Dynamic Malleability in MPI Applications

Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymarekd Carlos A. Varela
Department of Computer Science
Rensselaer Polytechnic Institute, 110 8th Street, Troy, ABQA-3590, USA
{elmagk,deselt,szymansk,cvate@cs.rpi.edu

Abstract fication of parallel applications into four categories fram
scheduling perspectiveigid, moldable evolving andmal-
Malleability enables a parallel application’s execution leable Rigid applications require a fixed allocation of pro-
system to split or merge processes modifying the paral-cessors. Once, the number of processors is determined by
lel application’s granularity. While process migration is the user, the application cannot run on a smaller or larger
widely used to adapt applications to dynamic execution en-number of processors. Moldable applications can run on
vironments, it is limited by the granularity of the appli- various numbers of processors. However, the allocation of
cation’s processes. Malleability empowers process migra- processors remains fixed during the runtime of the applica-
tion by allowing the application’s processes to expand or tion. In contrast, both evolving and malleable applicadion
shrink following the availability of resources. We have im- can change the number of processors during execution. In
plemented malleability as an extension to the PCM (Pro- case of evolving applications, the change is triggered by th
cess Checkpointing and Migration) library, a user-level li application itself. While in malleable applications, it gt
brary for iterative MPI applications. PCM is integrated gered by an external resource management system. In this
with the Internet Operating System (I0S), a framework paper, we further extend the definition of malleability by al
for middleware-driven dynamic application reconfigura- lowing the parallel application not only to change the num-
tion. Our approach requires minimal code modifications ber of processors in which it runs but also to change the
and enables transparent middleware-triggered reconfigura granularity of its processes. We demonstrated in previous
tion. We present experimental results that demonstrate thework [2] that adapting the process-level granularity aow
usefulness of malleability. for more scalable and flexible application reconfiguration.
Existing approaches to application malleability have fo-
cused on processor virtualization (e.g [5]) by allowing the
1 Introduction number of processes in a parallel application to be much
larger than the available number of processors. This strat-
Application reconfigurationmechanisms are becoming €9V allows flexible and efficient load balancing through pro-
increasingly popular as they enable distributed applica- €SS migration. Processor _/lr_tuallzatlon can be benetsial
tions to cope with dynamic execution environments such More and more resources join the system. However, when
as non-dedicated clusters and grids. In such large-scale he '6SOUrces slow down or become unavailable, certain nodes
erogeneous execution environments, traditional apjficat C&" €nd up with a large number of processes. The node-
or middleware models that assume dedicated resources of€Ve! Performance is then impacted by the large number of
fixed resource allocation strategies fail to provide the de- Processes it hosts because of the small granularity of each
sired high performance that applications expect from large Process which causes unnecessary context-switching over-
pools of resources that are being made available by compu1€2d and increases inter-process communication. On the
tational grids. Reconfigurable applications offer impmve Other hand, having a large process granularity does not al-
application performance. They also offer better overall Ways Yield the best performance because of the memory-
system utilization since they allow more flexible and effi- Nierarchy. In such cases, it is more efficient to have pro-
cient scheduling policies [11]. Hence, there is a need for €6SS€S With data that can fit in the lower level of memory
new models targeted at both the application-level and the¢@ches’ hierarchy. To illustrate how the granularity of-pro
middleware-level that collaborate to adapt applicatians t C€SS€S impacts performance, we have run an iterative ap-
the fluctuating nature of shared grid resources. plication with different numbers of processes on the same

Feitelson and Rudolph [3] provide an interesting classi- dedicated node. The larger the number of processes, the

350 ‘ ‘ ‘ ‘ ‘ ronments and will benefit tremendously from dynamic re-
configuration. Malleability for MPI has been implemented
sor /\ 1 in the context of I0S [7, 6] to shift the concerns of recon-
o figuration from the applications to the middleware.
\ The rest of the paper is organized as follows. Section 2
200 / \] presents the adopted approach of malleability in MPI1 appli-
/ \ cations. Section 3 introduces the PCM library extensions
150} \ 1 for malleability. Section 4 discusses the runtime system fo
/ "* malleability. Section 5 presents performance evaluatfon.
w0/ 1 discussion of related work is given in Section 6. Section 7
/ wraps the paper with concluding remarks and discussion of
0 10 20 s s 50 60 future work.

