗ Sms,1

a.MI
−−−→ Sme,1 →

∗ Se,1, or
• Live(a) at SE.

Case 2: Now consider that∃i, Sms,i, Sme,i : (Ss,i →
∗ Sms,i

p.MI
−−−→ Sme,i →

∗ Se,i), m ≥ i ≥ 1.
There are two sub-cases:
Sub-case 2.1: Assumeq ; a at Se,1. Let Ss,i have transitted toSms,i andSs,1 have transitted to
Sms,1 at time tx. Notice thatSs,i →

∗ Sms,i →
∗ Se,i andSs,1 →

∗ Sms,1 →
∗ Se,1.

RENSSELAER POLYTECHNIC INSTITUTE 24

Sub-case 2.1.1: Assumepq ∈ Sms,1.IR. Sinceq ∈ Se,1, we getpq ∈ Se,1.IR. Becausep ∈ Ss,i.V
and no duplicate actor name is allowed (Lemma 4.20), we know(p /∈ Ss,j.V wherem ≥ j ≥ 1).
Consequently,p /∈ Se,i.V wherem ≥ i ≥ 1 because no mutation operation can add any new
actor name. Since(p /∈ Se,i.V wherem ≥ i ≥ 1), we get(pq /∈ Se,i.E where∀i : m ≥ i ≥ 1).
Therefore,(q ∈ SE.RE ∧ q ; a at SE) =⇒ Live(a) at SE.
Sub-case 2.1.2: Assumepq /∈ Sms,1.IR. According to Proposition 4.23, there are three cases to
consider as follows:

• Let (∃r : (r ∈ Sms,1.PS) ∧ (rq ∈ Sms,1.E)) be true. If (∃Srms,1, Srme,1 : Sms,1 →
∗

Srms,1
r.MI
−−−→ Srms,1 →

∗ Se,1) is true, we can prove the statement by Lemma 4.25. Otherwise,
r.MI has never been executed. Therefore,((r ∈ Se,1.PS) ∧ (r ; q ; a at Se,1)), which
implies Live(a) at SE.

• Let (∃r, Sms,j : (r ∈ Sms,j.PS) ∧ (rq ∈ Sms,j.E) ∧ (rq ∈ Sms,1.IR) whereSms,j 6= Sms,1)

be true. First assume∃Srms,j, Srme,j : Sms,j →
∗ Srms,j

r.MI
−−−→ Srms,j →

∗ Se,j. Sincerq ∈
Sms,1.IR andq ∈ Sms,1.V , we knowrq ∈ Se,1.IR. Because∀Se,newj : r /∈ Se,newj.V where
m ≥ newj ≥ 1 andrq ∈ Sms,1.IR, we getrq ∈ SE .IR. Therefore,(q ∈ SE .RE) ∧ (q ; a
at SE), indicatingLive(a) at SE. Now consider the other case thatr.MI has never been
executed. We find that(r ∈ SE .PS) ∧ (r ; q ; a at SE), implying Live(a) at SE.

• Let ∃r : ∀Smsi : (rq ∈ Sms,1.IR)∧(rq /∈ Smsi.E) whereSmsi 6= Sms,1 be true, which implies
that(rq ∈ Se,1.IR)∧(∀Se,i : rq /∈ Se,i.E) whereSe,i 6= Se,1. Therefore,(q ∈ SE.RE)∧(q ;

a at SE), implying Live(a) at SE.
Sub-case 2.2: Letq Y; a at Se,1. Sub-case 2.2 can be proven by reusing the proof of Lemma
4.27.
We conclude the statement is true by induction.

Lemma 4.29(Live(a) at SE) ∨ (∃i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1) =⇒ Live(a) at SS.
Proof: The lemma can be proven by contradiction. Assume¬Live(a) at SS wherea ∈ SS.V . By

Lemma 4.26, we get(∀y : (y ∈ R.PS) ∧ (y Y; a at R)). Since local state logging corresponds to the
real world computing, Actora cannot execute any mutation operations, which means¬Live(a) at SE and
thus contradicts the premise.

