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Sensor Selection in Arbitrary Dimensions
Volkan Isler, and Malik Magdon-Ismail

Abstract— We address the sensor selection problem which
arises in tracking and localization applications. In sensor se-
lection, the goal is to select a small number of sensors whose
measurements provide a good estimate of a target’s state (such
as location). We focus on the bounded uncertainty sensing model
where the target is a point in thed dimensional Euclidean space.
Each sensor measurement corresponds to a convex, polyhedral
subset of the space. The measurements are merged by intersecting
corresponding sets. We show that, on the plane, four sensors
are sufficient (and sometimes necessary) to obtain an estimate
whose area is at most twice the area of the best possible estimate
(obtained by intersecting all measurements). We also extend this
result to arbitrary dimensions and show that a constant number
of sensors suffice for a constant factor approximation in arbitrary
dimensions. Both constants depend on the dimensionality of the
space but are independent of the total number of sensors in the
network.

Note to Practitioners

In many applications, sensing and communication constraints may

render using all available sensors infeasible. In such scenarios, select-

ing a small number of sensors – whose collaborative performance in

estimating the state of a target is comparable to the best possible

achievable error – becomes important. This paper focuses on sensors

whose measurements can be specified as an intersection of halfspaces

(e.g. cameras, whose measurements correspond to cones). It is proven

that a “small” set of good sensors can be selected from an arbitrary

set of measurements in any dimensiond. Of practical importance are

the two cases:d = 2 (where four sensors suffice for a good estimate)

andd = 3 (eight sensors are enough).

Index Terms— Sensor networks: camera networks and sensor
selection; Computational Geometry and Object Modeling: Geo-
metric algorithms, languages, and systems: minimum enclosing
simplex, polytope approximation.

I. I NTRODUCTION

A sensor-network consists of sensing devices with communi-

cation, computation and sensing capabilities. One of the primary

applications of sensor-networks is tracking. In most systems,

multiple nodes participate in the tracking task and collaboratively
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estimate the location of the target. On the other hand, power

and bandwidth limitations may prevent the utilization of a large

number of sensor nodes at a given time. Consequently, many

researchers focused onsensor selectionso as to choose a small

number of sensors while guaranteeing high quality estimates.

The sensor selection problem is typically formulated as follows.

We are given the location of the sensors as well as prior

information about the location of the target. In addition, we are

given a sensing model, which gives us the quality of an estimate

of the target’s state (e.g. position) for a given set of chosen sensors

and the target’s true state. The goal is to select a small number

of sensors so that the quality of the estimate is high.

We address the sensor selection problem in the bounded un-

certainty sensing model. In the planar version of this model, each

sensor measurement corresponds to a convex subset of the plane.

We merge measurements by intersecting corresponding subsets

and the quality of the estimation is inversely proportionalto the

area of the intersection. This formulation generalizes naturally to

higher dimensions: The state of the target is represented bya point

in R
d. The measurement from a sensors identifies a subset of the

spaceU(s) ⊂ R
d which contains the true state of the target. For

example, in camera-network applications,U(s) is a proper cone

in 3D. In general, the target’s state can be higher dimensional. For

example, it can contain its location and additional attributes such

as its temperature. If a single sensor node contains both position

and temperature sensors, it is natural to minimize the number of

active sensor nodes so as to minimize the total communication in

the network. Therefore, sensor selection in arbitrary dimensions

may be of interest in certain applications.

Recently, sensor selection in the bounded uncertainty model has

been addressed in [14]. The authors showed that when the mea-

surements correspond to convex, polygonal subsets of the plane,

one can choose six sensors such that the resulting uncertainty

from these measurements is at most twice the uncertainty that

would have been obtained by queryingall the sensors [14] – no

matter how large the number of sensors is, six sensors sufficefor

a 2-approximation. In the present work, we improve on this result

in the following directions.

1) We show that, in the planar case four sensors suffice for a

2-approximation. We also show that this result is tight: there

are instances where at least four sensors are needed to obtain

any bounded approximation.
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2) In the 3-d case (e.g. cameras in 3d space), we show that

8 sensors suffice for a 9-approximation, and at least6 are

needed to guarantee bounded approximation.

3) In higher dimensions, we obtain an analogous result. Let

n be the number of sensors in the network andd be the

dimensionality of the space. We show that with aconstant

number of measurements, independent ofn, one can obtain

a constant factor approximation, also independent ofn.

Both constants depend ond. The main tool we use is a

construction of an enclosing simplex of a convex polygon,

which may be of independent interest.

II. RELATED WORK

Sensor selection has received significant recent attention.

In [10], a selection algorithm is presented where the minimum

mean squared error of the best linear estimate of the object posi-

tion in 2-D is the metric for selection. The work in [5] addresses

a generic utility-based sensor selection scheme and presents log

factor approximation algorithms for a class of set-weighted utility

functions. Sensor selection in the bounded uncertainty model on

the plane was studied in [14]. The present work improves on this

result and generalizes it to arbitrary dimensions.

In [21], an information driven sensor queryapproach was

proposed. In this approach, at any given time, only a single

sensor (leader) is active. After obtaining a measurement, the

leader selects the most informative node in the network and

passes its measurement to this node which becomes the new

leader. In subsequent work, researchers addressed leader election,

state representation, and aggregation issues [20], [28]. Asensor

selection method based on the mutual information principleis

presented in [11]. Recently, anentropy based heuristic approach

was proposed [27] which greedily selects the next sensor to reduce

overall uncertainty. The bounded uncertainty model, whichwe

focus on in this paper, is frequently used for localization in the

robotics and sensor-networks literature. Examples can be found

in [8], [24].

