
Improved Sparse Covers for Graphs Excluding a Fixed Minor ∗

Costas Busch† Ryan LaFortune‡ Srikanta Tirthapura§

Abstract

We consider the construction of sparse covers for planar graphs and other graphs that exclude a fixed
minor. We present an algorithm that gives a cover for the γ-neighborhood of each node. For planar
graphs, the cover has radius no more than 24γ − 8 and degree (maximum cluster overlap) no more than
30. The radius and degree are optimal up to constant factors. For every n node graph that excludes a fixed
minor, we present an algorithm that yields a cover with radius no more than 4γ and degree O(log n).

This is a significant improvement over previous results for planar graphs and for graphs excluding a
fixed minor; in order to obtain clusters with radius of O(γ), it was required to have degree polynomial in
n. Since sparse covers have many applications in distributed computing, including compact routing, dis-
tributed directories and synchronizers, our improved cover construction results in improved algorithms
for all these problems, for the class of minor-free graphs.

∗This work is supported by NSF grants CNS-0520102 and CNS-0520009.
†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, buschc@cs.rpi.edu
‡Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, laforr@cs.rpi.edu
§Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA, snt@iastate.edu



1 Introduction
A cover Z of a graph G is a set of connected components called clusters, such that the union of all clusters is
the vertex set of G. A cover is defined with respect to a locality parameter γ > 0. It is required that for each
node v ∈ G, there is some cluster in Z that contains the entire γ-neighborhood of v. Two locality metrics
characterize the cover: the radius, denoted rad(Z), which is the maximum radius of any of its clusters,1 and
the degree, denoted deg(Z), which is the maximum number of clusters that a node in G is a part of.

Covers play a key role in the design of several locality preserving distributed data structures, including
the construction of distance-dependent distributed directories [20, 21, 12], compact routing schemes [9,
21, 22, 25, 4, 3], network synchronizers [10, 7, 19, 21], and transformers for certain classes of distributed
algorithms [9]. In the design of these data structures, the degree of the cover often translates into the load
on a vertex imposed by the data structure, and the radius of the cover translates into the latency. Thus, it
is desirable to have a sparse cover, whose radius is close to its locality parameter γ, and whose degree is
small.

Awerbuch and Peleg [11] present an algorithm for constructing a sparse cover on a general graph based
on the idea of coarsening. Starting from an initial cover S consisting of the n clusters formed by taking the
γ-neighborhoods of each of the n nodes in G, their algorithm constructs a coarsening cover Z by repeatedly
merging clusters in S. For a parameter k ≥ 1, their algorithm returns a cover Z with rad(Z) = O(kγ) and
deg(Z) = O(kn1/k) (the average degree is O(n1/k)). By choosing k = log n, the radius is O(γ log n) and
the degree O(log n). This is the best known result for general graphs. There is an inherent trade-off between
the radius and the degree of a cover. It is known ([21, Theorem 16.2.4]) that for every k ≥ 3, there exist
graphs and values of γ (i.e. γ = 1) such that for every cover Z, if rad(Z) ≤ kγ, then deg(Z) = Ω(n1/k).
Thus, in these graphs if rad(Z) = O(γ), then deg(Z) is polynomial in n.

In light of the above trade-off for arbitrary graphs, it is natural to ask whether better sparse covers can be
obtained for special classes of graphs. In this paper, we answer the question in the affirmative for the class
of graphs that exclude a fixed minor. This includes many popular graph families, such as planar graphs,
which exclude K5 or K3,3, series-parallel graphs, which exclude K4, and trees, which exclude K3.

1.1 Contributions

We give improved bounds for planar graphs and other graphs excluding fixed minors:

1. For any planar graph G, we present an algorithm for computing a sparse cover Z with rad(Z) ≤
24γ − 8 and deg(Z) ≤ 30. This cover is optimal (modulo constant factors) with respect to both the
degree and the radius. To our knowledge, this is the first optimal construction for planar graphs.

2. For any graph G that excludes a fixed minor H , we present an algorithm for computing a sparse cover
Z such that rad(Z) ≤ 4γ, and deg(Z) = O(log n), where n is the number of nodes in G. The
constants in the degree bound depend on the size of the excluded minor H .

The algorithms run in polynomial time with respect to G. For the class of minor free graphs, our con-
struction improves upon the previous work of Awerbuch and Peleg [11] by providing a smaller radius. For
planar graphs, our construction simultaneously improves both the degree and the radius.

Techniques: Our algorithms for cover construction are based on a recursive application of a basic rou-
tine called shortest-path clustering. We observe that it is easy to cluster the γ-neighborhood of all nodes

1The radius of a cluster C ∈ Z is the minimum eccentricity of any vertex in C, where the eccentricity of a vertex v ∈ C is the
maximum distance from v to any node in C.

1



along a shortest path in the graph using clusters of radius O(γ) and degree O(1). For a graph G, we first
identify an appropriate set of shortest paths P in G. We cluster the cγ-neighborhood (for constant c) of every
path p ∈ P using shortest-path clustering, and we then remove P together with its c′γ-neighborhood from
G, for some c′ < c. This gives residual connected components G′

1, . . . , G
′
r which contain the remaining un-

clustered nodes as a subset. We apply the same procedure recursively to each G′
i by identifying appropriate

shortest paths in them. The algorithm terminates when there are no remaining nodes.
For minor-free graphs, we use a result due to Abraham and Gavoille [1] that every H-minor-free graph

is κ-path separable, where κ is a constant that depends on H . With path separators the size of each residual
graph G′

i is at most half the size of G, and recursive application of this procedure on each G′
i results in

a recursion tree of depth at most log n. This results in a logarithmic degree cover, since a node may be
clustered multiple times before it is removed from the graph. However, the radius of each cluster is still
within a constant factor of γ since every path is clustered independently. For planar graphs, we apply a
similar technique but without using path separators. We show it is possible to choose the shortest paths so
that each node is contained in the clusters of a constant number of shortest paths. This translates into covers
with constant degree and a radius within a constant factor of γ.

We briefly contrast our techniques with those employed by Awerbuch and Peleg [11] for cover construc-
tion on general graphs. They start with a cover of optimal radius, but potentially high degree, and coarsen
the cover by merging clusters together until the desired trade-off is reached between the radius and the de-
gree. In contrast, our algorithm does not merge clusters and as a result, the radius of every cluster remains
small. The degree of the cover is controlled through a careful partitioning of the graph through shortest
paths, as described above.

1.2 Applications

Name-Independent Compact Routing. Consider a distributed system where nodes have arbitrary iden-
tifiers. A routing scheme is a method which delivers a message to a destination given the identifier of the
destination. A name-independent routing scheme does not alter the identifiers of the nodes, which are as-
sumed to be in the range 1, . . . , n. The stretch of a routing scheme is the worst case ratio between the total
cost of messages sent between a source and destination pair, and the length of the respective shortest path.
The memory overhead of a routing scheme is the number of bits (per node) used to store the routing table.
A routing scheme is compact if its stretch as well as memory overhead are “small”.

There is a trade-off between stretch and memory overhead. For example, a routing scheme that stores
the next hop along the shortest path to every destination has stretch 1 but a very high memory overhead of
O(n log n), and hence is not compact. The other extreme of flooding a message through the network, has
very little memory overhead, but is not compact either since the stretch can be as much as the total weight of
all edges in the network. There has been much work on deriving interesting trade-offs between the stretch
and memory overhead of routing, including [22, 25, 4, 3, 6].

Sparse covers can be used to provide efficient name-independent routing schemes (for example, see [7]).
A hierarchy of regional routing schemes is created based on a hierarchy of covers Z1, Z2, . . . , Zδ, where
the locality parameter of cover Zi is γi = 2i, and δ = dlog De where D is the diameter of the graph.
Henceforth, we assume that log D = O(log n), i.e. the diameter of the graph is polynomial in the number
of nodes. Using the covers of Awerbuch and Peleg [11], the resulting routing scheme has stretch O(k) and
the average memory bits per node is O(n1/k log2 n), for some parameter k. When k = log n, the stretch is
O(log n) and the average memory overhead is O(log2 n) bits per node.

On the other hand, using our covers we obtain routing schemes with optimal stretch (within constant
factors) for planar and minor-free graphs. For any planar graph G with n nodes, our covers give a name-
independent routing scheme with O(1) stretch and O(log2 n) average memory overhead per node. For any

2



graph that excludes a fixed minor, our covers give a name-independent routing scheme with O(1) stretch
and O(log3 n) average memory overhead per node.

