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ABSTRACT
Multiway data analysis captures multilinear structures in
higher-order datasets, where data have more than two modes.
Standard two-way methods commonly applied on matrices
often fail to find the underlying structures in multiway ar-
rays. With increasing number of application areas, multiway
data analysis has become popular as an exploratory analy-
sis tool. We provide a review of significant contributions in
literature on multiway models, algorithms as well as their
applications in diverse disciplines including chemometrics,
neuroscience, computer vision, and social network analysis.

1. INTRODUCTION
Multiway data analysis, originating in psychometrics back
in the sixties [Tucker 1964], is the extension of two-way data
analysis to higher-order datasets. Multiway analysis is often
used for extracting hidden structures and capturing underly-
ing correlations between variables in a multiway array. For
example, multi-channel electroencephalogram (EEG) data
are commonly represented as an m × n matrix containing
signals recorded for m time samples at n electrodes. In or-
der to discover hidden brain dynamics, often frequency con-
tent of the signals, for instance signal power at p particular
frequencies, also needs to be considered. In that case, EEG
data can be arranged as an m × p × n three-way dataset
[Miwakeichi et al. 2004]. Multiway analysis of a three-way
EEG array then enables us to extract the signatures of brain
dynamics in time, frequency and electrode domains. As op-
posed to two-way analysis showing brain activities at certain
time periods at certain electrodes, multiway analysis can dif-
ferentiate between the brain activities with different spectral
signatures.

It has been shown in numerous research areas including so-
cial networks [Acar et al. 2005], neuroscience [Estienne et al.
2001], process analysis [Gourvnec et al. 2005] that underly-
ing information content of the data may not be captured
accurately or identified uniquely by two-way analysis meth-
ods. Two-way analysis methods, e.g. factor models, suffer
from rotational freedom unless specific constraints such as
statistical independence, orthogonality, etc. are enforced.
On the other hand, these constraints requiring prior knowl-
edge or unrealistic assumptions are not often necessary for
multiway models. For example, in fluorescence spectroscopy,
a Parallel Factor Analysis (PARAFAC) model can uniquely
identify the pure spectra of chemicals from measurements

of mixtures of chemicals. Consequently, multiway analysis
with advantages over two-way analysis in terms of unique-
ness, robustness to noise, ease of interpretation, etc. has
been a popular exploratory analysis tool in a variety of ap-
plication areas, which we discuss throughout this survey.

1.1 Multiway Arrays
First difference between two-way and multiway data analysis
is the format of the data being analyzed. Multiway arrays,
often referred to as tensors, are higher-order generalizations
of vectors and matrices. Higher-order arrays are represented
as X ∈ RI1×I2...×IN , where the order of X is N (N > 2)
while a vector and a matrix is an array of order 1 and 2,
respectively.

Higher-order arrays have a different terminology compared
to that of two-way datasets. Each dimension of a multiway
array is called a mode (or a way) and the number of variables
in each mode is used to indicate the dimensionality of a
mode. For instance, X ∈ RI1×I2...×IN is a multiway array
with N modes (called N -way array or N th order tensor)
with I1, I2, ... dimensions in the first, second, etc. mode,
respectively. Each entry of X is denoted by xi1i2...iN . For
a special case, where N = 3, let X ∈ RI1×I2×I3 be a three-
way array. Then xi1i2i3 denotes the entry in the ith1 row,
ith2 column and ith3 tube of X (Figure 1 [Bader and Kolda
2006a]). When an index is fixed in one mode and the indices
vary in the two other modes, this data partition is called a
slice (or a slab) in higher-order terminology. For example,
when the ith row of X is fixed, then it is a horizontal slice
of size I2× I3 or similarly, if the jth column of X is fixed, it
is a vertical slice of size I1 × I3, etc. (Figure 2). A common
trend in multiway terminology and notation is to follow the
guidelines outlined in [Kiers 2000].

1.2 Models
So far, we have briefly introduced the type of data being an-
alyzed by multiway analysis techniques. These types of data
require extensions to analysis methods already available for
two-way data analysis. In general, multiway data analysis
methods are generalizations of two-way analysis techniques
based on the idea of factor models.

A model, which is an approximation of data, consists of two
parts: a structural part describing the structure in data and
a residual part expressing the part of the data, which cannot
be captured by the structural part. Analysis of residuals
quantifies how well a model fits the data. More formally,
sum of squares of residuals often accounts for the unex-
plained variation in a least squares sense. Model fit is then



Figure 1: (A) Columns, (B) Rows, (C) Tubes.