A. Related Geometric Results

Here we consider enclosing a convex polytope given by its re-

dundantH-representation (linear inequalities). Enclosing convex

objects is a well researched topic. Typically the convex object is

given by a redundantV -representation (convex hull of vertices).

The typeV andH canonical representations of convex polytopes,

and moving between the two are discussed in [1].

Optimal, or near optimal, linear algorithms exist for con-

structing enclosing simplices in 2 and 3 dimensions, [22], [30].

The centroidal property of minimum enclosing simplices ind-

dimensions was given in [16] which was exploited in analyzing

the degrees of freedom of minimal simplices in [25]. There are

no results on finding minimum enclosing simplices efficiently for

generald By the result of Klee [16], any minimum simplexS

intersects the convex bodyC at every one of its facet centroids.

The centroidal simplexSc with vertices at these centroids has

volume equal tovolume(S)/dd (this folklore result may be

deduced from the result in [7], alternatively see the proof of

Lemma 6.3). By convexity,Sc ⊂ C, and so it immediately

follows that the minimum enclosing simplex is add volume

approximation toC. We give an explicit construction for an

enclosing simplex with a better volume bound by an extra factor

of d. Our construction goes through alocally maximal inscribed

simplex. Dudley [9] gives an efficient construction of enclosing

polytopes for a convex polytope in arbitrary dimension, where

the approximation ratio is a decreasing function of the number

of vertex points in the approximating body. In particular, in

2 and 3 dimensions, a polytope withO(1/ǫ) vertices suffices

(constructive) for anO(ǫ) approximation. We study what can be

done with a small (constant) number of vertices.

Other useful, simple enclosing bodies are parallelepipeds, ellip-

soids and balls, which have been the focus of significant research.

Minimal enclosing parallelepipeds in 2 and 3 dimensions are

studied in [2], [23], [26]. Approximations to minimal enclosing

balls have been studied in arbitrary dimension [18], [29], and it is

shown in [13] that the ellipsoid method can be used to construct

an affine transformation such that the unit ball is containedin

the convex body which in turn is contained in thed
√

d ball. This

immediately gives a construction for an enclosing ellipsoid with

volume approximationd3d/2. Efficient (1 + ǫ)-approximations to

minimum volume ellipsoids are given in [19] and it is shown

in [15] that the minimum volume ellipsoid gives add volume

approximation to the convex polytope. There is no bound on

the number of intersection points of the convex body and the

enclosing ball or ellipsoid, thus simplices and parallelepipeds are

more suited to obtaining good volume approximations with a

small subset of the halfspaces. Other types of constraints,such

as axial symmetry [3], have also been studied. Applicationsof

constructions which tightly enclose a set of points or ballshave

become prevalent, e.g. proximity based algorithms and kernel

methods for clustering [4], [12].

III. PROBLEM FORMULATION

In this section, we formulate the sensor selection problem.We

are given a set of sensors as well as an estimate of the state ofthe

target. A query to a sensors, localizes the object to a subset of the

spaceU(s) ⊂ R
d which contains the state of the target. We call

U(s) themeasurementcorresponding to sensors. We assume that

U(s) is an intersection of halfspaces, i.e., the region to which a
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sensor localizes an object is given by a convex polytope (possibly

unbounded). This certainly applies to many sensor models which

identify the sensed region with a proper cone.

After querying a subsetQ of the sensors, the target can be

“localized” to the set∩s∈QU(s). It is natural to define the

uncertainty of the measurement asvolume(∩s∈QU(s)). Since

intersection is monotonic, it is optimal to query every sensor.

Unfortunately, in most sensor-network applications, thisis not

feasible due to communication and power constraints. We study

what can be achieved with querying only a small, specifically

constant, number of sensors. h5

t h6

h1

h2

h3

h4

We restrict thesensor

selection problem to

halfspace measurements.

This definition

immediately generalizes

to measurements which

are arbitrary convex polytopes, since any convex polytope is an

intersection of a finite number of halfspaces. LetH be a set ofn

halfspaces inRd, whose intersection is bounded and non-empty.

Each halfspacehi ∈ H as a measurement. The setup is illustrated

in the figure above, wheret is the target object. For any subset

of the measurements,H′ ⊆ H, we define the uncertaintyE(H′)

as thed-dimensional volume of the intersection of all halfspaces

in H′ (if it is finite, and∞ otherwise).H′ is a ρ-approximation

to H if E(H′) ≤ ρ · E(H).

IV. SENSORSELECTION ON THEPLANE

We first consider the 2-d problem and show that 4 mea-

surements are enough for a 2-approximation toH. These 4

measurements can be determined inO(n4) by selecting the subset

of size 4 with minimum uncertainty. Practically, this meansthat

No matter how many sensors are available, a carefully

chosen set of four sensors suffices to localize to within

twice the uncertainty attainable using all the sensors

In 2 dimensions, the volume of a convex polytope is its area, so

E(H′) = area(H′). We will explicitly usearea as the uncertainty

measure in the results of this section. We also assume from now

on that the uncertainty when using all the hyperplanes inH is

bounded, i.e., the hyperplanex inH define a convex polygon.

The main tool which will establish our result is Lemma 1 which

bounds the area of the minimum enclosing triangle (MET) for

any convex polygon.