For planar graphs, to our knowledge, this is the first name-independent routing scheme that achieves
constant stretch with O(log2 n) space per node on average. For fixed minor-free graphs, Abraham, Gavoille
and Malkhi [3] present name-independent compact routing schemes with O(1) stretch and Õ(1) maximum
space per node. However, their paper does not provide the explicit power of log n inside the Õ, hence, we
cannot directly compare our results with those of [3]. It is also noted in [3] that it is an open problem to
construct efficient sparse covers for planar graphs with O(γ) radius and O(1) degree.

There are also efficient routing schemes known for a weaker version of the routing problem called
labeled routing, where the designer of the routing scheme is given the flexibility to assign names to nodes.
Thorup [24] gives a labeled routing scheme for planar graphs with stretch (1 + ε) and memory overhead of
O((1/ε) log2 n) maximum bits per node. Name-independent routing scheme is clearly less restrictive to the
user than labeled routing, and hence a harder problem.

Directories for Mobile Objects. A directory is a basic service in a distributed system which, given an
object name, returns the location of the object (or any other information dependent on the object’s current
position). Very often, it is necessary to have directories that support mobile objects, such as an object
being sensed and tracked by a wireless sensor network, or a mobile phone user in a large cellular phone
network. A directory for mobile objects provides two operations: find, to locate an object given its name,
and move, to move an object from one node to another. There is an inherent trade-off between the cost of
implementing the find and move operations. The performance of a directory is measured by the Stretchfind,
the Stretchmove and the memory overhead of the directory (formal definitions of these metrics can be found
in [13]).

Awerbuch and Peleg[13, 21] construct directories for mobile objects based on a hierarchy of regional
directories, which are in turn constructed using sparse covers with appropriately defined locality parameters.
Their directories are appropriate for general networks and have performance Stretchfind = O(log2 n) and
Stretchmove = O(log2 n) ([13, Corollary 5.4.8]) 2

Our construction of sparse covers yields improved directories for mobile objects for planar and minor-
free graphs with the following performance guarantees. For planar graphs, our covers give a distributed
directory with Stretchfind = O(1) and Stretchmove = O(log n). For any graph that excludes a fixed
minor, our covers give a distributed directory with Stretchfind = O(log n) and Stretchmove = O(log n).
In both cases, we obtain improved bounds compared to the previously known directories.

Synchronizers. Many distributed algorithms are designed assuming a synchronous model where the proces-
sors execute and communicate in time synchronized rounds [19, 7]. However, synchrony is not always
feasible in real systems due to physical limitations such as different processing speeds or geographical dis-
persal. Synchronizers are distributed programs which enable the execution of synchronized algorithms in
asynchronous systems [8, 21, 19, 7]. A synchronizer uses logical rounds to simulate the time rounds of the
synchronous algorithm.

One of the most efficient synchronizers is called ZETA [23]. This synchronizer is based on a sparse
cover with locality parameter γ = 1, radius O(logk n), and average degree O(k), for some parameter k.
ZETA simulates a round in O(logk n) time steps and uses O(k) messages per node on average. In contrast,
using our covers we obtain better time to simulate a round. For planar graphs, our covers give a synchronizer
with O(1) time and average messages per node. For fixed minor-free graphs, the time with our covers is
O(1) and uses O(log n) messages per node on average.

2We present all results assuming that the diameter of the graph is polynomial in the number of nodes.

3



1.3 Related Work

Klein, Plotkin and Rao [18], obtain sparse covers for minor-free graphs with degree O(1) but with a weak
diameter O(γ) where the O(γ) length shortest path between two nodes in the same cluster may not nec-
essarily lie in the cluster itself. For many applications of covers, such as compact routing and distributed
directories, this is not sufficient. In contrast, our construction yields clusters with a strong diameter of O(γ)
where the shortest path lies completely within the cluster.

For graphs with doubling dimension α, Abraham, Gavoille, Goldberg and Malkhi [2] present a sparse
cover with degree 4α and radius O(γ). However, since planar graphs and minor-free graphs can have large
doubling dimensions, this does not yield efficient sparse coves for these graphs.

In a recent personal communication with authors Abraham, Gavoille, Malkhi and Wieder [5] we have
become aware of an independent result (work in progress) which constructs a sparse cover of radius O(r2γ)
and degree O(2r) for any graph excluding minor graph Kr,r, for any r > 1.

Outline of the Paper: We give basic definitions and preliminaries for graphs and covers in Section 2.
We present the algorithm for clustering shortest paths in Section 3. We then give in Section 4 a clustering
algorithm for k-path separable graphs which is further applied to graphs excluding a fixed minor. The result
for planar graphs is given in Section 5.

2 Definitions and Preliminaries
Graph Basics. All the graphs we consider in this paper are weighted. Consider a graph G = (V, E, ω),
where V is the set of nodes, E is the set of edges, and ω is a weight function E → R+ that assigns a weight
ω(e) > 0, to every edge e ∈ E. For simplicity, we will also write G = (V, E). For a graph H , we use the
notation V (H) and E(H) to denote the nodes and edges of H , respectively.

A walk q is a sequence of nodes q = v1, v2, . . . , vk where nodes may be repeated. The length of q is
defined as: length(q) =

∑k−1
i=0 ω(vi, vi+1). We also use walks with one node q = v, where v ∈ V , which

has length(q) = 0. If v1 = vk, the walk is closed. A path is a walk with no repeated nodes.
Graph G is connected if there is a path between every pair of nodes. G′ = (V ′, E′) is a subgraph of

G = (V,E), if V ′ ⊆ V , and E′ ⊆ E. If V ′ 6= V or E′ 6= E, then G′ is said to be a proper subgraph of G. In
the case where graph G is not connected, it consists of connected components G1, G2, . . . , Gk, where each
Gi is a connected subgraph that is not a proper subgraph of any other connected subgraph of G. For any set
of nodes V ′ ⊆ V , the induced subgraph by V ′ is G(V ′) = (V ′, E′) where E′ = {(u, v) ∈ E : u, v ∈ V ′}.
Let G − V ′ = G(V − V ′) denote the subgraph obtained by removing the vertex set V ′ from G. For any
subgraph G′ = (V ′, E′), G − G′ = G − V ′. For any two graphs G1 = (V1, E1) and G2 = (V2, E2), their
union graph is G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

The distance between two nodes u, v in G, denoted distG(u, v), is the length of the shortest path between
u and v in G. If there is no path connecting the nodes, then distG(u, v) = ∞. The j-neighborhood of a
node v in G is Nj(v, G) = {w ∈ V |distG(v, w) ≤ j}. For V ′ ⊆ V , the j-neighborhood of V ′ in G is
Nj(V ′, G) = {Nj(v, G)|v ∈ V ′}. If G is connected, the radius of a node v ∈ V with respect to G is
rad(v, G) = maxw∈V (distG(v, w)). The radius of G is defined as rad(G) = minv∈V (rad(v, G)). If G is
not connected, rad(G) = ∞.

Covers. Consider a set of vertices C ⊆ V in graph G = (V,E). The set C is called a cluster if the
induced subgraph G(C) is connected. When the context is clear, we will use C to refer to G(C). Let
Z = {C1, C2, . . . , Ck} be a set of clusters in G. For every node v ∈ G, let Z(v) ⊆ Z denote the set of
clusters that contain v. The degree of v in Z is defined as deg(v, Z) = |Z(v)|. The degree of Z is defined
as deg(Z) = maxv∈V deg(v, Z). The radius of Z is defined as rad(Z) = maxC∈Z(rad(C)).

4



For γ > 0, a set of clusters Z is said to γ-satisfy a node v in G, if there is a cluster C ∈ Z, such that
Nγ(v,G) ⊆ C. A set of clusters Z is said to be a γ-cover for G, if every node of G is γ-satisfied by Z in
G. We also say that Z γ-satisfies a set of nodes X in G, if every node in X is γ-satisfied by Z in G (note
that he γ-neighborhood of the nodes in X is taken with respect to G).

Path Separators. A graph G with n nodes is k-path separable [1] if there exists a subgraph S, called the
k-path separator, such that: (i) S = P1 ∪ P2 ∪ · · · ∪ P`, where for each 1 ≤ i ≤ ` subgraph Pi is the union
of ki shortest paths in G − ⋃

1≤j<i Pj , (ii)
∑

i ki ≤ k, and (iii) either G − S is empty, or each connected
component of G − S is k-path separable and has at most n/2 nodes. For instance, any rectangular mesh is
1-separable by taking S to be the middle row path. Trees are also 1-separable by taking S to be the center
node whose brunching subtrees have at most n/2 nodes. Thorup [24] shows how to compute in polynomial
time a 3-path separator for planar graphs.

