
Dynamic Malleability in MPI Applications

Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and Carlos A. Varela
Department of Computer Science

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA
{elmagk,deselt,szymansk,cvarela}@cs.rpi.edu

Abstract

Malleability enables a parallel application’s execution
system to split or merge processes modifying the paral-
lel application’s granularity. While process migration is
widely used to adapt applications to dynamic execution en-
vironments, it is limited by the granularity of the appli-
cation’s processes. Malleability empowers process migra-
tion by allowing the application’s processes to expand or
shrink following the availability of resources. We have im-
plemented malleability as an extension to the PCM (Pro-
cess Checkpointing and Migration) library, a user-level li-
brary for iterative MPI applications. PCM is integrated
with the Internet Operating System (IOS), a framework
for middleware-driven dynamic application reconfigura-
tion. Our approach requires minimal code modifications
and enables transparent middleware-triggered reconfigura-
tion. We present experimental results that demonstrate the
usefulness of malleability.

1 Introduction

Application reconfigurationmechanisms are becoming
increasingly popular as they enable distributed applica-
tions to cope with dynamic execution environments such
as non-dedicated clusters and grids. In such large-scale het-
erogeneous execution environments, traditional application
or middleware models that assume dedicated resources or
fixed resource allocation strategies fail to provide the de-
sired high performance that applications expect from large
pools of resources that are being made available by compu-
tational grids. Reconfigurable applications offer improved
application performance. They also offer better overall
system utilization since they allow more flexible and effi-
cient scheduling policies [11]. Hence, there is a need for
new models targeted at both the application-level and the
middleware-level that collaborate to adapt applications to
the fluctuating nature of shared grid resources.

Feitelson and Rudolph [3] provide an interesting classi-

fication of parallel applications into four categories froma
scheduling perspective:rigid, moldable, evolving, andmal-
leable. Rigid applications require a fixed allocation of pro-
cessors. Once, the number of processors is determined by
the user, the application cannot run on a smaller or larger
number of processors. Moldable applications can run on
various numbers of processors. However, the allocation of
processors remains fixed during the runtime of the applica-
tion. In contrast, both evolving and malleable applications
can change the number of processors during execution. In
case of evolving applications, the change is triggered by the
application itself. While in malleable applications, it is trig-
gered by an external resource management system. In this
paper, we further extend the definition of malleability by al-
lowing the parallel application not only to change the num-
ber of processors in which it runs but also to change the
granularity of its processes. We demonstrated in previous
work [2] that adapting the process-level granularity allows
for more scalable and flexible application reconfiguration.

Existing approaches to application malleability have fo-
cused on processor virtualization (e.g [5]) by allowing the
number of processes in a parallel application to be much
larger than the available number of processors. This strat-
egy allows flexible and efficient load balancing through pro-
cess migration. Processor virtualization can be beneficialas
more and more resources join the system. However, when
resources slow down or become unavailable, certain nodes
can end up with a large number of processes. The node-
level performance is then impacted by the large number of
processes it hosts because of the small granularity of each
process which causes unnecessary context-switching over-
head and increases inter-process communication. On the
other hand, having a large process granularity does not al-
ways yield the best performance because of the memory-
hierarchy. In such cases, it is more efficient to have pro-
cesses with data that can fit in the lower level of memory
caches’ hierarchy. To illustrate how the granularity of pro-
cesses impacts performance, we have run an iterative ap-
plication with different numbers of processes on the same
dedicated node. The larger the number of processes, the

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

Ite
ra

tio
ns

/s
)

Process Granularity (Kbytes)

Figure 1. Throughput of an iterative applica-
tion as the data granularity of the processes
increases on a dedicated dual-processor
node.

smaller the data granularity of each process. Figure 1 shows
an experiment where the parallelism of a data-intensive it-
erative application was varied on a dual-processor node. In
this example, having one process per node did not give the
best performance, but increasing the parallelism beyond a
certain point also introduces a performance penalty.

Load balancing using only process migration is further
limited by the application’s process granularity over shared
and dynamic environments [2]. In such environments, it is
impossible to predict accurately the availability of resources
at application’s startup and hence determine the right gran-
ularity of the application. Hence, an effective alternative is
to allow applications’ processes to expand and shrink op-
portunistically as the availability of the resources changes
dynamically. Over-estimating by starting with a very small
granularity might degrade the performance in case of a
shortage of resources. At the same time, under-estimating
by starting with a large granularity might limit the appli-
cation from potentially utilizing more resources. The best
approach is therefore to enable dynamic process granularity
changes through malleability.