Lemma 1 (Minimum Enclosing Triangle (MET)):Let P be

any convex polygon. Then, there is a triangleT which contains

P satisfying the following two properties:

(i) area(T ) ≤ 2 · area(P );

(ii) at least two edges ofT are parallel to two sides ofP .

Lemma 1 part (i) holds even if the convex polygonP is replaced

by an arbitrary bounded convex shapeC. Lemma 1 part (ii) is

proven in the next section. The remainder of the argument to

establish the advertised result using Lemma 1 is analogous to the

analysis in [14]. We paraphrase some of the results in [14] below.

Theorem 2 (Isler, Bajcsy [14]):Suppose that for any convex

polygon P , one can find a minimum enclosing convex polygon

Q with r edges satisfying the following two properties:

(i) area(Q) ≤ λ · area(P );

(ii) at least k ≤ r edges ofQ intersectP at edges and the

remaining (at most)r − k edges intersectP at a vertex.

Then, for any set of measurementsH, there exists a subsetH′

with |H′| ≤ 2r − k for which area(H′) ≤ λ · area(H).

The basic idea in the proof is that for the edges ofQ which

intersect edges ofP , one selects the measurements corresponding

to those edges inP . The remaining edges ofQ intersect vertices

of P and each vertex ofP corresponds to two measurements. Let

m ≥ k be the number of edges ofQ which intersect edges of

P . Then the total number of measurements ism + 2(r − m) =

2r−m ≤ 2r−k. To conclude, note that these measurements form

a convex polygon which is enclosed inQ and therefore has area

at most that ofQ.

Corollary 4.1: Any set of measurements in 2-dimensions can

be 2-approximated with a subset of at most 4 measurements.

Proof: Apply of Lemma 1 withr = 3, k = 2 andλ = 2 in

Theorem 2.

Isler and Bajcsy [14] used a result similar to Lemma 1 for

minimum enclosing parallelograms withr = 4, k = 2 and

λ = 2 which gave that six measurements was enough. One of

our contributions is to reduce the number of required sensors by

2, without sacrificing on the approximation ratio.

h2

h1

h3 h4

t

Finally, we note that

the 4-measurement result

is optimal, i.e., there exist

settings where any collec-

tion of three measurements

cannot provide a constant

factor approximation to the error. To see this, consider the

arrangement of four measurements shown on the right, with the

target object localized in the shaded box. Intuitively, twomea-

surements serve to localize the position in one of the dimensions

and the other two localize the position in the other dimension.

It is easy to verify that any subset of 3 measurements has an

unbounded uncertainty, and hence an infinite approximationerror.

It is natural to extend this result to higher dimensions, most

practically 3 dimensions. The comments above suggest that two

sensors are needed to localize in each dimension, and in facta

similar example shows that at least2d sensors are necessary for
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a bounded approximation ind dimensions. We conjecture that

this is also an upper bound on the required number of sensors

to obtain a constant factor approximation, however, our analysis

will only yield an upper bound ofd(d + 1) for generald.

A. Proof of the MET Lemma

Let T be an MET for a convex polygonP with area(P ) = 1.

We can assume that every edge ofT must intersect with an edge

or vertex ofP (if not we can accomplish this by shrinkingT ).

First, we show that one can always select a new triangleT ′ with

area(T ′) ≤ area(T ) satisfying property(ii) of Lemma 1. Then,

all that will remain is to show that there exists at least one triangle

satisfying property(i) of Lemma 1. The basic proof idea is to

take any enclosing triangleT and alter it to an enclosing triangle

T ′ without increasing the area and such thatT ′ had one additional

side flush withP . Repeating this argument one more time then

gives part(ii) of Lemma 1. The situation is illustrated below.

B′ B a

Y

A A′

X

Z
Z ′

CC ′

hY hX

ℓ

h

b
c

Let the vertices ofT be A, B, C with respective opposite edges

a, b, c and suppose that fewer than two edges ofT intersect with

edges ofP . We now show how to increase the number of edges

of T which intersect with edges ofP by at least one. So suppose

that two edgesb, c of T intersectP at the verticesX, Y of P .

Orient the triangle with basea and consider the heightshX , hY

of X, Y with respect to the basea. The setup is illustrated in

the figure above. Without loss of generality, we can assume that

hX ≥ hY and leth be the height ofA abovea. Draw the line

ℓ throughA parallel toa and consider the pointA′ which is A

shifted towardX on ℓ. As we shiftA′, we consider the triangle

A′B′C′ in which A′B′ passes throughY , A′C′ passes through

X and B′C′ is on the line passing througha. As we shift A′,

eitherA′B′ will intersect the upper edge ofP at Y or A′C′ will

intersect the lower edge ofP at X. We stop shiftingA′ when

one of these situations occurs (both conditions could also occur

simultaneously). Suppose thatA′C′ intersects the lower edge ofP

at X (A′B′ may or may not intersect the edge atY ). An identical

argument applies in the other case in whichA′B′ intersects the

upper edge ofP at Y . Construct the line parallel toa through

Y which intersectsAC at Z and A′C′ at Z′ with Y Z′ ≤ Y Z

(equality occurs ifhY = hX ).

AY Z and ABC are similar, thereforeh/hY = BC/Y Z;

A′Y Z′ and A′B′C′ are similar thereforeh/hY = B′C′/Y Z′;

thus, we conclude that

B′C′ =
Y Z′

Y Z
BC ≤ BC.

Therefore, area(A′B′C′) ≤ area(ABC) and A′B′C′ is an

enclosing triangle with at least one more edge intersectingan

edge ofP . Iterating this argument, property(ii) follows.