Process Granularity (Kbytes)

250 | \

Throughput (lterations/s)

50

Figure 1. Throughput of an iterative applica- 2 Design Decisions for Malleable Applica-
tion as the data granularity of the processes tions

increases on a dedicated dual-processor

node.

There are operational and behavioral issues that need
smaller the data granularity of each process. Figure 1 showso be addressed when deciding how to reconfigure appli-
an experiment where the parallelism of a data-intensive it- cations though malleability and/or migration. Operationa
erative application was varied on a dual-processor node. Inissues involve determining how to split and merge the ap-
this example, having one process per node did not give theplication’s processes in ways that preserve the semantics
best performance, but increasing the parallelism beyond aand correctness of the application. The operational issues
certain point also introduces a performance penalty. are heavily dependent on the application’s model. On the

Load balancing using only process migration is further other hand, behavioral issues decide when should a pro-
limited by the application’s process granularity over glgar cess split or merge, how many more processes to split and
and dynamic environments [2]. In such environments, it is how many should merge, and what is the proper mapping
impossible to predict accurately the availability of resms of the processes to the physical resources. These issues ren
at application’s startup and hence determine the right-gran der programming for malleability and migration a complex
ularity of the application. Hence, an effective alternatis task. To facilitate application’s reconfiguration from a de
to allow applications’ processes to expand and shrink op-veloper's perspective, middleware technologies needto ad
portunistically as the availability of the resources ctemg dress reconfiguration behavioral issues. Similarly, fies
dynamically. Over-estimating by starting with a very small need to be developed to address the various operational is-
granularity might degrade the performance in case of asues at the application-level. This separation of concerns
shortage of resources. At the same time, under-estimatingallows the middleware-level reconfiguration policies to be
by starting with a large granularity might limit the appli- widely adopted by various applications.
cation from potentially utilizing more resources. The best Several design parameters come to play when deciding
approach is therefore to enable dynamic process grarularit how to split and merge an application’s parallel processes.

changes through malleability. Usually there is more than one process involved in the split
MPI (Message Passing Interface) is widely used to build or merge operations. The simplest scenario is performing
parallel and distributed applications for cluster and ggis- binary split and merge, which allows a process to merge into

tems. MPI applications can be moldable. However, MPI two processes or two processes to merge into one. Binary
does not provide explicit support for malleability and mi- malleable operations are more intuitive since they mirméc th
gration. In this paper we focus on the operational aspectsbiological phenomena of cell division. They are also highly
of making iterative MPI applications malleable. lIterative concurrent since they could be implemented with a mini-
applications are a broad and important class of parallel ap-mal involvement of the rest of the application. Another ap-
plications that include several scientific applicationstsu proach is to allow a process to merge iddoprocesses and
as partial differential equation solvers, heat-wave dqnat N processes to merge into This approach, in the case of
solvers, particle simulations, and circuit simulationter- communication intensive applications, could increase sig
ative applications have the property of running as slow as nificantly the communication overhead and could limit the
the slowest process. Therefore they are highly prone to per-scalability of the application. It could also easily cauatad
formance degradations in dynamic and heterogeneous enviimbalances. This approach would be useful when there are
large fluctuations in resources. The most versatile approac

[] !
E? |:| g Legend
H — o m— S
= 8 Data Gells
P, % == 8 - Boundary Cells
= © 4———— Ghast Cell Exchange
P1+l % — %) '_I_’ 4-pt update stencil
: T 5
Pl] 204 [] b
b, [] L] P
5
ﬁ%’
8
Figure 2. An example of the M to N split op- £ L "
eration. é
]
©
g
PO P1 P2 Pn—‘\