Figure 2: (A) Horizontal Slices, (B) Vertical Slices, (C)
Frontal Slices.

Figure 3: Matricization of a three-way array in the first
mode. A three-way array X ∈ RI×J×K is unfolded in the
first mode and a matrix of size I × JK, denoted by X(1) is
formed. Subscript in X(i) indicates the mode of matriciza-
tion.

defined as the ratio of explained variation in the structural
part to the total variation in data. Using bilinear or multi-
linear models, factors (or components, loadings), which are
linear combinations of variables, are extracted. These fac-
tors are later used to interpret the underlying information
content of the data.

While most multiway analysis techniques preserve the mul-
tiway nature of the data, some techniques such as Tucker1
[Tucker 1964; Tucker 1966] are based on matricization of a
multiway array, which means transforming a third or higher-
order array into a two-way dataset (Figure 3). Matricization
(or unfolding, flattening) has multiple definitions in litera-
ture [Kiers 2000; Lathauwer et al. 2000] but the definition
in [Kiers 2000] is commonly followed. Once a three-way ar-
ray is flattened and arranged as a two-way dataset, two-way
analysis methods, e.g. Singular Value Decomposition (SVD)
[Golub and Loan 1996] and other factor models [Kim and
Mueller 1978], can be employed in understanding the struc-
ture in data.

Rearranging multiway arrays as two-way datasets and ana-
lyzing them with two-way methods, though, may result in
information loss and misinterpretation especially if the data
are noisy. An intuitive example is often given on a sensory
dataset, where eight judges evaluates ten breads based on

eleven attributes [Bro 1998]. When this dataset is modeled
using a PARAFAC model, the model assumes that there is
a common sense of evaluation among judges and each judge
pertains to this sense of evaluation at different amounts. On
the other hand, when sensory data are unfolded in bread
mode and modeled using a two-way factor model, there is
no assumption being made about a common sense of eval-
uation. Every judge may behave completely independently.
In such a scenario, a two-way factor model may extract as
many factors as possible to explain the variation in data.
However, a PARAFAC model can only explain the vari-
ation that follows the basic assumption. Extra variation
captured by a two-way factor model might actually explain
noise rather than a certain structure. Thus, multiway mod-
els are more advantageous in terms of interpretation and
accuracy compared to two-way models. Multilinear mod-
els (i.e. PARAFAC [Harshman 1970], Tucker [Tucker 1964;
Tucker 1966] and their derivatives) capture the multilinear
structure in data. Multilinearity of the model denotes that
the model is linear in each mode and factors extracted from
each mode are linear combinations of the variables in that
mode. A component matrix, whose columns are the factors
determined by the model, is then constructed to summa-
rize the structure in each mode. These models have been
applied on various datasets shown to contain multilinear
structure, e.g. three-way fluorescence spectroscopic datasets
with modes: samples × emission × excitation [Andersen
and Bro 2003] or wavelet-transformed multi-channel EEG
arranged as a three-way array with modes: frequency ×
time samples × electrodes [Miwakeichi et al. 2004; Acar
et al. 2007].

The organization of this paper is as follows: We
categorize multiway models (both original models and re-
cent derivatives of original models) and study their similar-
ities and differences in Section 2. In Section 3, we give a
brief overview of the algorithms used in fitting these models
to multiway datasets. Multiway data analysis applications
from several fields and available software tools are summa-
rized in Section 4 and Section 5. After a brief summary of
the survey in Section 6, future research directions, particu-
larly in computer science, are discussed in Section 7.

2. MULTIWAY MODELS
The most well-known and commonly applied multiway mod-
els in literature are Tucker models and the PARAFAC model,
which is also called CANDECOMP (Canonical Decomposi-
tion) (CANDECOMP [Carroll and Chang 1970] was pro-
posed independently but considered equivalent to PARA-
FAC). We will briefly describe these models as well as recent
models built on the principles of PARAFAC and Tucker.
This survey studies multiway models under three categories
given in Figure 4. First category describes PARAFAC and
other models, which have relaxed the restrictions enforced
by a PARAFAC model to capture data-specific structures.
Second category contains the models that belong to Tucker
family as well as the extensions of Tucker models. Last
category includes the models, which fall under neither the
first nor the second category but still address the problem
of analyzing multiway arrays. In spite of the categorization,
models in different families are closely related to each other,
e.g. PARALIND can be considered as a constrained version
of a Tucker3 model. This categorization is primarily for the



Figure 4: The categorization of multiway models studied in this survey.

ease of presentation and understanding of the models. In
the rest of the paper, we discuss these models in the con-
text of three-way arrays but most of these models (Table 1,
Table 2) have already been extended to N-way arrays .