Graph Minors. The contraction of edge e = (u, v) in G is the replacement of vertices u and v by a single
vertex whose incident edges are all the edges incident to u or to v except for e. A graph H is said to be a
minor of graph G, if H is a subgraph of a graph obtained by a series of edge contractions starting from G.
Graph G is said to be H-minor-free, if H is not a minor of G. Abraham and Gavoille [1] generalize the
result of Thorup [24] for the class of minor-free graphs:

Theorem 2.1 (Abraham and Gavoille [1]) Every H-minor-free connected graph is k-path separable, for
some k = k(H), and a k-path separator can be computed in polynomial time.

We note that in Theorem 2.1, the parameter k is exponential in the size of the minor. Some interesting
classes of H-minor-free graphs are: trees, which exclude K3, outerplanar graphs, which exclude K4 or
K2,3, series-parallel graphs, which exclude K4, and planar graphs, which exclude K5 or K3,3.

3 Shortest Path Clustering
Consider an arbitrary weighted graph G, and a shortest path p between a pair of nodes in G. For any β > 0,
we construct a set of clusters R, which β-satisfies every node of p in G. The returned set R has a small radius
(2β) and a small degree (3). Algorithm 1 (Shortest-Path-Cluster) contains the details of the construction
of R. Lemma 3.1 establishes the correctness of Algorithm 1.

Lemma 3.1 For any graph G, shortest path p ∈ G and β > 0, the set R returned by Algorithm Shortest-
Path-Cluster(G, p, β) has the following properties: (i) R is a set of clusters that β-satisfies p in G; (ii)
rad(R) ≤ 2β; (iii) deg(R) ≤ 3.

Proof: For property i, it is easy to see that R is a set of clusters, since each Ai is a connected subgraph of
G consisting of the β-neighborhood of a subpath pi of p. For each node v ∈ pi, Ai β-satisfies v in G, since
it contains Nβ(v, G). Thus, R β-satisfies p in G.

For property ii, we show that each cluster Ai has radius no more than 2β. Let vi be an arbitrary vertex
in pi. By the construction, for any node v ∈ pi, it must be true that distG(vi, v) ≤ β. Since any node
u ∈ Ai is at a distance of no more than β from pi, there is a path of length at most 2β from vi to u. Thus,
rad(R) ≤ 2β.

For property iii, suppose for the sake of contradiction that deg(R) ≥ 4. Let v be a node with degree
deg(v,R) = deg(R). Then v belongs to at least 4 clusters, say: Ai, Aj , Ak, and Al, with i < j < k < l.
Since v belongs to Ai, there is a path qi of length at most β between v and some node vi ∈ pi. Similarly,
there exists a path ql of length at most β between v and some node vl ∈ pl. By concatenating qi and ql,
we obtain a path of length at most 2β connecting vi and vl. On the other hand, both vi and vl lie on p,

5



Algorithm 1: Shortest-Path-Cluster(G, p, β)
Input: Graph G; shortest path p ∈ G; parameter β > 0;
Output: A set of clusters that β-satisfies p;

Suppose p = v1, v2, . . . , v`;
// partition p into subpaths p1, p2, . . . , ps of length at most β
i ← 1; j ← 1;
while i 6= ` + 1 do

Let pj consist of all nodes vk such that i ≤ k ≤ ` and distG(vi, vk) ≤ β;
j ← j + 1;
Let i be the smallest index such that i ≤ ` and vi is not contained in any pk for k < j. If no such i
exists, then i = ` + 1;

end
Let s denote the total number of subpaths p1, p2, . . . , ps of p generated;
// cluster the subpaths
for i = 1 to s do

Ai ← Nβ(pi, G);
end
R ← ⋃

1≤i≤s Ai;
return R;

which is a shortest path in G, and hence the path from vi to vl on p must be a shortest path from vi to
vl. Let vj and vk denote the nodes on pj and pk respectively, that are closest to vi. By the construction,
distG(vj , vk) > β, since otherwise, vk would have been included in pj . Similarly, distG(vk, vl) > β. Since
distG(vi, vl) > distG(vj , vk) + distG(vk, vl), it follows that distG(vi, vl) > 2β, a contradiction. Thus,
deg(R) ≤ 3.

4 Sparse Cover for k-Path Separable Graphs
We now present Algorithm 2 (Separator-Cover), which returns a cover with a small radius and degree
for any graph that has a k-path separator. Theorem 4.1 establishes the correctness and the properties of
Algorithm Separator-Cover, and uses Lemma 4.1, which gives some useful properties about clusters. The
proofs have been moved to the appendix due to space constraints, and proof sketches are provided here.

Lemma 4.1 Let C be a set of clusters that 2γ-satisfies a set of nodes W in graph G. If some set of clusters
D is a γ-cover for G−W , then C ∪D is a γ-cover for G.

Sketch of proof: The set of clusters C γ-satisfies not only W but also Nγ(W,G) in G. For any vertex
v 6∈ Nγ(W,G), since Nγ(v, G) ∩W = φ, if a set of clusters γ-satisfies v in G−W , it also γ-satisfies v in
G. Hence C ∪D is a γ-cover for G.

Theorem 4.1 (k-Path Separable Graphs) For any connected k-path separable graph G with n nodes, and
locality parameter γ > 0, Algorithm Separator-Cover(G, γ) returns set Z which has the following prop-
erties: (i) Z is a γ-cover for G; (ii) rad(Z) ≤ 4γ; (iii) deg(Z) ≤ 3k(lg n + 1).

Sketch of proof: For property i, we note that the algorithm repeatedly constructs a 2γ cover of a set of
shortest paths P in graph G and recursively clusters G−P . From Lemma 4.1, a γ-cover of (G−P ), when

6



Algorithm 2: Separator-Cover(G, γ)
Input: Connected graph G that is k-path separable; locality parameter γ > 0;
Output: γ-cover for G;

// base case
if G consists of a single vertex v then

Z ← {v};
return Z;

end
// main case
Let S = P1 ∪ P2 ∪ · · · ∪ Pl be a k-path separator of G;
for i = 1 to l do

foreach p ∈ Pi do
Ai ← Shortest-Path-Cluster(G−⋃

1≤j<i Pj , p, 2γ);
end

end
A ← ⋃

1≤i≤l Ai;
G′ ← G−⋃

1≤j≤l Pj ;
// recursively cluster each connected component
Let G′

1, G
′
2, . . . , G

′
r denote the connected components of G′;

B ← ⋃
1≤i≤r Separator-Cover(G′

i, γ);
Z ← A ∪B;
return Z;

combined with a 2γ-cover of P in G yields a γ-cover of G. The formal proof uses induction on number of
vertices in G.

For property ii, we note that each cluster is obtained from an invocation of Algorithm Shortest-Path-
Cluster with input argument β = 2γ. From Lemma 3.1, the radius of each cluster is at most 2β = 4γ.
Thus, rad(Z) ≤ 4γ.

For property iii, we visualize the recursive invocations of the algorithm as a tree T , where each node
of T is associated with an input graph on an invocation of the recursive algorithm. Due to the balancing
property of a path separator, the depth of the tree is no more than lg n. Each vertex v ∈ G appears in the
graphs corresponding to all nodes in T that lie on a single path starting from the root; the number of tree
nodes on this path is no more than (lg n + 1). The number of clusters that v appears in is bounded by
(lg n + 1) times 3k, the factor of 3k arising due to the fact that calling Shortest-Path-Cluster on each of
the k shortest paths in the separator for any node in T can lead to v appearing in no more than 3 clusters
(due to Lemma 3.1).

Upon combining Theorem 4.1 with Theorem 2.1, we get the following.

Theorem 4.2 (Minor-free Graphs) For any graph G that excludes a fixed size minor H , given a parameter
γ > 0, there is an algorithm that returns in polynomial time a set of clusters Z with the following properties:
(i) Z is a γ-cover for G; (ii) rad(Z) ≤ 4γ; (iii) deg(Z) ≤ 3k(lg n + 1); where k = k(H) is a parameter
that depends on the size of the excluded minor H .