We have not found any published proof of Property(i).

Therefore we present a proof here which will be easy to generalize

to arbitrary dimension. We now show that there exists a triangle

that enclosesP with area at most 2. LetT0 be amaximumarea

triangle that is enclosed byP . Without loss of generality, we can

assume that the verticesA, B, C of T0 are also vertices ofP . (If

not, then some vertex ofT0 is on an edge ofP .

b

A

C

BT0

a

c

This edge must be parallel to

the base ofT0 opposite the vertex,

for if not then we can move the

vertex in the direction of increas-

ing height, increasing the area of

T0, which is a contradiction. If the

edge is parallel to the base, then we can move the vertex along

the edge to a vertex ofP , without changing the area ofT0.) The

final arrangement is illustrated in the figure to the right.

Construct the linesℓA, ℓB , ℓC passing throughA, B, C respec-

tively and parallel to the edgesa, b, c respectively. LetT be the

triangle formed byℓA, ℓB , ℓC as illustrated in figure (a) below.

If any point of P lies outsideT , thenT0 is not a maximum area

inscribed triangle, so every point ofP must be insideT , hence

T enclosesP .

b

A

C

BT0T1

T2

T3

ℓA

ℓB

ℓC

a

c

z

x

y
A

C

B

c

b

a
Ta

Tb

Tc

ℓA

ℓC

ℓB

Z

X

Y

A′

C ′

B′

T0

u

v

w

(a) (b)

The trianglesT1, T2, T3 illustrated in figure (a) above are all

congruent toT0, hence area(T ) = 4 · area(T0). Thus, if

area(T0) ≤ 1
2 , thenarea(T ) ≤ 2 and we are done. So suppose

that area(T0) > 1
2 . We use a different construction to obtain

T . We define three trianglesTa, Tb, Tc as shown in figure (b)

above. LetℓA be the line parallel toa and tangent toP at vertex

X. Thus,Ta is the triangleBCX. Note thatP is divided into

two sub-polygons bya (one which containsA and one which

does not). The sub-polygon which does not containA could

be empty, and soTa could be empty. This does not affect the
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argument.BCX is a maximum area triangle with basea that

can be embeded into the sub-polygon ofP that does not contain

A. Tb and Tc are constructed similarily. Note thatarea(P ) =

1 ≥ area(T0) + area(Ta) + area(Tb) + area(Tc). Let hA be

the altitude inT0 from A to a, and similarily definehB , hC .

Let hX be the altitude fromX to a in Ta, and similarily define

hY , hZ . Thenarea(Ta) = area(T0) · hX/hA, and similarily for

area(Ta), area(Tb). Thus, we have

1 ≥ area(T0) ·
„

1 +
hX

hA
+

hY

hB
+

hZ

hC

«

. (1)

Sincearea(T0) > 1
2 by assumption, we have thathX

hA
+ hY

hB
+

hZ

hC
< 1. TrianglesABC andA′B′C′ are similar. We now bound

area(A′B′C′). Consider enlargingABC into A′B′C′ in three

steps through a sequence of similar triangles:ABC → Auv →
yvC′ → A′B′C′. Let the three length scale factors for these

enlargements beλ1, λ2, λ3. It is easy to verify that

λ1 = 1 +
hX

hA
, λ2 = 1 +

hY

λ1hB
, λ3 = 1 +

hZ

λ1λ2hC
.

The length scale factor for the entire enlargementABC →
A′B′C′ is λ1λ2λ3 which after some manipulation reduces to

λ1λ2λ3 = λ1λ2+ hZ

hC
= λ1+ hY

hB
+ hZ

hC
= 1+ hX

hA
+ hY

hB
+ hZ

hC
. Since

area scales as length squared,area(T ) = (λ1λ2λ3)
2 · area(T0),

we have that

area(T ) =

„

1 +
hX

hA
+

hY

hB
+

hZ

hC

«2

· area(T0)

(a)
≤

„

1 +
hX

hA
+

hY

hB
+

hZ

hC

«

< 2,

concluding the proof (inequality (a) above follows from (1)).

V. A RBITRARY DIMENSION

In this section we show thatd(d + 1) measurements suffice to

obtain add−1-approximation for sensor selection inR
d. For2 and

3 dimensions, tighter results can be shown. We have seen that in

2-dimensions, 4 measurements suffice for a 2-approximation.We

will shortly show that in3-dimensions, 8 sensors (as opposed to

12) suffice for a9-approximation.

The main tool we will need is a bound on the volume of a

minimum enclosing simplex (MES), which is given in the lemma

below.

Lemma 3:Let P be a bounded convex polytope inRd with

minimum enclosing simplexS. Then volume(S) ≤ dd−1 ·
volume(P ).

We present here a sketch of the proof of Lemma 3. The proof

idea is analogous to the 2d-case, and we defer the full technical

details to Section VI. Our proof constructs an enclosing simplex

with the required volume bound from alocally maximal inscribed

simplex. In our context,P is a bounded convex polytope, however

our proof applies to an arbitrary bounded convex body. We note

that finding the maximum enclosed simplex for a convex polytope

is NP-hard [17]. However, finding a locally maximal simplex

(Definition 6.1) is a differentiable local optimization problem,

and hence can be solved efficiently using convex optimization

techniques [6]. Tightly enclosing convex bodies using simple

geometric objects is an important problem, especially as a pre-

cursor to collision detection of point sets, with applications in

computational geometry, machine learning, etc. By Lemma 3,the

feasible set of any number of linear inequalities (assumingit is

non-empty and bounded) is approximated by the feasible set of a

constant number of carefully chosen inequalities. Thus, Lemma 3

may be of independent interest.