Figure 4. Parallel domain decomposition of a
regular 2-dimensional problem

volved in re-arranging the communication structures expli
itly: these are provided by the built-in PCM library. The
programmer needs only to specify the domain decomposi-
tion for the particular application in hand. There are diffe

] ent ways of subdividing data among processes, it is impera-
Figure 3. An example of the M to N merge tive for programmers to guide the split and merge operations
operation. for data-redistribution.

is to allow for collective split and merge operations. Irsthi e L .

case, the semantics of the split or merge operations allow3 M odifying MPI Applicationsfor Malleabil-

any number of\/ processes to split or merge into any other Ity

number of N processes. Figures 2 and 3 illustrate example

behaviors of split and merge operations. In the case of the PCM (Process Checkpointing and Migration) [7] is a li-

M to N approach, data is redistributed evenly among the brary that allows iterative MPI programs to be dynamically

resulting processes when splitting. What type of operation reconfigurable by providing the necessary tools for check-

is more useful depends on the nature of applications, the depointing, and migration of MPI processes. PCM is imple-

gree of heterogeneity of the resources, and how frequentlymented entirely in the user-space to allow portability & th

the load fluctuates. used checkpointing and migration scheme across different
While process migration changes mapping of applica- platforms.

tion’s processes to physical resources, split and merge op-

erations go beyond that by changing the communication3.1 The PCM API

topology of the application, the data distribution, and the

data locality. Splitting and merging causes the communica- PCM has been extended with several routines for split-

tion topology of the processes to be modified because of theting and merging MPI processes. We have implemented

addition of new or removal of old processes, and the data re-split and merge operation for data parallel programs with

distribution among them. This reconfiguration needs to be a 2D data structure and a linear communication structure.

done atomically to preserve application semantics and dataFigure 4 shows the parallel decomposition of the 2D data

consistency. structure and the communication topology of the parallel
In this work we address split and merge for SPMD data processes. Our implementation allows for common data

parallel programs with regular communication patterns. We distributions like block, cyclic, and block-cyclic didbri-

provide high-level operations for malleability based oa th tions.

MPI paradigm. Our approach is high level in that the pro- PCM provides fours classes of services, environmental

grammer is not required to specify when to perform split inquiry services, checkpointing services, global initat

and merge operations and some of the intrinsic details in-tion and finalization services, and collective reconfigorat

PCMD system. To prevent every process from probing the
Table 1. The PCM API Yy p yp P g

’ Service Type Eunction Name ‘ rqntime system, the root process which is usually process
——— - with rank 0 probes the runtime system and broadcasts any
Initialization MPLPCM.Init reconfiguration notifications to the other processes. This
Finalization _ PCMEXxit, PCM Finalize provides a callback mechanism that makes probing non-
Environmental Inquiry PCMProcessStatus intrusive for the application. PCMtatus returns the state
PCM.Commyrank of the reconfiguration to the calling process. It returns dif
PCM Status ferent values to different processes. In the case of a mi-
PCM Merge datacnts gration, PCMMIGRATE value is returned to the process
Reconfiguration PCMReconfigure that needs to be migrated, while PORECONFIGURE is
PCM_Split returned to the other processes. P&dconfigure is a col-
PCM._Split Collective lective function that needs to be called by both the migrat-
PCM Merge ing and non-migrating processes. Similarly PGWLIT
PCM.Merge Collective or PCMLMERGE are returned by the PChtatus function
Checkpointing PCM.oad, PCMStore call in case of a split or merge operation. All processes