7



5 Sparse Cover for Planar Graphs
Since every planar graph is 3-path separable [24], Theorem 4.1 immediately yields a γ-cover for a planar
graph with radius O(γ) and degree O(log n). In this section, we present an improved cover for planar graphs
whose radius is O(γ) and degree O(1), both of which are optimal up to constant factors.

Consider a connected planar graph G = (V, E). If G is disconnected, then it can be handled by cluster-
ing each connected component separately. Consider also an embedding of G in the Euclidean plane where
no two edges cross each other. In the following discussion, we use G to refer to the planar embedding of the
graph. The edges of G divide the Euclidean plane into closed geometric regions called faces. The external
face is a special face that surrounds the whole graph; the other faces are internal. A node may belong to
multiple faces, while an edge to at most two faces. A node (edge) that belongs to the external face will
be called external. For any node v ∈ G we denote by depth(v,G) the shortest distance between v and
an external node of G. We also define depth(G) = maxv∈V depth(v, G); note that depth(G) ≥ 0. The
vertices of G are divided into layers so that layer Li consists of all nodes at depth i (layer L0 are the external
nodes). Note also that any subgraph of G is planar.

At a high level, our sparse cover algorithm breaks up G into many overlapping planar subgraphs called
zones such that the depth of each zone is O(γ), and clustering each zone separately is sufficient to cluster
the whole graph. This way, we can focus on clustering only planar graphs whose depth is not much more
than γ. In particular, our algorithm is divided into two parts: (i) Algorithm Depth-Cover, which clusters
graph G such that depth(G) ≤ γ (will be used to clusters the zones), and (ii) Algorithm Planar-Cover,
which handles the general case by applying Algorithm Depth-Cover to the zones. We now proceed with
the description of Algorithms Depth-Cover and Planar-Cover in Sections 5.1 and 5.2, respectively.

5.1 Algorithm Depth-Cover

We present Algorithm 3 (Depth-Cover) which constructs a γ-cover for planar graph G for the case γ ≥
max(depth(G), 1). The resulting cover has radius no more than 8γ and degree no more than 6. We describe
the intuition of the algorithm (the formal proofs can be found in the appendix). The algorithm uses as a
subroutine Algorithm 4 (Subgraph-Clustering) to do most of the work.

Algorithm 3: Depth-Cover(G, γ)
Input: Connected planar graph G; parameter γ ≥ max(depth(G), 1);
Output: A γ-cover for G;

Let v1 be an external node of G;
Z ← Subgraph-Clustering(G,G, v, γ);

return Z;

Algorithm Depth-Cover allows us to focus on satisfying only the external nodes in G. Since depth(G) ≤
γ, if a set of clusters S 2γ-satisfies every external node in the graph, then S is a γ-cover for G. The reason is
that every internal node u is within a distance of γ from some external node v, and the cluster that contains
the 2γ-neighborhood of v will also contain the γ-neighborhood of u, and will γ-satisfy u. Thus, we can
focus on constructing a set of clusters that 2γ-satisfies each external node of G.

The algorithm begins by selecting an external node of G, which is also trivially a shortest path p in G.
Through shortest-path clustering, it constructs a set of clusters I which 4γ-satisfies p in G, and deletes A,
the 2γ-neighborhood of p in G. Let the resulting connected components in G−A be B = B1, B2, . . .. The
union of I with the 2γ-covers of the Bis results in a 2γ-cover of G. Further, since we are only interested

8



Algorithm 4: Subgraph-Clustering(G,H, p, γ)
Input: Connected planar graph G; connected subgraph H of G (consisting of vertices that are still

unsatisfied); shortest path p ∈ H whose end nodes are external in H; parameter
γ ≥ max(depth(G), 1);

I ← Shortest-Path-Cluster(H, p, 4γ);
A ← N2γ(p,H); H ′ ← H −A;
J ← ∅;
foreach connected component B of H ′ that contains at least one external node of G do

Let Y be the edge-cut between A and B in subgraph H;
Let Y ′ ⊆ Y be the external edges of Y in subgraph H;
Let VB be the nodes of B adjacent to the edges of Y ′;
Let pB be a shortest path in B which connects all the nodes in VB;
J ← J ∪ Subgraph-Clustering(G,B, pB, γ);

end
return I ∪ J;

A1

v1

v3

v2
v2

v3

B′
2

v4

4γ

v2

4γ

v5 v5v3

2γ I1 B1 I1 B1 I2
B2B2

I2

v4

2γ
A2

2γ

(d)(a) (b) (c)

Subgraph-Clustering(G, B1, pB1 , γ)Subgraph-Clustering(G,G, v1, γ)

pB1pB1

pB2

Y2

Y1

Figure 1: Execution example of Algorithm Subgraph-Clustering

in 2γ-satisfying every external node of G, we need not further consider any component in B that does not
contain an external node of G. Thus, the algorithm proceeds by recursively clustering every component in
B that contains at least one external node of G.

Let B ∈ B be a component with at least one external node of G. Shortest path pB is selected as follows.
Suppose Y is an edge-cut between A and B (see Figure 1.a), and Y ′ are the external edges of Y with respect
to G. It can be shown that 1 ≤ |Y ′| ≤ 2 (the proof appears in the appendix). Let VB be the set of nodes
in B that are endpoints of edges in Y ′; we have 1 ≤ |VB| ≤ 2. Path pB is selected to be a shortest path
in B between nodes in VB (if VB has only one vertex, then pB consists of a single node). For example, in
Figure 1.a VB1 = {v2, v3}.

As we show in the analysis, for every node v ∈ I , v /∈ A, either: (i) v appears in the 2γ-neighborhood
of pB for one of the connected components B = Bi, or (ii) v is in a connected component B′ that does
not contain any external nodes of G (for example, see component B′

2 in Figure 1.c). In either case, node v
will be removed in next recursive call, which deletes the 2γ-neighborhood of pB . Thus, v participates in at
most two shortest-path clusterings (of p and pB) and it is satisfied by at least one of these two clusterings.
Since each instance of shortest-path clustering contributes at most 3 to the degree of v (Lemma 3.1), the
total degree of v in the cover is bounded by 6.

Figure 1 depicts an example execution of Algorithm Depth-Cover with the first invocation (Figures 1.a

9



and 1.b) and second invocation (Figures 1.c and 1.d) of the (subroutine) Algorithm Subgraph-Clustering.
In algorithm Subgraph-Clustering(G,H, p, γ), parameters G and γ remain unchanged at each recursive
invocation, while H and p change. Parameter H is the subgraph of G with at least one external node of G,
and it is required to 2γ-satisfy all nodes in H that are also external nodes of G. Parameter p is a shortest
path in H which will be used in clustering in the current invocation. Initially, H = G and p = v1, where v1

is an arbitrary external node of G.
Algorithm Depth-Cover can be implemented in polynomial time with respect to G. Therefore, the

following lemma can be proved:

Lemma 5.1 For any connected planar graph G and γ ≥ max(depth(G), 1), Algorithm Depth-Cover
returns in polynomial time a γ-cover Z with rad(Z) ≤ 8γ and deg(Z) ≤ 6.

It is useful to compare the algorithm for clustering a planar graph with shortest path clustering using
path separators, as in Section 4. When separators are used, the graph is decomposed into small pieces upon
the removal of the separator (which is a set of shortest paths), and the depth of this recursion is bounded by
lg n. However, a vertex of the graph maybe be involved in many clusters due to lg n such separators. In the
case of planar graph, the resulting components Bi are not necessarily much smaller than G, but the shortest
paths are chosen so that the resulting clusters have little overlap.

5.2 General Planar Cover

We now describe the main Algorithm Planar-Cover which given planar graph G, constructs a γ-cover with
radius O(γ) and degree O(1), for any γ ≥ 1. In the algorithm we do the following. If γ ≥ depth(G),
then we invoke Algorithm Depth-Cover(G, γ). However, if γ < depth(G), we first divide G into zone
of layers, where each zone is a subgraph with depth O(γ), and then we cluster each zone with Algorithm
Depth-Cover. The union of the zone clusters gives the resulting cover for G. (The detailed algorithm
appears in the appendix as Algorithm 5.)