MPI (Message Passing Interface) is widely used to build
parallel and distributed applications for cluster and gridsys-
tems. MPI applications can be moldable. However, MPI
does not provide explicit support for malleability and mi-
gration. In this paper we focus on the operational aspects
of making iterative MPI applications malleable. Iterative
applications are a broad and important class of parallel ap-
plications that include several scientific applications such
as partial differential equation solvers, heat-wave equation
solvers, particle simulations, and circuit simulations. Iter-
ative applications have the property of running as slow as
the slowest process. Therefore they are highly prone to per-
formance degradations in dynamic and heterogeneous envi-

ronments and will benefit tremendously from dynamic re-
configuration. Malleability for MPI has been implemented
in the context of IOS [7, 6] to shift the concerns of recon-
figuration from the applications to the middleware.

The rest of the paper is organized as follows. Section 2
presents the adopted approach of malleability in MPI appli-
cations. Section 3 introduces the PCM library extensions
for malleability. Section 4 discusses the runtime system for
malleability. Section 5 presents performance evaluation.A
discussion of related work is given in Section 6. Section 7
wraps the paper with concluding remarks and discussion of
future work.

2 Design Decisions for Malleable Applica-
tions

There are operational and behavioral issues that need
to be addressed when deciding how to reconfigure appli-
cations though malleability and/or migration. Operational
issues involve determining how to split and merge the ap-
plication’s processes in ways that preserve the semantics
and correctness of the application. The operational issues
are heavily dependent on the application’s model. On the
other hand, behavioral issues decide when should a pro-
cess split or merge, how many more processes to split and
how many should merge, and what is the proper mapping
of the processes to the physical resources. These issues ren-
der programming for malleability and migration a complex
task. To facilitate application’s reconfiguration from a de-
veloper’s perspective, middleware technologies need to ad-
dress reconfiguration behavioral issues. Similarly, libraries
need to be developed to address the various operational is-
sues at the application-level. This separation of concerns
allows the middleware-level reconfiguration policies to be
widely adopted by various applications.

Several design parameters come to play when deciding
how to split and merge an application’s parallel processes.
Usually there is more than one process involved in the split
or merge operations. The simplest scenario is performing
binary split and merge, which allows a process to merge into
two processes or two processes to merge into one. Binary
malleable operations are more intuitive since they mimic the
biological phenomena of cell division. They are also highly
concurrent since they could be implemented with a mini-
mal involvement of the rest of the application. Another ap-
proach is to allow a process to merge intoN processes and
N processes to merge into1. This approach, in the case of
communication intensive applications, could increase sig-
nificantly the communication overhead and could limit the
scalability of the application. It could also easily cause data
imbalances. This approach would be useful when there are
large fluctuations in resources. The most versatile approach

Figure 2. An example of the M to N split op-
eration.

Figure 3. An example of the M to N merge
operation.

is to allow for collective split and merge operations. In this
case, the semantics of the split or merge operations allow
any number ofM processes to split or merge into any other
number ofN processes. Figures 2 and 3 illustrate example
behaviors of split and merge operations. In the case of the
M to N approach, data is redistributed evenly among the
resulting processes when splitting. What type of operation
is more useful depends on the nature of applications, the de-
gree of heterogeneity of the resources, and how frequently
the load fluctuates.

While process migration changes mapping of applica-
tion’s processes to physical resources, split and merge op-
erations go beyond that by changing the communication
topology of the application, the data distribution, and the
data locality. Splitting and merging causes the communica-
tion topology of the processes to be modified because of the
addition of new or removal of old processes, and the data re-
distribution among them. This reconfiguration needs to be
done atomically to preserve application semantics and data
consistency.

In this work we address split and merge for SPMD data
parallel programs with regular communication patterns. We
provide high-level operations for malleability based on the
MPI paradigm. Our approach is high level in that the pro-
grammer is not required to specify when to perform split
and merge operations and some of the intrinsic details in-

Figure 4. Parallel domain decomposition of a
regular 2-dimensional problem

volved in re-arranging the communication structures explic-
itly: these are provided by the built-in PCM library. The
programmer needs only to specify the domain decomposi-
tion for the particular application in hand. There are differ-
ent ways of subdividing data among processes, it is impera-
tive for programmers to guide the split and merge operations
for data-redistribution.