collectively call the PCMSplit or PCM Merge functions to
services. Table 1 shows the classification of the PCM API perform a malleable reconfiguration.
calls. We have implemented the to N and M to N split
MPI_PCMLINIT is a wrapper for MPIINIT. The user and merge operations. PCBplit and PCMMerge pro-
calls this function at the beginning of the program. vide thel to N behavior, while PCMSplit_Collective and
MPI_PCMLINIT is a collective operation that takes care of PCM_Merge Collective provide theV to M behavior. The
initializing several internal data structures. It alsod®ea middleware in notified about which form of malleability op-
configuration file that has information about the port num- eration to use implicitly. The values @ff and N are trans-
ber and location of the PCM daemon, a runtime system thatparent to the programmer. They are provided by the middle-
provides checkpointing and global synchronization betwee ware which decides the granularity of the split operation.
all running processes. Split and merge functions change the ranking of the pro-
Migration and malleability operations require the ability cesses, the total number of processes, and the MPI com-
to save and restore the current state of the process(es) to baunicators. All occurrences of MEZOMM_WORLD, the
reconfigured. PC\M5tore and PCM_oad provide storage global communicator with all the running processes, should
and restoration services of the local data. Checkpointingbe replaced with PCMCOMM_WORLD. This latter is a
is handled by the PCMD runtime system that ensures thatmalleable communicator since it expands and shrinks as
data is stored in locations with reasonable proximity tarthe processes get added or removed. All reconfiguration op-
destination. erations happen at synchronization barrier points. The cur
Upon startup, an MPI process can have three differentrent implementation requires no communication messages
states: 1) PCMBTARTED, a process that has been ini- to be outstanding while a reconfiguration function is called
tially started in the system (for example using mpiexec), Hence, all calls to the reconfiguration PCM calls need to
2) PCMLMIGRATED, a process that has been spawned be- happen either at the beginning or end of the loop.
cause of a migration, and 3) PCBPLITTED, a process When a process or group of processes engage in a split
that has been spawned because of a split operation. A proeperation, they determine the new data redistribution and
cess that has been created as a result of a reconfiguratiooheckpoint the data to be sent to the new processes. When
(migration or split) proceeds to restoring its state byingll ~ the new processes are created, they inquire about their new
PCM_Load. This function takes as parameters information ranks and load their data chunks from the PCMD. The
about the keys, pointers, and data types of the data struceheckpointing system maintains an up-to-date database per
tures to be restored. An example includes the size of theprocess rank. Then all application’s processes synchgoniz
data, the data buffer and the current iteration number. Pro-to update their ranks and their communicators. The mal-
cess ranks may also be subject to changes in case of maleable calls return handles to the new ranks and the updated
leability operations. PCMComm.rank reports to the call- communicator. Unlike a split operation, a merge operation
ing process its current rank. Conditional statements a#e us entails removing processors from the MPI communicator.
in the MPI program to check for its startup status. An illus- Merging operations for data redistribution are implemente
tration is given in Figure 6. using MPI scatter and gather operations.
The running application probes the PCMD system to
check if a process or a group or processes need to be re-
configured. Middleware notifications set global flags in the

I ncl ude <npi . h>

int main(int argc,

char xxargv) {
/'l Decl arati ons

MPI _Init(&rgc, &argv);

MPI _Comm rank(MPI _COWM WORLD, &rank);
MPI _Conm si ze(MPI_COMM WORLD, &total Processors);
current _iteration = 0;

// Determine the number of colums for each processor.
xDim= (yDim2) / total Processors;

/llnitialize and Distribute data anong processors

for(iterations=current_iteration;

iterati ons<TOTAL_| TERATI ONS;
iterations++){

/1 Data Conputation.

Exchange of conputed data wi th nei ghboring processes.

I
/1 MPI_Send() || MPI_Recv()

} .
/1 Data Collection
MPI_Barrier(MPl_COMM WORLD);
MPI _Fi nalize();

return O;

}

N

Figure 5. Skeleton of the original MPI code of
an MPI application.