We now describe how to construct the zones. Suppose that γ < depth(G). Let κ = d(depth(G)+1)/γe.
We first divide the graph into bands of γ layers, Wj =

⋃
(j−1)γ≤i≤jγ−1 Li, for 1 ≤ j < κ, where the last

band has at most γ layers Wκ =
⋃

(κ−1)γ≤i≤depth(G) Li. The main goal is to γ-satisfy the nodes in each
band Wi. However, in G the γ-neighborhoods of the nodes in Wi may appear in the adjacent bands Wi−1

and Wi+1. For this reason we form the 3γ-zone Si, consisting of bands Wi−1, Wi, and Wi+1 (in particular,
Si = G(Wi−1 ∪Wi ∪Wi+1), where W0 = Wκ+1 = ∅). Si contains the whole γ-neighborhood of Wi.

In this way, we have reduced the problem of satisfying band Wi to the problem of producing a cover
for zone Si, which can be solved with Algorithm Depth-Cover. Since zone Si is a planar graph consisting
of (at most) 3γ layers, depth(Si) ≤ 3γ − 1. We invoke Algorithm Depth-Cover(Si, 3γ − 1) with locality
parameter 3γ − 1, since in Algorithm Depth-Cover the locality parameter has to be at least as much as
the depth of the input graph. The resulting cover for G is the union of all the covers for the zones. Using
Lemma 5.1, and the observation that each zone Si overlaps with at most four other zones (Si−2, Si−1, Si+1,
Si+2), we obtain the main result for planar graphs (the full proof can be found in the appendix):

Theorem 5.1 (Planar Graphs) For any connected planar graph G and parameter γ ≥ 1, Algorithm
Planar-Cover returns in polynomial time a γ-cover Z with rad(Z) ≤ 24γ − 8 and deg(Z) ≤ 30.

10



References
[1] Ittai Abraham and Cyril Gavoille. Object location using path separators. In Proc. ACM Symposium on

Principles of Distributed Computing (PODC), pages 188–197, 2006.

[2] Ittai Abraham, Cyril Gavoille, Andrew Goldberg, and Dahlia Malkhi. Routing in networks with low
doubling dimension. In Proc. International Conference on Distributed Computing Systems (ICDCS),
2006.

[3] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Compact routing for graphs excluding a fixed minor.
In Proc. International Conference on Distributed Computing (DISC), pages 442–456, 2005.

[4] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam Nisan, and Mikkel Thorup. Compact name-
independent routing with minimum stretch. In SPAA, pages 20–24, 2004.

[5] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, and Udi Wieder. Sparse decompositions and routing in
minor free graphs. Personal communication, November 2006.

[6] M. Arias, L. Cowen, K. Laing, R. Rajaraman, and O. Taka. Compact routing with name independence.
In Proc. ACM Symposium on Parallel Algorithms and Architectures, pages 184–192, 2003.

[7] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and Advanced
Topics. McGraw-Hill, 1st edition, 1998.

[8] Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM, 32(4), 1985.

[9] Baruch Awerbuch, Shay Kutten, and David Peleg. On buffer-economical store-and-forward deadlock
prevention. In INFOCOM, pages 410–414, 1991.

[10] Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead. In Proc.
IEEE Symposium on Foundations of Computer Science, pages 514–522, 1990.

[11] Baruch Awerbuch and David Peleg. Sparse partitions (extended abstract). In IEEE Symposium on
Foundations of Computer Science, pages 503–513, 1990.

[12] Baruch Awerbuch and David Peleg. Online tracking of mobile users. In Proc. ACM SIGCOMM
Symposium on Communication Architectures and Protocols, 1991.

[13] Baruch Awerbuch and David Peleg. Online tracking of mobile users. Journal of the ACM, 42(5):1021–
1058, 1995.

[14] Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs. Journal of
the ACM, 41(1):153–180, 1994.

[15] Greg N. Frederickson and Ravi Janardan. Efficient message routing in planar networks. SIAM Journal
on Computing, 18(4):843–857, 1989.

[16] Cyril Gavoille. Routing in distributed networks: overview and open problems. SIGACT News,
32(1):36–52, 2001.

[17] Cyril Gavoille and David Peleg. Compact and localized distributed data structures. Distributed Com-
puting, 16(2-3):111–120, 2003.

11



[18] Philip Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition, and mul-
ticommodity flow. In Proc. 25th annual ACM Symposium on Theory of computing (STOC), pages
682–690, 1993.

[19] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

[20] David Peleg. Distance-dependent distributed directories. Information and Computation, 103(2), 1993.

[21] David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[22] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. Journal of the
ACM, 36(3), 1989.

[23] Lior Shabtay and Adrian Segall. Low complexity network synchronization. In WDAG ’94: Proceed-
ings of the 8th International Workshop on Distributed Algorithms, pages 223–237, London, UK, 1994.
Springer-Verlag.

[24] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs. Jour-
nal of the ACM, 51(6):993–1024, 2004.

[25] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 1–10, 2001.

12



A Proofs of Section 4
Proof of Lemma 4.1 Let C be a set of clusters that 2γ-satisfies a set of nodes W in G. If some set of
clusters D is a γ-cover for G−W , then C ∪D is a γ-cover for G.

Proof: Since C 2γ-satisfies W in G, C also γ-satisfies Nγ(W,G) in G. Thus, C γ-satisfies W∪Nγ(W,G)
in G. Next, consider a vertex u ∈ G − (W ∪ Nγ(W,G)). For any vertex u′ ∈ W , it must be true that
u′ 6∈ Nγ(u,G), since u 6∈ Nγ(W,G), implying that u 6∈ Nγ(u′, G). Thus, Nγ(u,G) lies completely in
G −W . Since D is a γ-cover for G −W , for every vertex u ∈ (G −W ) −Nγ(W,G), D γ-satisfies u in
G−W , and hence in G. For any u′ ∈ W ∪Nγ(W,G), C γ-satisfies u′ in G. Thus, for any v ∈ G, C ∪D
γ-satisfies v in G, and is therefore a γ-cover for G.

Proof of Theorem 4.1 For any connected k-path separable graph G with n nodes, and locality parameter
γ > 0, Algorithm Separator-Cover(G, γ) returns set Z which has the following properties: (i) Z is a
γ-cover for G; (ii) rad(Z) ≤ 4γ; (iii) deg(Z) ≤ 3k(lg n + 1).

Proof: For property i, the proof is by induction on the number of vertices in G. The base case is when G
has only one vertex, in which case, the algorithm is clearly correct. For the inductive case, suppose that for
every k-separable graph with less than n vertices, the algorithm returns a γ-cover for the graph. Let G be a
k-separable graph with n vertices.

The last part of the algorithm recursively calls Separator-Cover on every connected component in G′.
Since the number of vertices of G′ is less than n, the number of vertices in each G′

i is less than n. By the
inductive assumption, for each i = 1, 2, . . . , r, Separator-Cover(G′

i, k, γ) returns a γ-cover for G′
i. The

union of the γ-covers for the connected components of G′ is clearly a γ-cover for G′, hence B is a γ-cover
for G′.

For i = 1, 2, . . . , l + 1, define Gi = G − ⋃
1≤j<i Pj . Clearly, G1 = G and Gl+1 = G′. We will prove

that for all i such that 1 ≤ i ≤ i+1, the set
⋃

i≤j≤l Aj ∪B is a γ-cover for Gi. The proof is through reverse
induction on i starting from i = l+1 and going down until i = 1. The base case i = l+1 is clear since B is
a γ-cover for G′ = Gl+1. Suppose the above statement is true for i = ν, i.e. Aν ∪Aν+1 ∪ . . .∪Al ∪B is a
γ-cover for Gν . Consider Gν−1 = Gν ∪ Pν−1. From the correctness of Algorithm Shortest-Path-Cluster
(Lemma 3.1), we have that Aν−1 2γ-satisfies Pν−1 in Gν−1. Since Aν ∪ Aν+1 ∪ . . . ∪ Al ∪B is a γ-cover
for Gν−1 − Pν−1, using Lemma 4.1 we have Aν−1 ∪ Aν ∪ . . . ∪ Al ∪ B is a γ-cover for Gν−1, thereby
proving the inductive step. Thus, we have

⋃
1≤j≤l Aj ∪B is a γ-cover for G1 = G, proving the correctness

of the algorithm for graph G with n vertices.
For property ii, we note that each cluster is obtained from an invocation of Algorithm Shortest-Path-

Cluster with input argument β = 2γ. From Lemma 3.1, the radius of each cluster is at most 2β = 4γ.
Thus, rad(Z) ≤ 4γ.