3 Modifying MPI Applications for Malleabil-
ity

PCM (Process Checkpointing and Migration) [7] is a li-
brary that allows iterative MPI programs to be dynamically
reconfigurable by providing the necessary tools for check-
pointing, and migration of MPI processes. PCM is imple-
mented entirely in the user-space to allow portability of the
used checkpointing and migration scheme across different
platforms.

3.1 The PCM API

PCM has been extended with several routines for split-
ting and merging MPI processes. We have implemented
split and merge operation for data parallel programs with
a 2D data structure and a linear communication structure.
Figure 4 shows the parallel decomposition of the 2D data
structure and the communication topology of the parallel
processes. Our implementation allows for common data
distributions like block, cyclic, and block-cyclic distribu-
tions.

PCM provides fours classes of services, environmental
inquiry services, checkpointing services, global initializa-
tion and finalization services, and collective reconfiguration

Table 1. The PCM API
Service Type Function Name

Initialization MPI PCM Init
Finalization PCMExit, PCM Finalize
Environmental Inquiry PCMProcessStatus

PCM Comm rank
PCM Status
PCM Mergedatacnts

Reconfiguration PCMReconfigure
PCM Split
PCM Split Collective
PCM Merge
PCM MergeCollective

Checkpointing PCMLoad, PCMStore

services. Table 1 shows the classification of the PCM API
calls.

MPI PCM INIT is a wrapper for MPIINIT. The user
calls this function at the beginning of the program.
MPI PCM INIT is a collective operation that takes care of
initializing several internal data structures. It also reads a
configuration file that has information about the port num-
ber and location of the PCM daemon, a runtime system that
provides checkpointing and global synchronization between
all running processes.

Migration and malleability operations require the ability
to save and restore the current state of the process(es) to be
reconfigured. PCMStore and PCMLoad provide storage
and restoration services of the local data. Checkpointing
is handled by the PCMD runtime system that ensures that
data is stored in locations with reasonable proximity to their
destination.

Upon startup, an MPI process can have three different
states: 1) PCMSTARTED, a process that has been ini-
tially started in the system (for example using mpiexec),
2) PCM MIGRATED, a process that has been spawned be-
cause of a migration, and 3) PCMSPLITTED, a process
that has been spawned because of a split operation. A pro-
cess that has been created as a result of a reconfiguration
(migration or split) proceeds to restoring its state by calling
PCM Load. This function takes as parameters information
about the keys, pointers, and data types of the data struc-
tures to be restored. An example includes the size of the
data, the data buffer and the current iteration number. Pro-
cess ranks may also be subject to changes in case of mal-
leability operations. PCMComm rank reports to the call-
ing process its current rank. Conditional statements are used
in the MPI program to check for its startup status. An illus-
tration is given in Figure 6.

The running application probes the PCMD system to
check if a process or a group or processes need to be re-
configured. Middleware notifications set global flags in the

PCMD system. To prevent every process from probing the
runtime system, the root process which is usually process
with rank0 probes the runtime system and broadcasts any
reconfiguration notifications to the other processes. This
provides a callback mechanism that makes probing non-
intrusive for the application. PCMstatus returns the state
of the reconfiguration to the calling process. It returns dif-
ferent values to different processes. In the case of a mi-
gration, PCMMIGRATE value is returned to the process
that needs to be migrated, while PCMRECONFIGURE is
returned to the other processes. PCMReconfigure is a col-
lective function that needs to be called by both the migrat-
ing and non-migrating processes. Similarly PCMSPLIT
or PCM MERGE are returned by the PCMstatus function
call in case of a split or merge operation. All processes
collectively call the PCMSplit or PCM Merge functions to
perform a malleable reconfiguration.

We have implemented the1 to N and M to N split
and merge operations. PCMSplit and PCMMerge pro-
vide the1 to N behavior, while PCMSplit Collective and
PCM MergeCollective provide theN to M behavior. The
middleware in notified about which form of malleability op-
eration to use implicitly. The values ofM andN are trans-
parent to the programmer. They are provided by the middle-
ware which decides the granularity of the split operation.