/

3.2 An Example Application

A sample skeleton of a simple MPI-based application is
given in Figure 5. The structure of the example given is
very common in iterative applications. The code starts by
performing various initializations of some data structure
Data is distributed by the root process to all other processe
in a block distribution. The xDim and yDim variables de-
note the dimensions of the data buffer. The program then
enters the iterative phase where processes perform compu
tations locally and then exchange border information with
their neighbors. Figure 6 shows the same application in-
strumented with PCM calls to allow for migration and mal-
leability. In case of split and merge operations, the dimen-
sions of the data buffer for each process might change. The
PCM split and merge take as parameters references to th
data buffer and dimensions and update them appropriately
In case of a merge operation, the size of the buffer needs
to be known so enough memory can be allocated. The
PCM_Mergedatacnts function is used to retrieve the new
buffer size. This call is significant only at processes that
are involved in a merge operation. Therefore a conditional
statement is used to check whether the calling process is
merging or not.

The example shows that it is not complicated to instru-
ment MPI iterative applications with PCM calls. The pro-
grammer is required only to know the right data structures
that are needed for malleability. With these simple instru-

11°

i nclude "npi.h"
#include "pcm api.h"

_

MPI _Comm PCM_COMM VORLD;

int main(int argc,
/1 Decl arati ons

char **xargv) {

int current _iteration, process_status;
PCM St at us pcm st at us;

//declarations for malleability
doubl e *new_buffer;
int merge_rank, nergecnts;

MPI _PCM I nit(&argc, &argv);

PCM_COVM WORLD = MPI _COMM WORLD;
PCM_I ni t (PCM_COMV WCRLD) ;

MPI _Conm r ank(PCM COMM WORLD, &rank);
MPl _Comm si ze(PCM_COMM WORLD, &total Processors);

process_status = PCM Process_Status();

if(process_status == PCM STARTED) {
current _iteration = 0;

/I Determ ne the nunber of columms for each processor.
xDim = (yDim2) / total Processors;

/llnitialize and Distribute data among processors

el se{
PCM_Cormm r ank(PCM_COMM WORLD, &r ank);
PCM Load(rank, "iterator", &urrent_iteration);

PCM Load(rank, "dataw dth", &Din);
prevData = (doubl e *)calloc((xD m-2)*yDi m si zeof (doubl e));
PCM Load(rank, "myArray", prevData);
}
for(iterations=current_iteration; iterations<TOTAL_| TERATI ONS;
iterations++){
pcm status = PCM St at us(PCM_COVWM WORLD) ;
i f(pcmstatus == PCM M GRATE) {
PCM Store(rank,"iterator", & terati ons, PCM I NT, 1);
PCM St or e(rank, "dat awi dt h", &Di m PCM_| NT, 1) ;
PCM St or e(rank, "nyArray", prevDat a, PCM _DOUBLE,
(xDi m+2) xyDi ny ;

PCM_COMWM WORLD = PCM_Reconf i gur e(PCM_COMM WORLD, argv[0]) ;

}
el se if(pcmstatus == PCM _RECONFI GURE)

PCM _Reconf i gur e(&PCM_COMM WORLD, ar gv[0]) ;
MPI _Cormm r ank(PCM_COVM WORLD, &r ank) ;

}
else if(pcmstatus PCM _SPLI T) {
PCM split(prevData, PCM DOUBLE,
& terations, &Dim &Dim &rank,
& ot al Processors, &PCM COW WORLD, argv[0]);

PCM MERGE) {

}else if(pcm status

PCM_Mer ge_dat acnt s(xDi m yDi m &er gecnt s,
&mer ge_r ank, PCM_COVM WORLD) ;
if(rank == nerge_rank)
/*Real | ocate nenory for the data bufferx/
new_buffer = (doubl ex)calloc(nergecnts, sizeof(double));

PCM Merge(prevData, MPI_DOUBLE, &Dim &Dim
new_buffer, mergecnts,
&rank, &t ot al Processors, &PCM COVM WORLD) ;
if(rank == nerge_rank)

prevData = new buffer;

/1 Data Conputation.

/1 Exchange of conputed data wi th nei ghboring processes.
/1 MPI_Send() || MPI_Recv()

}

/1 Data Collection
MPI_Barrier(PCM COMM WORLD) :
PCM Fi nal i ze(PCM_COMM_WORLD) ;

MPI _Fi nal i ze();
return 0;

/

Figure 6. Skeleton of the malleable MPI code
with PCM calls.