Proof Sketch:We begin with the locally largest simplexM

which can be inscribed insideP . If volume(M) is small (at most
1
d ), then analogous to the 2-dimensional case, we show how to

cover P with a simplex whose volume isdd times larger than

volume(M). Thus, anyMES has volume at mostddvolume(M).

On the other hand, ifvolume(M) is large (at least1d ), we show

how to expand every height (perpendicular length from a vertex to

a face) inM slightly so as to encloseP . This results in a new sim-

plex M ′ which is a homothet ofM . We show that the length scale

factor for the enlargement is1+
Pd

i=0
δi

hi
, where for each height

hi in M , the corresponding height inM ′ is hi + δi, increased by

δi. Thus, in this enlargement, the volume increases by a factor

(1+
Pd

i=0
δi

hi
)d. Sincevolume(M) is large, theδi’s are not large,

and infact it is the case that
“

1 +
Pd

i=0
δi

hi

”

volume(M) ≤ 1. It

then follows thatvolume(M ′) =
“

1 +
Pd

i=0
δi

hi

”d
volume(M) ≤

“

1 +
Pd

i=0
δi

hi

”d−1
. The result follows becausevolume(M) ≥

1
d , and so1+

Pd
i=0

δi

hi
≤ d. Lemma 3 gives add−1-approximation

for the measurement selection:

Theorem 4:There exists a subsetH′ ⊆ H with |H′| ≤ d(d+1)

andE(H′) ≤ dd−1 · E(H).

Proof: The simplexS is the intersection ofd+1 halfspaces

f0, . . . , fd, with boundaries∂f0, . . . , ∂fd. Each hyperplane∂fi

can be chosen to intersect withP , i.e. ∂fi contains a facegi of

P with 0 ≤ deg(gi) ≤ d− 1 (in the worst case,∂fi contains only

a vertex ofP ); gi is defined by the intersection ofd − deg(gi)

halfspaces inH, denoted byhi
1, . . . , hi

d−deg(gi)
. ThereforeP ⊂

∩j hi
j ⊆ fi, and henceP ⊆ ∩i,j hi

j ⊆ ∩i fi = S. Using Lemma

3, we havevolume(∩i,j hi
j) ≤ volume(S) ≤ dd−1 · volume(P ).

To conclude, letH′ = {hi
j}i,j and note that|H′| =

Pd
i=0 d −

deg(gi) ≤ d(d + 1).

The sumdeg(S) =
Pd

i=0 d − deg(gi) which determines|H′|
in the proof above is often referred to asthe number of degrees

of freedomof the enclosing simplexS. If S is minimal, tighter

upper bounds (than the triviald(d + 1)) for deg(S) can be used

to strengthen the result. In particular, ford = 2, deg(S) ≤
4 [22], and for d = 3, deg(S) ≤ 8 [25]. Therefore, in2



RPI CS TECHNICAL REPORT 07-03 6

dimensions, we have a2-approximation with4 measurements;

in 3 dimensions, a9-approximation with8 measurements; and,

for d > 3, add−1-approximation withd(d+1) measurements. By

considering hyperplanes supporting the faces of ad-dimensional

parallelepiped asH (|H| = 2d), we immediately get the lower

bound of2d measurements to obtain a bounded approximation.

Thus, the results ford = 1, 2 are tight. Further, by lettingP be a

ball, it is clear that one cannot expect more than an exponential

approximation ratio with a constant number of halfspaces.

VI. PROOF OFLEMMA 3

A simplex S(v0, . . . ,vd) = {x =
Pd

i=0 λivi|λi ∈
R

+,
Pd

i=0 λi = 1} is the convex closure ofd + 1 points

v0, . . . ,vd. (We will usually suppress the vectors definingS when

the context is clear, and will usevi to refer to the vector of

coordinates of the vertices of the simplex as well as the vertices

themselves.) The hypervolume ofS is given by

volumed(S(v0, . . . ,vd)) =
1

d!
| det(v1−v0,v2−v0, . . . ,vd−v0)|,

where the subscriptd (which will usually be omitted) indicates

that the volume isd-dimensional. For each vertexvi, we define

the opposite facefi as the convex closure of the remainingd

vertices, and letei be a unit normal tofi in the direction ofvi.

Let hi be the height ofvi abovefi, and letui
0, . . . ,ui

d−1 be the

vertices definingfi. fi defines ad− 1 dimensional space, and by

projectingui onto an orthogonal basis for this space, we obtain a

(d − 1)-dimensional simplex whose(d − 1)-dimensional volume

we define as thed − 1 dimensional hyperarea offi, denoted by

Ai, Ai = volumed−1(u
i
0, . . . ,ui

d−1). In terms ofAi, we have

volume(S) = 1
d · hi · Ai.

Let S be a minimum enclosing simplex (MES) for the convex

polygonP with volume(P ) = 1. We can assume that every edge

of S must intersectP (if not we can shrinkS). Our proof on the

volume bound ofS will be to construct an enclosing simplexS′

with small volume. Our construction will use amaximal inscribed

simplex.

Definition 6.1 (Maximal Inscribed Simplex (MIS)):A simplex

S0(v0, . . . ,vd) inscribed inP is maximal if for every vi, and

some sufficiently small ballBǫ(vi) centered atvi, S0(v0, . . . , vd)

has maximum volume among all other simplices whose vertexvi

is replaced by any othervi ∈ Bǫ(vi) ∩ P .