For property iii, we visualize the recursive invocations of the algorithm as a tree T , where each node is
associated with an input graph on an invocation of the recursive algorithm. For each node v ∈ T , let G(v)
denote the associated input graph and N(v) denote the number of vertices in G(v). Let r denote the root,
thus G(r) = G. Clearly, for each vertex v ∈ T , G(v) is a connected subgraph in G, and the leaves represent
components that require no further recursive calls. The depth of any node in T is defined as the distance
from the root. The depth of the tree is defined as the maximum depth of any node. For any node v ∈ T , by
the property of the path separator, we have for each child v′ of v, N(v′) ≤ N(v)/2. Since N(r) = n, any
node at a depth of i has no more than n/2i vertices. Since every leaf has at least 1 vertex, the depth of the
tree is no more than lg n.

i



Consider any node u ∈ G. Suppose u belongs to G(v) for some node v in T . At v, clusters are formed
by calling Shortest-Path-Cluster no more than k times. From Lemma 3.1, u appears in no more than
3 clusters returned by each call of Shortest-Path-Cluster. Thus, due to all clusters formed at any node
v, u appears in no more than 3k clusters. Further, if v1, v2, . . . , vx are the children of v, it is clear that
G(v1), G(v2), . . . , G(vx) are all disjoint from each other. Thus, u can belong to at most one component
among G(v1), G(v2), . . . , G(vx). Since the depth of T is no more than lg n, node u can belong to G(v) for
no more than lg n + 1 nodes v ∈ T . Thus, u can belong to at most 3k(lg n + 1) clusters in total, implying
that deg(Z) ≤ 3k(lg n + 1).

B Proofs of Section 5
B.1 Basic Results for Planar Graphs

Here we prove some basic properties of planar graphs which will be used in the correctness and performance
analysis of our algorithms for planar graphs.

For any planar graph G, it holds that the subgraph consisting of the edges of the face is a connected.
This observation also holds for the subgraph induced by the edges of the external face. The intersection of
any two graphs G1 and G2 is denoted G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2). The following lemma can be easily
verified as a property of all planar graphs.

Lemma B.1 Let G′ be a subgraph of a planar graph G. If v ∈ G ∩ G′, and v is external in G, then v is
external in G′ too.

Consider now a connected planar graph C that consists of two connected subgraphs A and B which are
node-disjoint, and a set of edges Y which is an edge-cut between A and B (the removal of Y partitions C
into A and B). Further, each of A and B contains at least one node external to C. Let Y ′ denote the edges
of Y that are external in C.

Lemma B.2 For any two nodes u, v ∈ A∩C which are external in C, there exists a walk w = u, x1, x2, . . . , xk, v,
with k ≥ 0, such that xi ∈ A, and each edge of the walk is external in C.

Proof: Suppose for the sake of contradiction that there exists two nodes u, v ∈ A ∩ C that are external in
C, such that there does not exist a walk w = u, x1, x2, . . . , xk, v, with k ≥ 0, such that xi ∈ A, and each
edge of the walk is external in C. Let fA be the external face of A, and fC be the external face of C. Let S
be the set of connected components (we will refer to them as segments) in fA ∩ fC (all the nodes and edges
that are external in both A and C). Let su ∈ S be the segment that contains u. Similarly, let sv ∈ S be the
segment that contains v.

We know that in C, there exists a walk of external edges that connects su to sv. Thus, in A, external
edges have been removed (edges from Y ′). All removed edges span from A to B. Let lu, ru, lv, rv ∈ B and
elu, eru, elv, erv ∈ Y ′ be removed edges (see Figure 2) (note it is possible that ru = rv and it is possible that
lu = lv). Since B is connected, there exists a walk from lu to lv residing entirely in B. This walk cannot go
through A since V (A) ∩ V (B) = ∅, so it can go directly from lu to lv, or all the way around A (see Figure
2). If it goes all the way around A, it must enclose eru and erv, since this walk cannot include the end nodes
of su or sv because they are in A. Hence, eru and erv are not in the external face of C, and could not have
been in Y ′, a contradiction. Therefore, it must go directly from lu to lv.

Similarly, since B is connected, there exists a walk from ru to rv residing entirely in B. By symmetry,
this walk goes directly from ru to rv as well, without going all the way around A. Once again, we know B
is connected, so there must exist a walk from lu to ru residing entirely in B (see Figure 2). If the walk goes

ii



B
A

B

lv rv

sv

lu
su

ru

elv erv

elu eru

A

eruelu

lv rv

sv

lu
su

ru

elv erv

A

eru

elv erv

elu

lv rv

sv

lu
su

ru

Figure 2: For Lemma B.2: the figure on the left shows a configuration of removed edges that are external
in C and span from A to B (note, if the lemma were not true, B would be disconnected), the figure in
the middle demonstrates the walk options from lu to lv, and the figure on the right demonstrates the walk
options from lu to ru.

e1

e2

w A B

eue

wa

ve

wb

u1

u2

v1

v2

pe qe

wa

w2

e2

e1

e

w1

wn

wb

Figure 3: For Case 2 of Lemma B.3: the figure on the left demonstrates a possible setup, and the figure on
the right demonstrates one of the two possible path configurations.

directly from lu to ru, it must enclose the external segment su, a contradiction. So the walk must go all the
way around A, and therefore encloses the external segment sv, a contradiction.

Therefore, for any two nodes u, v ∈ A∩C that are external in C, there exists a walk w = u, x1, x2, . . . , xk, v,
with k ≥ 0, such that xi ∈ A, and each edge of the walk is external in C.

Lemma B.3 1 ≤ |Y ′| ≤ 2.

Proof: First, we show that |Y ′| ≥ 1. Let fC be the external face of C. Let u ∈ A and v ∈ B be two
external nodes in C. Clearly, u, v ∈ fC . Since fC is connected, there is a path p connecting u and v. Since
Y is an edge-cut for A and B, p contains an edge in Y . Thus, one of the edges of Y is external in C, which
implies that |Y ′| ≥ 1.

We now show that |Y ′| ≤ 2. Suppose for the sake of contradiction that |Y ′| > 2. Choose two edges
e1 = (u1, v1) and e2 = (u2, v2), where e1, e2 ∈ Y ′, u1, u2 ∈ A, and v1, v2 ∈ B. Let p be the walk from u1

to u2 consisting only of edges external in A and in C. Similarly, let q be the walk from v1 to v2 consisting
only of edges external in B and in C. We know these walks exist from Lemma B.2. Construct a closed walk
w using the edges in p ∪ q ∪ e1 ∪ e2.

There are two cases to examine:

iii



e2

D

e1

e

A B

α β

pB
pA

Figure 4: This figure demonstrates the subgraphs and paths described in Lemma B.4.

Case 1: w is an external face of C.
There exists an external edge e ∈ Y ′ such that e 6= e1 and e 6= e2. w does not contain e since e 6∈ A
and e 6∈ B. Therefore, e is not in the external face of C, a contradiction.

Case 2: w is not an external face of C.
That is, there exists an external edge e = (ue, ve), such that e ∈ Y ′, ue ∈ A, ve ∈ B, and e is not
contained within w. Since ue ∈ A, there must exist a walk of external edges pe from ue to some node
wa belonging to w within A, such that E(pe) ∩ E(w) = ∅, V (pe) ∩ V (w) = {wa}, and pe is the
shortest of such walks. Similarly, since ve ∈ B, there must exist a walk of external edges qe from ve

to some node wb belonging to w within B, such that E(qe)∩E(w) = ∅, V (qe)∩ V (w) = {wb}, and
qe is the shortest of such walks (see Figure 3). These walks exist from Lemma B.2. Within w, there
exists two walks consisting entirely of external edges from wa to wb, one goes through the edge e1,
and the other through the edge e2 (from Lemma B.2). Take the shortest of such walks and call them
w1 and w2 respectively. It is clear that w = w1 ∪w2. Let wn be the walk from wa to ue (pe), the edge
e, and the walk from ve to wb (qe). We now have three walks w1, w2, and wn, that connect wa to wb.
The subpaths belonging to A may have common nodes and edges, and the subpaths belonging to B
may have common nodes and edges. However, each walk has a unique external edge (w1 has e1, w2

has e2, and wn has e). In any possible configuration, one of these external edges (either e1 or e2) is
completely enclosed by the other two walks (see Figure 3), and is therefore not in the external face of
C, a contradiction.

Since in both cases we obtained a contradiction, |Y ′| ≤ 2.