25

=
=)
=]

Reconfigurable MPI Process Migrate/
Split/

— Proxy Client Merge
Request
PCM/ PMPI API
Profiling/Control .
Packets PCM Daemon Migrate!
Split/
Iverge

=

N

=)
'

T 20

-
N
o

=

=)

=)
'

)
=

Executione Time (s}
@
o

A 4 ‘ Request
Profiling | MPI Chamnel 108 Channel - 40 s
Invocations Server Server 20
Profiling AP]] r 0 f 0
= econfiguration
NMessage 2 4 10 20 40
10S Agent Number of Processes
. - = Without PCM_E=IWith PCM_~— Overhead % |
N Profiling Decision Protocol | |
Module [Y| Module [° Module
* s Figure 8. Overhead of the PCM library with

malleability
Figure 7. Architecture of the PCM/IOS run-
time environment. performance. The interactions between the reconfigurable
MPI processes and the 10S middleware are shown in Fig-
mentations, the MPI application becomes malleable andure 7. MPI/IOS transparently leverages the dynamic recon-
ready to be reconfigured by IOS middleware. figuration features of IOS modules.

4 Middleware Servicesfor Malleability 5 Performance Results

The PCM Daemon (PCMD) exists during the entire du- Application Case Study. We have used a fluid dynamic
ration of the application and spans across several recenfiguproblem that solves heat diffusion in a solid for testing-pur
rations. The PCMD is responsible for handling checkpoint- poses. This applications is representative of the largescla
ing services to the MPI processes running in their cluster of highly synchronized iterative mesh-based applications
and forwarding reconfiguration requests. The PCMD needsThe application has been implemented using C and MPI
to be launched by the user before running the MPI applica- and has been instrumented with PCM library calls. We have
tion. The location of the central PCMD and its port number used a simplified version of this problem to evaluate our re-
should be written in a configuration file that needs to be ac- configuration strategies. A two-dimensional mesh of cslls i
cessible to the application prior to its startup. Every node used to represent the problem data space. The mesh initially
that potentially could host an MPI process, also needs tocontains the initial values of the mesh with the boundary
have a local I0S agent. values. The cells are uniformly distributed among the par-

IOS [6] provides several reconfiguration mechanisms allel processors. At the beginning, a master process takes
that allow 1) analyzing profiled application communication care of distributing the data among processors. For each
patterns, 2) capturing the dynamics of the underlying phys- iteration, the value of each cell is calculated based on the
ical resources, and 3) utilizing the profiled information to Vvalues of its neighbor cells. So each cell needs to maintain
reconfigure application entities by changing their mapping a current version of them. To achieve this, processors ex-
to physical resources through migration. 10S adopts a de-change values of the neighboring cells, also referred to as
centralized strategy that avoids the use of any global knowl ghost cells. To sum up, every iteration consists of doing
edge to allow scalable reconfiguration. An IOS system con- computation and exchange of ghost cells from the neigh-
sists of collection of autonomous agents with a peer-ta-pee boring processors.
topology.

The PCM library provides also profiling services that are Overhead Evaluation. To evaluate the overhead of the
based on the MPI profiling interface (PMPI). The profiling PCM profiling and status probing, we have run the heat dif-
library gathers information about the communication tepol fusion problem with and without PCM instrumentation on
ogy of MPI processes, the size of data being transfered, andx cluster of 4 dual-processor nodes. We varied the gran-
the iteration times. The profiled information is sent period ularity of the application and recorded the execution time
ically to the IOS agent to help analyze the performance of of the application. Figure 8 shows that the overhead of the
the running process, detect any performance degradationsPCM library does not exceed 20% of the application’s run-
and decide how to reconfigure the application to improve ning time. This is mainly profiling overhead. The library

70

60

50 1

40 1

30 1

20 4

Throughput (Iterations/s)
Throughput (Iterations/s)