Split and merge functions change the ranking of the pro-
cesses, the total number of processes, and the MPI com-
municators. All occurrences of MPICOMM WORLD, the
global communicator with all the running processes, should
be replaced with PCMCOMM WORLD. This latter is a
malleable communicator since it expands and shrinks as
processes get added or removed. All reconfiguration op-
erations happen at synchronization barrier points. The cur-
rent implementation requires no communication messages
to be outstanding while a reconfiguration function is called.
Hence, all calls to the reconfiguration PCM calls need to
happen either at the beginning or end of the loop.

When a process or group of processes engage in a split
operation, they determine the new data redistribution and
checkpoint the data to be sent to the new processes. When
the new processes are created, they inquire about their new
ranks and load their data chunks from the PCMD. The
checkpointing system maintains an up-to-date database per
process rank. Then all application’s processes synchronize
to update their ranks and their communicators. The mal-
leable calls return handles to the new ranks and the updated
communicator. Unlike a split operation, a merge operation
entails removing processors from the MPI communicator.
Merging operations for data redistribution are implemented
using MPI scatter and gather operations.

'

&

$

%

#include <mpi.h>
...

int main(int argc, char **argv) {
//Declarations
....

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &totalProcessors);

current_iteration = 0;

//Determine the number of columns for each processor.
xDim = (yDim-2) / totalProcessors;

//Initialize and Distribute data among processors
...

for(iterations=current_iteration; iterations<TOTAL_ITERATIONS;
iterations++){

// Data Computation.
...

//Exchange of computed data with neighboring processes.
// MPI_Send() || MPI_Recv()
...

}

// Data Collection
...
MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();
return 0;

}

Figure 5. Skeleton of the original MPI code of
an MPI application.

3.2 An Example Application

A sample skeleton of a simple MPI-based application is
given in Figure 5. The structure of the example given is
very common in iterative applications. The code starts by
performing various initializations of some data structures.
Data is distributed by the root process to all other processes
in a block distribution. The xDim and yDim variables de-
note the dimensions of the data buffer. The program then
enters the iterative phase where processes perform compu-
tations locally and then exchange border information with
their neighbors. Figure 6 shows the same application in-
strumented with PCM calls to allow for migration and mal-
leability. In case of split and merge operations, the dimen-
sions of the data buffer for each process might change. The
PCM split and merge take as parameters references to the
data buffer and dimensions and update them appropriately.
In case of a merge operation, the size of the buffer needs
to be known so enough memory can be allocated. The
PCM Mergedatacnts function is used to retrieve the new
buffer size. This call is significant only at processes that
are involved in a merge operation. Therefore a conditional
statement is used to check whether the calling process is
merging or not.

The example shows that it is not complicated to instru-
ment MPI iterative applications with PCM calls. The pro-
grammer is required only to know the right data structures
that are needed for malleability. With these simple instru-

'

&

$

%

#include "mpi.h"
#include "pcm_api.h"
...

MPI_Comm PCM_COMM_WORLD;

int main(int argc, char **argv) {
//Declarations
....
int current_iteration, process_status;
PCM_Status pcm_status;

//declarations for malleability
double *new_buffer;
int merge_rank, mergecnts;

MPI_PCM_Init(&argc, &argv);
PCM_COMM_WORLD = MPI_COMM_WORLD;
PCM_Init(PCM_COMM_WORLD);

MPI_Comm_rank(PCM_COMM_WORLD, &rank);
MPI_Comm_size(PCM_COMM_WORLD, &totalProcessors);

process_status = PCM_Process_Status();

if(process_status == PCM_STARTED){
current_iteration = 0;

//Determine the number of columns for each processor.
xDim = (yDim-2) / totalProcessors;

//Initialize and Distribute data among processors
...