From now on,S0(v0, . . . ,vd) will denote an MIS forP . We now

present a useful property of an MIS, which allows us to construct

enclosing simplices from it.

Lemma 6.2:Let f ′

i be the hyperplane parallel tofi and passing

throughvi for the MIS S0. Let q+
i denote the closed halfspace

bounded byf ′

i which containsvi. Thenq+
i containsP .

Proof: Suppose thatq+
i does not containP , so some point

z ∈ P resides in the complementary open halfspace toq+
i . So

b

A

C

BT0T1

T2

T3

ℓA

ℓB

ℓC

a

c

fi

hi

vi

pj
vj

fj

wi

wj

S1

S0

Sd−1

a1

a2

a3

Fig. 1. The reflected homothetic simplex corresponding toS0 for d = 2, 3.

z ·ei > vi ·ei. For anyλ ∈ (0, 1], let z(λ) = vi +λ(z−vi). Then

z(λ) · ei > vi · ei, i.e. the simplexS′

0 in which vi is replaced by

z(λ) has larger height abovefi, and hence larger volume (because

Ai, the hyperarea offi, is not changed). SinceP is convex, and

vi, z ∈ P , z(λ) ∈ P , and hence the simplexS′

0 ⊆ P for all

λ ∈ (0, 1]. Every ball of radiusǫ about vi containsz(λ) for

λ ≤ ǫ and henceS0 cannot have maximum volume among all

choices ofvi in this ball, contradicting the maximality ofS0.

By Lemma 6.2, the simplexS1 = ∩iq
+
i containsP , and hence

we can construct an enclosing simplex fromany MIS. We refer

to S1 as thereflected homothetic simplexcorresponding toS0

– since all the faces ofS1 are parallel to faces ofS0, S1 is a

homothet ofS0. We illustrate the reflected homothetic simplex

for the 2 and 3 dimensional cases in Figure 1. The next lemma

boundsvolume(S1) in terms ofvolume(S0).

Lemma 6.3:volume(S1) = dd · volume(S0).

Proof: We refer to the notation in Figure 1. SinceS1 and

S0 are homothets, the lemma amounts to the length scale factor

beingd. Ford = 2, it is clear thatfi partitionS1 into 4 congruent

triangles, and so the length scale factor is 2.

We proceed by induction ond, so suppose that the claim holds

in d − 1 dimensions ford ≥ 3 (i.e., the length scale factor is

d − 1), and considerd dimensions. Consider any vertexvi of

S0 and its opposite facefi; the facef ′

i is parallel to fi and

passes throughvi. Now consider any other vertexvj , and its

corresponding hyperplanef ′

j parallel to its opposite facefj and

passing throughvj . This hyperplanef ′

j intersects the hyperplane

containingfi at thed− 2 dimensional hyperplane denoted bypj

in Figure 1. In 3 dimensions,pj is a line as illustrated in Figure

1. We will consider thed − 2-dimensional surfaces{pj} for all

j 6= i.

Vertex vj is a vertex of thed − 1 dimensional simplexfi.

Since fj and f ′

j are parallel, so are their intersections with

the hyperplanefi. Thus, for the(d − 1)-simplex fi, pj is the

(d−2)-dimensional hyperplane parallel to the(d−2)-dimensional

opposite face of the vertexvj in the simplexfi. Let h+
j be the
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Fig. 2. Expansion ofS0 to the enclosing simplexT in d = 2, 3.

(d − 1)-dimensional halfspace bounded bypj which containsfi.

Then, the(d−1)-simplexSd−1 = ∩jh
+
i containsfi in exactly the

same way thatS1 containsS0, i.e.Sd−1 is the enclosing reflected

homotheticd−1-simplex for the(d−1)-simplexfi, to which we

can apply the induction hypothesis. Thus, the length scale factor

from fi to Sd−1 is (d − 1).

Now consider the simplexS′ defined by the vertices ofSd−1

andwi, the vertex ofS1 oppositef ′

i . S′ is clearly a homothet of

S1, and hence is also a homothet ofS0. The base ofS′ is Sd−1

and the base ofS0 is fi, and these two bases are related by the

length scale factor(d−1), which must therefore also be the length

scale factor for the heights. Thus,height(S′) = (d−1) ·hi. Since

height(S1) = hi + height(S′), we conclude thatheight(S1) =

d · hi, i.e. the length scale factor relatingS0 to S1 is d.

Continuing with the proof of Lemma 3, ifvolume(S0) ≤ 1
d ,

then S1 which enclosesP has a volume at mostdd−1. We

now consider the casevolume(S0) > 1
d . In this case we use a

different construction to obtain an enclosing simplex. This second

construction does not require that the simplexS0 be an MIS.

Let S0 be any simplex enclosed inP (eg. an MIS), with the

facesf0, . . . , fd and normalse0, . . . , ed, where, for each facefi,

ei is directed fromfi towards its corresponding vertexvi. Let

pi ∈ P be a maximizer of−pi ·ei, i.e. a point of maximum height

in P which is belowfi. Let δi = −pi · ei be the height ofpi

belowfi, and consider the hyperplaneqi parallel tofi containing

pi. Let q+
i be the halfspace bounded byqi which containsvi.

Analogous to the proof of Lemma 6.2, sincepi has maximum

height belowfi, it follows that q+
i must containP . Therefore,

we have

Lemma 6.4:Let T = ∩iq
+
i . ThenP ⊆ T .