0 500 1000 1500 2000 0 1000 2000 3000 4000 5000 6000

Iteration Number Iteration Number
Figure 9. The experiment illustrates the ex- Figure 10. Gradual adaptation using mal-
pansion and shrinkage capability of the PCM leability and migration as resources leave
library. and join

supports tunable profiling, whereby the degree of profiling dual-processor node. A node left at event 8 which caused
can be decreased by the user to reduce its intrusiveness. two processes to be migrated to one of the participating ma-
chines. A merge operation happened at event 9 in the node

Split/MergeFeatures. An experiment was setup to evalu- with excess processors, which improved the application’s
ate the split and merge capabilities of the PCM malleability throughput.

library. The heat diffusion application was started idigia

with 8 processors. Then, 8 additional processors at itera-6 Related Work

tion 860 were made available. 16 additional processes were

split and migrated to harness the newly available proces- Malleability for MPI applications has been mainly ad-
sors. Figure 9 shows the immediate performance improve-dressed through processor virtualization, dynamic lodd ba
ment that the application experienced after this expansion ancing strategies, and application stop and restart.

The sudden drop in the application’s throughput at itera- Adaptive MPI (AMPI) [4] is an implementation of MPI
tion 860 is due to the overhead incurred by the split opera-puilt on top of the Charm++ runtime system, a parallel ob-
tion. The collective split operation was used in this experi ject oriented library with object migration support. AMPI
ment because of the large number of resources that have erverages Charm++ dynamic load balancing and portability
come available. All the experiments performed were run on features. Malleability is achieved in AMPI by starting the
shared cluster environments which explains the small fluc- applications with a very fine process granularity and rely-
tuations in the application’s throughput for a given apglic ing on dynamic load balancing to change the mapping of

tion’s configuration. processes to physical resources through object migration.
The PCM/IOS library and middleware support provide both
Gradual Adaptation with Malleability and Migration. migration and process granularity control for MPI applica-

The following experiment illustrates the usefulness of-hav tions. Phoenix [10] is a another programming model which
ing thel to N split and merge operations. When the exe- allows virtualization for a dynamic environment by cregtin
cution environment experiences small load fluctuations, a€xtra initial processes and using a virtual name space and
gradual adaptation strategy is needed. The heat applicaProcess migration to load balance and scale applications.
tion was launched on a dual-processor machine with 2 pro- In [11], the authors propose virtual malleability for mes-
cesses. Two binary split operations occurred at events 1sage passing parallel jobs. They apply a processor alloca-
and 2. The throughput of the application decreased a bittion strategy called the Folding by JobType (FJT) that al-
because of the decrease of the granularity of the processet®ows MPI jobs to adapt to load changes. The folding tech-
on the hosting machine. At event 3, another dual-processomique reduces the partition size in half, duplicating thenau
node was made available to the application. Two processeder of processes per processor. In contrast to our work, the
migrated to the new node. The application experienced anMPI jobs are only simulated to be malleable by using mold-
increase in throughput as a result of this reconfiguration. A abilty and the folding technique.

similar situation happened at events 5 and 6, which trig- Process swapping [8] is an enhancement to MPI that uses
gered two split operations and two migrations to another over-allocation of resources and improves performance of

MPI applications by allowing them to execute on the best
performing nodes. The process granularity in this approach
is fixed. Our approach is different in that we do not need to
over-allocate resources initially. The over-allocatiorats

egy in process swapping may not be practical in highly dy-
namic environments where an initial prediction of resosrce
is not possible because of the constantly changing avhkilabi
ity of the resources.

Checkpointing and application stop and restart strategies
have been investigated as malleability tools in dynamic en-
vironments. Examples include CoCheck [9], starFish [1],
and the SRS library [12]. Stop and restart is expensive es-
pecially for applications operating on large data sets. The
SRS library provides tools to allow an MPI program to stop
and restart where it left off with a different process granu-
larity. Our approach is different in the sense that we do not
need to stop the entire application to allow for change of
granularity.