}
else{

PCM_Comm_rank(PCM_COMM_WORLD, &rank);
PCM_Load(rank, "iterator",¤t_iteration);
PCM_Load(rank, "datawidth", &xDim);
prevData = (double *)calloc((xDim+2)*yDim,sizeof(double));
PCM_Load(rank, "myArray",prevData);

}

for(iterations=current_iteration; iterations<TOTAL_ITERATIONS;
iterations++){
pcm_status = PCM_Status(PCM_COMM_WORLD);
if(pcm_status == PCM_MIGRATE){

PCM_Store(rank,"iterator",&iterations,PCM_INT,1);
PCM_Store(rank,"datawidth",&xDim,PCM_INT,1);
PCM_Store(rank,"myArray",prevData,PCM_DOUBLE,

(xDim+2)*yDim);

PCM_COMM_WORLD = PCM_Reconfigure(PCM_COMM_WORLD,argv[0]);

}
else if(pcm_status == PCM_RECONFIGURE)
{

PCM_Reconfigure(&PCM_COMM_WORLD,argv[0]);
MPI_Comm_rank(PCM_COMM_WORLD, &rank);

}
else if(pcm_status == PCM_SPLIT){

PCM_split(prevData, PCM_DOUBLE,
&iterations, &xDim, &yDim, &rank,
&totalProcessors, &PCM_COMM_WORLD, argv[0]);

}else if(pcm_status == PCM_MERGE){

PCM_Merge_datacnts(xDim,yDim,&mergecnts,
&merge_rank,PCM_COMM_WORLD);

if(rank == merge_rank)
/*Reallocate memory for the data buffer*/
new_buffer = (double*)calloc(mergecnts, sizeof(double));

PCM_Merge(prevData, MPI_DOUBLE, &xDim, &yDim,
new_buffer, mergecnts,
&rank,&totalProcessors, &PCM_COMM_WORLD);

if(rank == merge_rank)
prevData = new_buffer;

}

// Data Computation.
...

//Exchange of computed data with neighboring processes.
// MPI_Send() || MPI_Recv()
...

}

// Data Collection
...
MPI_Barrier(PCM_COMM_WORLD);

PCM_Finalize(PCM_COMM_WORLD);
MPI_Finalize();
return 0;

}

Figure 6. Skeleton of the malleable MPI code
with PCM calls.

Figure 7. Architecture of the PCM/IOS run-
time environment.

mentations, the MPI application becomes malleable and
ready to be reconfigured by IOS middleware.

4 Middleware Services for Malleability

The PCM Daemon (PCMD) exists during the entire du-
ration of the application and spans across several reconfigu-
rations. The PCMD is responsible for handling checkpoint-
ing services to the MPI processes running in their cluster
and forwarding reconfiguration requests. The PCMD needs
to be launched by the user before running the MPI applica-
tion. The location of the central PCMD and its port number
should be written in a configuration file that needs to be ac-
cessible to the application prior to its startup. Every node
that potentially could host an MPI process, also needs to
have a local IOS agent.

IOS [6] provides several reconfiguration mechanisms
that allow 1) analyzing profiled application communication
patterns, 2) capturing the dynamics of the underlying phys-
ical resources, and 3) utilizing the profiled information to
reconfigure application entities by changing their mappings
to physical resources through migration. IOS adopts a de-
centralized strategy that avoids the use of any global knowl-
edge to allow scalable reconfiguration. An IOS system con-
sists of collection of autonomous agents with a peer-to-peer
topology.

The PCM library provides also profiling services that are
based on the MPI profiling interface (PMPI). The profiling
library gathers information about the communication topol-
ogy of MPI processes, the size of data being transfered, and
the iteration times. The profiled information is sent period-
ically to the IOS agent to help analyze the performance of
the running process, detect any performance degradations,
and decide how to reconfigure the application to improve

Figure 8. Overhead of the PCM library with
malleability

performance. The interactions between the reconfigurable
MPI processes and the IOS middleware are shown in Fig-
ure 7. MPI/IOS transparently leverages the dynamic recon-
figuration features of IOS modules.

5 Performance Results

Application Case Study. We have used a fluid dynamic
problem that solves heat diffusion in a solid for testing pur-
poses. This applications is representative of the large class
of highly synchronized iterative mesh-based applications.
The application has been implemented using C and MPI
and has been instrumented with PCM library calls. We have
used a simplified version of this problem to evaluate our re-
configuration strategies. A two-dimensional mesh of cells is
used to represent the problem data space. The mesh initially
contains the initial values of the mesh with the boundary
values. The cells are uniformly distributed among the par-
allel processors. At the beginning, a master process takes
care of distributing the data among processors. For each
iteration, the value of each cell is calculated based on the
values of its neighbor cells. So each cell needs to maintain
a current version of them. To achieve this, processors ex-
change values of the neighboring cells, also referred to as
ghost cells. To sum up, every iteration consists of doing
computation and exchange of ghost cells from the neigh-
boring processors.