Let VB be the nodes adjacent to the edges in Y ′, which are in the graph B. From Lemma B.3, 1 ≤
|VB| ≤ 2. Let pB ∈ B be a shortest path connecting the nodes in VB . Let q = v1, v2, . . . , vk be any path
in B with the following properties: pB and q do not intersect (they have no nodes in common), and v1 is
adjacent to an edge in Y .

Lemma B.4 Node vk belongs to a connected component of B−pB that does not contain any external nodes
of C.

Proof: Let VA denote the nodes of A adjacent to Y ′. From Lemma B.3, 1 ≤ |VA| ≤ 2. Let pA denote
a shortest path between the nodes in VA. The union of the edges of Y ′, pA, and pB induce a connected
subgraph Ĉ of C. Let W denote the set of nodes of C that are contained inside the internal faces (if they
exist) of Ĉ. Finally, let D denote the subgraph of C that is induced by the union of the nodes in W and Ĉ.

iv



Now, we show that all the edges of Y are members of D. Suppose for the sake of contradiction that
there exists some edge e = (u, v), where e ∈ Y , u ∈ A, v ∈ B, and e 6∈ D. Consider first the case where
|Y ′| = 1. Let e = (u, v) ∈ Y ′, with u ∈ A and v ∈ B. We have that pB = v. Thus, q intersects pB , a
contradiction. Consider now the case where |Y ′| = 2. Suppose that Y ′ = {e1, e2}. Since A is connected,
there is a path α ∈ A that connects edge e to a node in pA; similarly, there is a path β ∈ B that connects
edge e to a node in pB (see Figure 4). This implies that either e1 or e2 is not in the external face of C, a
contradiction. Therefore, all the edges of Y are members of D.

Since v1 is adjacent to an edge in Y , we have that v1 ∈ D. Since q does not intersect pB , each node
of q is a member of D, that is, q ∈ D. Let WB denote the nodes of W that are members of B. The nodes
of q are actually members of WB , since none of the nodes of q are external in D. Since the nodes of WB

are separated by the path pB from the remaining nodes of B, in B − pB , the nodes of WB are in connected
components consisting only of nodes of WB . These connected components do not contain any external
nodes of C, since W does not contain external nodes of C. Therefore, vk will belong to such a connected
component in B − pB .

B.2 Proofs of Section 5.1

We first argue about the correctness of the for-loop in Algorithm Subgraph-Clustering. In particular, we
want to show that path pB exists. Consider an iteration with a connected component B of H ′. Since B
contains an external node of G, and B is a subgraph of both H and G, from Lemma B.1, B contains an
external node of H too. Let C be the graph consisting of A, B, and the edges of Y . By the construction of
the path p, we know that graph A also contains external nodes of H (the end nodes of p are external in H).
Therefore, Lemma B.3 can be applied to C, which bounds the number of external edges in Y to be either
one or two, giving 1 ≤ |VB| ≤ 2. Therefore, path pB exists and it can be constructed in a way that its (at
most two) end points are external nodes of H .

We continue with Lemma 5.1, which is a consequence of Lemmas B.6, B.7, and B.8 that we prove below.
In the analysis, it is convenient to represent the execution of Algorithm Depth-Cover as a tree T , where
each node in T corresponds to some invocation of the algorithm. The root r of T corresponds to the first
invocation with parameters (G,G, v1, γ). Suppose, for example, that in the first invocation the removal of
A creates two components H1 and H2 in G, for which the algorithm is invoked recursively with parameters
(G,H1, p1, γ) and (G,H2, p2, γ). Then, these two invocations will correspond in T to the two children
of the root. Suppose that node w ∈ T corresponds to invocation (G,H, p, γ). We will denote by H(w)
the respective input graph H , and we will use a similar notation to denote the remaining parameters and
variables used in this invocation; for example, p(w) is the input shortest path while A(w) is the respective
2γ-neighborhood of p(w) in H(w). As another example, using this notation, the resulting set of clusters is
Z =

⋃
w∈T I(w).

Lemma B.5 For any node v ∈ G, there is a node w ∈ T such that Nγ(v, G) = Nγ(v, H(w)) and v ∈
Nγ(A(w),H(w)).

Proof: By the construction of T , there is a path s = w1, w2, . . . , wk, such that: s ∈ T , k ≥ 1, v ∈ H(wi)
for 1 ≤ i ≤ k, w1 = r (the root of T ), wi is the parent of wi+1 for 1 ≤ i ≤ k− 1, and wk does not have any
child w′ with v ∈ H(w′).

By the construction of T and s, H(wi+1) ⊆ H(wi) for 1 ≤ i ≤ k − 1. Since H(w1) = H(r) = G,
Nγ(v,G) = Nγ(v,H(w1)). Let s′ = w1, w2, . . . , wk′ , where 1 ≤ k′ ≤ k, be the longest subpath of s with
the property that Nγ(v, G) = Nγ(v,H(wi)) for 1 ≤ i ≤ k′. We examine two cases:

v



Case 1: k′ < k
It holds that v ∈ H(wk′), v ∈ H(wk′+1), Nγ(v, G) = Nγ(v, H(wk′)), and Nγ(v,G) 6= Nγ(v, H(wk′+1)).
According to Algorithm Subgraph-Clustering, v belongs to a connected component B of H ′(wk′), such
that B contains an external node of G. Note that B = H(wk′+1) and H ′(wk′) = H(wk′)−A(wk′). Clearly,
v /∈ A(wk′), or else k = k′. Since the γ-neighborhood of v changes between H(wk′) and B = H(wk′+1),
some node u ∈ Nγ(v,H(wk′)) must be a member of A(wk′) (note that only the nodes of A(wk′) are
removed from H(wk′)). Thus, v ∈ Nγ(A(wk′),H(wk′)). Therefore, wk′ is the desired node of T .

Case 2: k′ = k
In this case, it holds that v ∈ H(wk), no child w′ of wk has v ∈ H(w′), and Nγ(v, G) = Nγ(v, H(wk)).
According to Algorithm Subgraph-Clustering, there are two possible scenarios:

Case 2.1: v ∈ A(wk)
This case trivially implies that v ∈ Nγ(A(wk),H(wk)). Thus, wk is the desired node of T .

Case 2.2: v /∈ A(wk)
In this case, it holds that v belongs to a connected component X of H ′(wk) = H(wk)−A(wk), such
that X does not contain any external node of G. Since depth(G) ≤ γ, there is a node x ∈ G that is
external in G and x ∈ Nγ(v,G). Since X does not contain any external node of G, x /∈ Nγ(v, X).
Therefore, Nγ(v, X) 6= Nγ(v, G) = Nγ(v,H(wk)). Thus, the γ-neighborhood of v changes between
H(wk) and X . Hence, some node u ∈ Nγ(v, H(wk)) is a also member of A(wk) (note that only the
nodes of A(wk) are removed from H(wk)), which implies v ∈ Nγ(A(wk), H(wk)). Therefore, wk is
the desired node of T .

Consequently, wk′ is the desired node of T in all cases.

Lemma B.6 Z is a γ-cover for G.

Proof: From Lemma B.5, for each node v ∈ G there is a node w ∈ T such that Nγ(v,G) = Nγ(v, H(w))
and v ∈ Nγ(A(w),H(w)). By Lemma 3.1, p(w) is 4γ-satisfied by I(w) in H(w). Since A(w) =
N2γ(p(w),H(w)), A(w) is 2γ-satisfied by I(w) in H(w), which implies that v is γ-satisfied by I(w)
in H(w). Since Nγ(v,G) = Nγ(v, H(w)), I(w) also γ-satisfies v in G. Since Z =

⋃
w∈T I(w), Z is a

γ-cover for G.

Lemma B.7 rad(Z) ≤ 8γ.

Proof: We have that Z =
⋃

w∈T I(w), where each I(w) is obtained by an invocation of Algorithm
Shortest-Path-Cluster, with parameter β = 4γ. Therefore, by Lemma 3.1, for any w ∈ T , rad(I(w)) ≤
2β = 8γ, which implies that rad(Z) ≤ 8γ.

Lemma B.8 deg(Z) ≤ 6.