7 Conclusions and Future Work

The paper describes the PCM library framework for
enabling MPI applications to be malleable through split,
merge, and migrate operations. The implementation of mal-
leability operations is described and illustrated throagh
example of a communication-intensive iterative applmati
Different semantics of split and merge are presented and
discussed. Collective malleable operations are more appro
priate in dynamic environments with large load fluctuations
while individual split and merge operations are more appro-
priate in environments with small load fluctuations. Our
performance evaluation has demonstrated the usefulness of
malleable operations in improving the performance of iter-
ative applications in dynamic environments.

This paper has mainly focused on the operational aspect
of implementing malleable functionalities for MPI applica
tions. PCM/IOS is still an ongoing research project. More
work needs to be done to improve the performance of the
PCM library and its scalability, and to devise autonomous
middleware-level policies that decide when it is apprdpria
to change the granularity of the running application, what
is the right granularity, and what kind or split or merge be-

havior to select. We plan to extend the IOS middleware [12]

with malleability policies. Future work include also devis
ing malleability strategies for non-iterative applicaiso

References

[1] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dy-
namic MPI programs on clusters of workstations. Piro-
ceedings of the The Eighth IEEE International Sympo-
sium on High Performance Distributed Computipage 31.
IEEE Computer Society, 1999.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

T. Desell, K. E. Maghraoui, and C. Varela. Malleable
Components for Scalable High Performance Computing
In Proceedings of the HPDC'15 Workshop on HPC
Grid programming Environments and Components (HPC-
GECO/CompFrame) pages 37-44, Paris, France, June
2006. IEEE Computer Society.
D. G. Feitelson and L. Rudolph. Towards convergence in job
schedulers for parallel supercomputers. In D. G. Feitelson
and L. Rudolph, editorsJSSPR volume 1162 ofLecture
Notes in Computer Scienggages 1-26. Springer, 1996.
C. Huang, O. Lawlor, and L. V. Ké&l. Adaptive MPI. InPro-
ceedings of the 16th International Workshop on Languages
and Compilers for Parallel Computing (LCPC Q3Jollege
Station, Texas, October 2003.
C. Huang, G. Zheng, L. K&l and S. Kumar. Performance
evaluation of adaptive mpi. IRPoPP '06: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programmingpages 12—21, New York,
NY, USA, 2006. ACM Press.
K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A.
Varela. The Internet Operating System: Middleware for
adaptive distributed computinglInternational Journal of
High Performance Computing Applications (IJHPCA), Spe-
cial Issue on Scheduling Techniques for Large-Scale Dis-
tributed Platforms20(4):467—-480, 2006.
K. E. Maghraoui, B. Szymanski, and C. Varela. An architec-
ture for reconfigurable iterative mpi applications in dynamic
environments. In R. Wyrzykowski, J. Dongarra, N. Meyer,
and J. Wasniewski, editor®roc. of the Sixth International
Conference on Parallel Processing and Applied Mathemat-
ics (PPAM’2005) number 3911 in LNCS, pages 258-271,
Poznan, Poland, September 2005.
O. Sievert and H. Casanova. A simple MPI process
swapping architecture for iterative applicationsnterna-
tional Journal of High Performance Computing Applica-
tions, 18(3):341-352, 2004.
G. Stellner. Cocheck: Checkpointing and process migration
for MPI. In Proceedings of the 10th International Paral-
lel Processing Symposiympages 526-531. IEEE Computer
Society, 1996.
K. Taura, K. Kaneda, and T. Endo. Phoenix: a Paral-
lel Programming Model for Accommodating Dynamically
Joininig/Leaving Resources. Rroc. of PPoPRPpages 216—
229. ACM, 2003.
G. Utrera, J. Corbah, and J. Labarta. Implementing mal-
leability on mpi jobs. INEEE PACT pages 215-224. IEEE
Computer Society, 2004.
S. S. Vadhiyar and J. Dongarra. Srs: A framework for de-
veloping malleable and migratable parallel applications for
distributed systemdRarallel Processing Letterd 3(2):291—
312, 2003.