Overhead Evaluation. To evaluate the overhead of the
PCM profiling and status probing, we have run the heat dif-
fusion problem with and without PCM instrumentation on
a cluster of 4 dual-processor nodes. We varied the gran-
ularity of the application and recorded the execution time
of the application. Figure 8 shows that the overhead of the
PCM library does not exceed 20% of the application’s run-
ning time. This is mainly profiling overhead. The library

Figure 9. The experiment illustrates the ex-
pansion and shrinkage capability of the PCM
library.

supports tunable profiling, whereby the degree of profiling
can be decreased by the user to reduce its intrusiveness.

Split/Merge Features. An experiment was setup to evalu-
ate the split and merge capabilities of the PCM malleability
library. The heat diffusion application was started initially
with 8 processors. Then, 8 additional processors at itera-
tion 860 were made available. 16 additional processes were
split and migrated to harness the newly available proces-
sors. Figure 9 shows the immediate performance improve-
ment that the application experienced after this expansion.
The sudden drop in the application’s throughput at itera-
tion 860 is due to the overhead incurred by the split opera-
tion. The collective split operation was used in this experi-
ment because of the large number of resources that have be-
come available. All the experiments performed were run on
shared cluster environments which explains the small fluc-
tuations in the application’s throughput for a given applica-
tion’s configuration.

Gradual Adaptation with Malleability and Migration.
The following experiment illustrates the usefulness of hav-
ing the1 to N split and merge operations. When the exe-
cution environment experiences small load fluctuations, a
gradual adaptation strategy is needed. The heat applica-
tion was launched on a dual-processor machine with 2 pro-
cesses. Two binary split operations occurred at events 1
and 2. The throughput of the application decreased a bit
because of the decrease of the granularity of the processes
on the hosting machine. At event 3, another dual-processor
node was made available to the application. Two processes
migrated to the new node. The application experienced an
increase in throughput as a result of this reconfiguration. A
similar situation happened at events 5 and 6, which trig-
gered two split operations and two migrations to another

Figure 10. Gradual adaptation using mal-
leability and migration as resources leave
and join

dual-processor node. A node left at event 8 which caused
two processes to be migrated to one of the participating ma-
chines. A merge operation happened at event 9 in the node
with excess processors, which improved the application’s
throughput.

6 Related Work

Malleability for MPI applications has been mainly ad-
dressed through processor virtualization, dynamic load bal-
ancing strategies, and application stop and restart.

Adaptive MPI (AMPI) [4] is an implementation of MPI
built on top of the Charm++ runtime system, a parallel ob-
ject oriented library with object migration support. AMPI
leverages Charm++ dynamic load balancing and portability
features. Malleability is achieved in AMPI by starting the
applications with a very fine process granularity and rely-
ing on dynamic load balancing to change the mapping of
processes to physical resources through object migration.
The PCM/IOS library and middleware support provide both
migration and process granularity control for MPI applica-
tions. Phoenix [10] is a another programming model which
allows virtualization for a dynamic environment by creating
extra initial processes and using a virtual name space and
process migration to load balance and scale applications.

In [11], the authors propose virtual malleability for mes-
sage passing parallel jobs. They apply a processor alloca-
tion strategy called the Folding by JobType (FJT) that al-
lows MPI jobs to adapt to load changes. The folding tech-
nique reduces the partition size in half, duplicating the num-
ber of processes per processor. In contrast to our work, the
MPI jobs are only simulated to be malleable by using mold-
abilty and the folding technique.

Process swapping [8] is an enhancement to MPI that uses
over-allocation of resources and improves performance of

MPI applications by allowing them to execute on the best
performing nodes. The process granularity in this approach
is fixed. Our approach is different in that we do not need to
over-allocate resources initially. The over-allocation strat-
egy in process swapping may not be practical in highly dy-
namic environments where an initial prediction of resources
is not possible because of the constantly changing availabil-
ity of the resources.