Lemma 6.4 gives another construction of an enclosing simplex.

Further,T is a homothet ofS0 (all its facesqi are parallel to

fi, pushed out by a distanceδi). We refer toT as theexpanded

homothetic simplexcorresponding toS0 andP . The next lemma

bounds the volume ofT . The situation is illustrated in Figure 2

for d = 2, 3. setting.

Lemma 6.5:Let S0 be an arbitrary simplex, and letT be

the homothetic simplex obtained fromS0 by translating each

face out by a heightδi. Then,volume(T ) ≤
“

1 +
Pd

i=0
δi

hi

”d
·

volume(S0).

Proof: It suffices to prove that the length scale factor relating

T to S0 is 1 +
Pd

i=0
δi

hi
. To see this we view the transformation

from S0 to T as a sequence of enlargements, the first is centered

at v0 with scale factorλ0 = (h0 + δ0)/h0, which corresponds to

pushing out the facef0 to the plane containingq0 by a distanceδ0.

In this enlargement, all other faces get enlarged, but remain on the

same plane. The next enlargement is centered at the new position

of v1 and has scale factorλ1 such that the new enlarged facef1 is

pushed out to the plane containingq1 by an amountδ1. Sinceh1

increased toλ0 ·h1, we conclude thatλ1 = (δ1 +λ0 ·h1)/λ0 ·h1.

We continue with an enlargement centered at the new position

of v2 with scale factorλ2 = (δ2 + λ0λ1 · h2)/λ0λ1 · h1; and so

on, we have enlargements succesively at the the new positions

of v3, . . . ,vd until we finally obtainT . Suppose that the scale

factor for the firstk enlargements isλ0, . . . , λk−1. Then the scale

factor for the(k + 1)th enlargement isλk =
δk+hk·

Qk−1

i=0
λi

hk·
Qk−1

i=0
λi

=

1 + δk

hk·
Qk−1

i=0
λi

. The scale factor for the transformation fromS0

to T is given by
Qd

k=0 λk. We evaluate this product as follows:
Qd

k=0 λk = λd · Qd−1
k=0 λk, =

„

1 + δd

hd·
Qd−1

i=0
λi

«

· Qd−1
k=0 λk, =

Qd−1
k=0 λk + δd

hd
. It follows by induction that

Qd
k=0 λk = 1 +

Pd
i=0

δi

hi
, concluding the proof.

The next lemma bounds the sum1 +
Pd

i=0
δi

hi
which appears

in the lemma above.

Lemma 6.6:volume(S0) ·
“

1 +
Pd

i=0
δi

hi

”

≤ 1.

Proof: Define the simplicesT0, . . . , Td as follows.Ti is the

convex closure ofpi and fi – Ti is a simplex with basefi and

height δi. The bodyQ = S0 ∪ T0 ∪ · · · ∪ Td is enclosed inP ,

hencevolume(Q) ≤ volume(P ) = 1. The simplicesTi and Tj

are disjoint except on a set of measure zero. This follows from

the fact that the height ofpi abovefi is at least as large as the

height ofpj abovefi (and vice-versa) and Lemma 6.9 which is

a technical result which we will prove later. Hence,volume(Ti ∩
Tj) = 0. Similarly Ti and S0 intersect atfi which has measure

zero, hencevolume(Q) = volume(S0) +
Pd

i=0 volume(Ti) ≤ 1.

To conclude, note that by (VI),volume(Ti) = 1
d · Ai · δi = δi

hi
·

volume(S0)

An immediate corollary of Lemmas 6.5 and 6.6 is

Corollary 6.7: volume(T ) ≤
“

1 +
Pd

i=0
δi

hi

”d−1
.

To complete the proof of Lemma 3, suppose thatvolume(S0) >
1
d ; then, by Lemma 6.61 +

Pd
i=0

δi

hi
< d, and by Corollary 6.7,

we have thatvolume(T ) < dd−1. We recap all these results in

the following theorem.

Theorem 6.8:Let P be a bounded convex polytope. Then the

following algorithm constructs an enclosing simplexS satisfying
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Fig. 3. Disjointness of simplices subtended by non-parallelfaces.

volume(S) ≤ dd−1 · volume(P ).

1: ConstructS0, a locally maximal inscribed simplex forP .

2: if volume(S0) ≤ 1
d then

3: Let S be the reflected homothetic simplex corresponding

to S0.

4: else

5: Let S be the expanded homothetic simplex corresponding

to S0 andP .

A Technical Lemma on the Disjointness of Maximum Height

Simplices.: We now present the technical lemma which is used

in the proof of Lemma 6.6. This lemma shows that theTi are

disjoint. To be specific, letH1 andH2 be two non-parallel(d−1)-

dimensional hyperplanes with unit normalse1, e2. Let H1 and

H2 intersect at thed − 2 dimensional hyperplaneH. Let H+
1

and H+
2 be two halfspaces defined byH1 and H2. Define two

regionsR = H+
1 ∩ H+

2 , and its complementR = H+
1 ∪ H+

2 .

Assume thate1, e2 are in the direction ofH+
1 , H+

2 respectively.

Let F1 andF2 be sets of points inR which reside onH1 andH2

respectively. For a pointp ∈ R, we define its heights aboveH1

and H2 respectively ash1(p) = −p · e1 and h2(p) = −p · e2.