Proof: Consider an arbitrary node v ∈ G. We only need to show that deg(v, Z) ≤ 6. Let s = w1, w2, . . . , wk

be the path in T as described in Lemma B.5. According to Algorithm Subgraph-Clustering, the only pos-
sible clusters that v can participate in are I(w1), I(w2), . . . , I(wk). Let i denote the smallest index such that
v ∈ I(wi). We will show that i ∈ {k − 1, k}. We examine two cases:

Case 1: v ∈ A(wi)
In this case, v will be removed with A(wi), and therefore, v will not appear in any child of wi. Consequently,
wi = wk, hence, i = k.

vi



Case 2: v /∈ A(wi)
In this case, v is a member of a connected component B of H ′(wi) = H(wi) − A(wi). There are two
subcases:

Case 2.1: B does not contain any external node of G
In this case, B is discarded, and therefore, v will not appear in any child of wi. Consequently,
wi = wk, hence, i = k.

Case 2.2: B contains an external node of G
If wi = wk, the situation is similar as above, with i = k. So suppose that i < k. According
to Algorithm Subgraph-Clustering, B = H(wi+1). We will show that v ∈ A(wi+1), which im-
plies that wi+1 = wk (the reason is similar to the case where v ∈ A(wi) above). Since v ∈
I(wi), v ∈ N4γ(p,H(wi)) = N2γ(A(wi),H(wi)). Thus, there is a node u ∈ A(wi) such that
v ∈ N2γ(u,H(wi)). Let g = u, x1, x2, . . . , xk, v be a shortest path between u and v in H(wi).
Clearly, length(g) ≤ 2γ. Since u ∈ A(wi) and v is a member of a connected component B of
H ′(wi) = H(wi)−A(wi) with an external node of G, that path g must contain an edge of Y (or else
H(wi) is disconnected). Choose the node xy such that xy ∈ g, xy ∈ B, and xy is adjacent to some
edge of Y . Now, let g′ = xy, xy+1, . . . , xk, v be a subpath of g in B. Clearly, length(g′) ≤ 2γ as
well.

Case 2.2.1: pB and g′ intersect
Then v ∈ N2γ(pB, B) = N2γ(pB,H(wi+1)). Thus, v ∈ A(wi+1). Therefore, wi+1 = wk,
which implies that i = k − 1.

Case 2.2.2: pB and g′ do not intersect
Thus, by Lemma B.4, in B−pB , node v belongs to a connected component B′ that has no exter-
nal nodes of C. Since C is a subgraph of G, Lemma B.1 implies that B′ has no external nodes
of G either. Thus, B′ is discarded at the recursive invocation of the algorithm that corresponds
to the node wi+1. Consequently, wk = wi+1, which implies that i = k − 1.

Consequently, i ∈ {k − 1, k}. Thus, the only clusters that v could possibly belong to are I(wk−1) and
I(wk). Since for each x ∈ T , I(x) is the result of an invocation of Algorithm Shortest-Path-Cluster, from
Lemma 3.1, deg(I(x)) ≤ 3. Therefore,

deg(v, Z) ≤ deg(I(wk−1)) + deg(I(wk)) ≤ 6.

It is easy to verify that algorithm Depth-Cover computes cover Z in polynomial time with respect to
the size of G. Therefore, the main result in this section, Lemma 5.1, follows from Lemmas B.6, B.7, and
B.8.

B.3 Proofs of Section 5.2

The main algorithm for planar coves which handles an arbitrary locality parameter γ is Algorithm 5 (Planar-
Cover). We give the analysis of the algorithm.

Lemma B.9 For γ < depth(G) and 1 ≤ i ≤ κ it holds that: (i) depth(Si) ≤ 3γ − 1; (ii) Nγ(Wi, G) =
Nγ(Wi, Si).

vii



Algorithm 5: Planar-Cover(G, γ)
Input: Connected planar graph G; parameter γ ≥ 1;
Output: A γ-cover for G;

Z ← ∅;
if γ ≥ depth(G) then

Z ← Depth-Cover(G, γ);
else

Let S1, S2, . . . , Sκ be the 3γ-zones of G, where κ = d(depth(G) + 1)/γe;
foreach connected component S of Si do

Z ← Z ∪ Depth-Cover(S, 3γ − 1);
end

end
return Z;

�
�
�
�

γ

Wκ

γ

v

Lj

Lj+γ−1

...

κ ≤ i− 2
u

κ ≥ i + 2

Si

Wi+1

Wi

Wi−1

γ

Figure 5: This figure demonstrates Lemma B.9 part ii. In the figure, κ ≤ i− 2, but the case where κ ≥ i+2
is similar. If u ∈ Nγ(v, G), it must also be in Si.

Proof: We first prove property i. Since L0 contains the external nodes of G, if we remove L0 from G, then
the nodes in L1 become external. Similarly, in G−⋃

0≤j≤k Lj , the nodes in Lk+1 are external.
The outer-layer of a zone or band is the layer with the smallest depth in G. Consider a particular zone

Si. Suppose that Ld is the outer-layer of Si. In Gi = G−⋃
1≤j≤i−2 Wj , the nodes in Ld are external. Since

Si is a subgraph of Gi, from Lemma B.1, the nodes in Ld are external in Si too.
Consider an arbitrary node v ∈ Si. There is a path p = v0, v1, . . . , vl, such that p ∈ G, with v = vl,

and vi ∈ Li, for all 0 ≤ i ≤ l. Let q = vk, vk+1, . . . , vl, denote the longest suffix of p such that q ∈ Si.
Clearly, vk ∈ Ld, that is, vk = vd. Since Si contains at most 3γ layers of G, length(q, Si) ≤ 3γ − 1.
Since Ld is the outer-layer of Si, and the nodes in Ld are external in Si, depth(v, Si) ≤ 3γ − 1. Therefore,
depth(Si) ≤ 3γ − 1.

We now continue to show property ii. Consider an arbitrary node v ∈ Wi. Let Lj be the outer-layer of
Wi. Let u ∈ Nγ(v,G) (see Figure 5). Suppose for the sake of contradiction that u /∈ Si. Then, u ∈ Wk

where k ≤ i− 2 or k ≥ i + 2.
Consider the case where k ≤ i − 2. We have that depth(v, G) ≤ depth(u, G) + γ, since there is a

path from u to v with length at most γ and a path from u to an external node of G with length at most

viii



depth(u, G). However, by the construction of Wk and Wi,

depth(v,G) ≥ depth(u,G) + γ(i− k − 1) + 1
≥ depth(u,G) + γ + 1,

a contradiction. The case where k ≥ i + 2 is similar.
Therefore, u ∈ Si, which implies that Nγ(v,G) ⊆ Si. For each u ∈ Nγ(v, G), there is a path p

with length at most γ between u and v using only nodes in Nγ(v, G). Since Nγ(v, G) ⊆ Si, by the
construction of Si, the same path p also exists in Si. Therefore, Nγ(v,G) = Nγ(v, Si). Consequently,
Nγ(Wi, G) = Nγ(Wi, Si), as required.

Proof of Theorem 5.1 For any connected planar graph G and parameter γ ≥ 1, Algorithm Planar-Cover
returns in polynomial time a γ-cover Z with rad(Z) ≤ 24γ − 8 and deg(Z) ≤ 30.

Proof: If γ ≥ depth(G), Lemma 5.1 implies that Z is a γ-cover for G with rad(Z) ≤ 8γ and deg(Z) ≤ 6.
Thus, we only need to consider the case where γ < depth(G).

Let Zi denote the union of the clusters of the connected components of Si returned by Algorithm Depth-
Cover. From Lemma B.9, depth(Si) ≤ 3γ − 1. Since Algorithm Depth-Cover is invoked with parameter
3γ − 1, from Corollary 5.1, we have that Zi is a γ-cover of graph Si, with rad(Zi) ≤ 24γ − 8, and
deg(Zi) ≤ 6. From Lemma B.9, Nγ(Wi, G) = Nγ(Wi, Si). Thus, if a node v ∈ Wi is γ-satisfied by a
cluster C in Si, then v is also γ-satisfied by C in G. Therefore, band Wi is γ-satisfied by Zi in G. Since
Z =

⋃
i∈[κ] Zi, and V (G) =

⋃
i∈[κ] Wi, we have that Z is a γ-cover for the graph G.

Clearly, rad(Z) ≤ 24γ − 6. For the degree, we observe that each zone Si may overlap (have com-
mon nodes) with the zones Si−2, Si−1, Si+1, Si+2 (whenever these zones exist). Hence, each cluster C ∈
Zi may overlap with clusters in Zi−2, Zi−1, Zi+1, Zi+2. Consequently, for each v ∈ Si, deg(v, Z) ≤∑i+2

j=i−2 deg(v, Zj) ≤ 5 · 6 = 30, giving deg(Z) ≤ 30.

ix