Checkpointing and application stop and restart strategies
have been investigated as malleability tools in dynamic en-
vironments. Examples include CoCheck [9], starFish [1],
and the SRS library [12]. Stop and restart is expensive es-
pecially for applications operating on large data sets. The
SRS library provides tools to allow an MPI program to stop
and restart where it left off with a different process granu-
larity. Our approach is different in the sense that we do not
need to stop the entire application to allow for change of
granularity.

7 Conclusions and Future Work

The paper describes the PCM library framework for
enabling MPI applications to be malleable through split,
merge, and migrate operations. The implementation of mal-
leability operations is described and illustrated throughan
example of a communication-intensive iterative application.
Different semantics of split and merge are presented and
discussed. Collective malleable operations are more appro-
priate in dynamic environments with large load fluctuations,
while individual split and merge operations are more appro-
priate in environments with small load fluctuations. Our
performance evaluation has demonstrated the usefulness of
malleable operations in improving the performance of iter-
ative applications in dynamic environments.

This paper has mainly focused on the operational aspect
of implementing malleable functionalities for MPI applica-
tions. PCM/IOS is still an ongoing research project. More
work needs to be done to improve the performance of the
PCM library and its scalability, and to devise autonomous
middleware-level policies that decide when it is appropriate
to change the granularity of the running application, what
is the right granularity, and what kind or split or merge be-
havior to select. We plan to extend the IOS middleware
with malleability policies. Future work include also devis-
ing malleability strategies for non-iterative applications.

References

[1] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dy-
namic MPI programs on clusters of workstations. InPro-
ceedings of the The Eighth IEEE International Sympo-
sium on High Performance Distributed Computing, page 31.
IEEE Computer Society, 1999.

[2] T. Desell, K. E. Maghraoui, and C. Varela. Malleable
Components for Scalable High Performance Computing
. In Proceedings of the HPDC’15 Workshop on HPC
Grid programming Environments and Components (HPC-
GECO/CompFrame), pages 37–44, Paris, France, June
2006. IEEE Computer Society.

[3] D. G. Feitelson and L. Rudolph. Towards convergence in job
schedulers for parallel supercomputers. In D. G. Feitelson
and L. Rudolph, editors,JSSPP, volume 1162 ofLecture
Notes in Computer Science, pages 1–26. Springer, 1996.

[4] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI. InPro-
ceedings of the 16th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 03), College
Station, Texas, October 2003.

[5] C. Huang, G. Zheng, L. Kalé, and S. Kumar. Performance
evaluation of adaptive mpi. InPPoPP ’06: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 12–21, New York,
NY, USA, 2006. ACM Press.

[6] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A.
Varela. The Internet Operating System: Middleware for
adaptive distributed computing.International Journal of
High Performance Computing Applications (IJHPCA), Spe-
cial Issue on Scheduling Techniques for Large-Scale Dis-
tributed Platforms, 20(4):467–480, 2006.

[7] K. E. Maghraoui, B. Szymanski, and C. Varela. An architec-
ture for reconfigurable iterative mpi applications in dynamic
environments. In R. Wyrzykowski, J. Dongarra, N. Meyer,
and J. Wasniewski, editors,Proc. of the Sixth International
Conference on Parallel Processing and Applied Mathemat-
ics (PPAM’2005), number 3911 in LNCS, pages 258–271,
Poznan, Poland, September 2005.

[8] O. Sievert and H. Casanova. A simple MPI process
swapping architecture for iterative applications.Interna-
tional Journal of High Performance Computing Applica-
tions, 18(3):341–352, 2004.

[9] G. Stellner. Cocheck: Checkpointing and process migration
for MPI. In Proceedings of the 10th International Paral-
lel Processing Symposium, pages 526–531. IEEE Computer
Society, 1996.

[10] K. Taura, K. Kaneda, and T. Endo. Phoenix: a Paral-
lel Programming Model for Accommodating Dynamically
Joininig/Leaving Resources. InProc. of PPoPP, pages 216–
229. ACM, 2003.

[11] G. Utrera, J. Corbalán, and J. Labarta. Implementing mal-
leability on mpi jobs. InIEEE PACT, pages 215–224. IEEE
Computer Society, 2004.

[12] S. S. Vadhiyar and J. Dongarra. Srs: A framework for de-
veloping malleable and migratable parallel applications for
distributed systems.Parallel Processing Letters, 13(2):291–
312, 2003.