Let p1,p2 ∈ R be two points such thatp1 is higher thanp2

with respect toH1 and the reverse is true with respect toH2, i.e.

h1(p1) ≥ h1(p2) and h2(p1) ≤ h2(p2). Let T1 be the convex

closure ofF1∪p1 andT2 the convex closure ofF2∪p2. ThenT1

and T2 are disjoint (up to a set of measure zero). The situation

is illustrated in Figure 3.

Lemma 6.9:vol(T1 ∩ T2) = 0.

Proof: DefineH−

1 asH1∪H+
1 and similarilyH−

2 . Consider

point p2 and letH ′

1 be the hyperplane containingp2 which is

parallel to H1, and similarily defineH ′

2. Let H ′ = H ′

1 ∩ H ′

2,

which is parallel toH. Also defineH ′

1
+

, H ′

1
−

, H ′

2
+

, H ′

2
− in a

similar way. Sinceh1(p1) ≥ h1(p2) and h2(p1) ≤ h2(p2), p1

must be lie inH ′

1
− ∩H ′

2
+ as illustrated by the shaded region in

Figure 3. Now consider the hyperplaneG which containsH and

H ′, i.e.G intersectsH1 andH2 at H andG intersectsH ′

1 andH ′

2

at H ′. F1 andF2 lie on opposite sides ofG, as doH ′

1
− ∩ H ′

2
+

andp2. Note thatG separatesH−

1 ∩ H+
2 containsF1 and since

H ′

1
− ∩ H ′

2
+ is a translate ofH−

1 ∩ H+
2 along a line joiningH

to H ′, it follows that F1 and H ′

1
− ∩ H ′

2
+ are on the same side

of G. Sincep1 ∈ H ′

1
− ∩ H ′

2
+, it follows that F1 andp1 are on

the same side ofG, and soG separatesF1 ∪ p1 from F2 ∪ p2.

SinceG separatesF1 ∪ p1 from F2 ∪ p2, it also separates their

convex closures. Thus, the intersection of their convex closures is

a subset ofG, and sincevol(G) = 0, this intersection must also

have zero volume.

A. Algorithm Analysis

We briefly discuss the running time of the algorithm sum-

marized in Theorem 6.8. The first step to compute a single

maximal inscribed simplex is a local optimization problem of

a differentiable objective over a convex set. Since it is a local

search problem, it can be solved efficiently, and we discuss

some approaches to this in Section VI-B. Computingvolume(S0)

involves computing ad-dimensional determinant which isO(d3).

We will shortly show that all the other tasks that need to be solved

can be reduced to solvingO(d) d-dimensional linear programs

with n = |H| inequality constraints. Solving one such program

takesO(d2n) operations, hence the entire running time is given

by M(n, d) + O(d3n), whereM is the complexity of finding the

maximal inscribed simplex.

We now walk through the tasks in the algorithm.

If volume(S0) ≤ 1
d , we construct the reflected homothetic

simplex for S0. This can be accomplished because: we can

computeei by projectingvi−vj to the space orthogonal tofi in

O(d3); (vi, ei) then definesf ′

i , which in turn gives the reflected

homothet. However, it is not the reflected homothet which we

desire, but its intersection point withP . This task can be solved

by simply augmentingH with an additional equality constraint

(x − vi) · ei = 0 and finding a feasible point which is a linear

program. Thus, we have(d + 1) linear programs, each withn

constraints.

If volume(S0) > 1
d , we do not actually need the expanded

homothet. We only need its points of intersection withP , which

are exactly the pointspi described in the previous section. Thepi

are exactly the solutions to the(d+1) linear programsminx x ·ei

such thatx ∈ H, again(d+1) linear programs withn constraints.

Once the points of intersectionpi have been constructed, it

only remains to recover the constraints inH which are active.

For eachpi, this is anO(dn) task, for a total timeO(d2n). One

final note is that more thand active constraints may be recovered

for each point of intersection. In this case, any subset of the

active constraints of sized whose interesction is contained in
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the corresponding halfspaceq+
i suffices. At least one such subset

exists.

B. Constructing a Maximal Inscribed Simplex

The first step in our construction is to obtain a locally max-

imum inscribed simplex. This is a standard, differentiablelocal

optimization problem

max
V

det V, such thatV ∈ H,

whereV = [v1 − v0, . . . ,vd − v0] andV ∈ H iff vi ∈ H for all

i = 0, . . . , d. The domain ofV is convex, as is easily verified, and

the determinant is differentiable, hence ellipsoid algorithms can

be used to obtain a local minimum. From a practical perspective, it

is better to maximizelog det V T V . An added benefit of choosing

log det V T V is that log det is concave onSd
++ (positive definite

symmetric matrices), hence maximizing it on any convex subset

of Sd
++ is a convex optimization problem.

VII. C ONCLUSION

In the bounded uncertainty model, using measurements from all

sensors gives the optimal uncertainty for localizing a target. In this

paper, we showed that, one can always select aconstantnumber of

sensors and guarantee a localization uncertainty close to optimal

(bounded by a constant times optimal). In particular, we showed

that 4 sensors suffice for a 2-approximation in 2-dimensionsand

8 sensors suffice for a 9-approximation in 3-dimensions. Both of

these sensors sets can be computed efficiently. We also showed

how these results can be generalized to arbitrary dimensions and

that a constant factor approximation can be obtained by a constant

number of sensors. Both constants depend on the dimensionality

but are independent from the total number of available sensors.

An important issue which remains unaddressed is robustness. In

this paper, we assumed that the locations of all sensors are known.

Sensor selection in the presence of uncertainties regarding sensor

locations is an important future research direction.
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