2.1 PARAFAC-family
2.1.1 PARAFAC
PARAFAC [Harshman 1970] is an extension of bilinear fac-
tor models to multilinear data. It is based on Cattell’s prin-
ciple of Parallel Proportional Profiles [Cattell 1944]. The
idea behind Parallel Proportional Profiles is that if the same
factors are present in two samples under different conditions,
then each factor in the first sample is expected to have the
same pattern in the second sample but these patterns will
be scaled depending on the conditions. Mathematically, a
PARAFAC model can be represented as the decomposition
of a tensor as a linear combination of rank-1 tensors (An
N th order rank-1 tensor is a tensor that can be written as
the outer product of N vectors). Let X ∈ RI×J×K be a
three-way array. Then an R-component PARAFAC model
can be expressed as in Equation 1 (or Equation 2), where
ai, bi and ci indicate the ith column of component matri-
ces A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R, respectively.
E ∈ RI×J×K is a three-way array containing the residuals.
xijk represents an entry of a three-way array X in the ith

row, jth column and kth tube while aij is a matrix entry
located in the ith row and jth column.

X =

RX
r=1

ar ◦ br ◦ cr + E (1)

xijk =

RX
r=1

airbjrckr + eijk (2)

The symbol ◦ denotes the outer product of vectors. Vector
outer product is defined as follows. Let a, b and c be column
vectors of size I×1 and J×1 and K×1 and Y is a tensor of
size I×J×K, then Y = a◦ b◦ c if and only if yijk = aibjck.

Illustration of a 3-component PARAFAC model on a three-
way dataset is also given in Figure 5.

The motivation behind PARAFAC is to obtain a unique so-
lution such that component matrices are determined uniquely
up to a permutation and scaling of columns. It is this
uniqueness property that makes PARAFAC a popular tech-
nique in various fields. For example in fluorescence spec-
troscopic data analysis [Andersen and Bro 2003], a unique
PARAFAC model allows us to find physically and chemi-
cally meaningful factors directly from measurements of mix-
tures of chemicals. Uniqueness is achieved by the restrictions
imposed by the model. The most significant restriction is
that factors in different modes can only interact factorwise.
The interaction between factors in different modes are repre-
sented by a core array in multiway models. For a three-way
model, the core array is a third-order tensor, G as given in
Figure 6, where gpqr represents the interaction of the pth

factor in the first, qth factor in the second and rth factor in
the third mode. In a PARAFAC model, the core array is re-
stricted to be a super-diagonal core array. For instance for a
three-way PARAFAC mode, a super-diagonal core indicates
that ith factor in the first mode (ai) can only interact with
ith factor in the second (bi) and the third mode (ci). As
a consequence of this restriction, the same number of fac-
tors should be extracted in each mode. There are several
techniques for determining the number of factors in a PA-
RAFAC model, i.e. residual analysis, visual appearance of
loadings, number of iterations of the algorithm, core consis-
tency [Bro and Kiers 2003], etc. Among these techniques,
core consistency diagnostic quantifies the resemblance be-
tween a Tucker3 core and a super-diagonal PARAFAC core
and suggests whether a PARAFAC model is a valid model
for the data. Core consistency diagnostic has been com-
monly applied in literature [Estienne et al. 2001; Andersen
and Bro 2003; Miwakeichi et al. 2004]. However, there is no
bulletproof way to determine the optimal number of factors
(optimal in terms of interpretation) for real data. There-
fore, it is often suggested that several diagnostic tools are
used together rather than a single method [Andersen and
Bro 2003; Bro and Kiers 2003].



Figure 5: Illustration of a PARAFAC model. 3-component PARAFAC model, where a three-way array X is expressed as the
sum of three rank-1 tensors. ai, bi and ci are the ith components in the first, second and third mode, respectively. E is a
three-way array containing the residual terms.

It is possible to fit a PARAFAC model to raw data such
as a three-way array with modes: objects × variables1 ×
variables2 (direct fitting). Equation 3 demonstrates the di-
rect fitting approach using an alternative formulation of a
PARAFAC model.

Xk = ADkB
T + Ek (3)

where Xk represents the kth frontal slice of a three-way array
and A and B are the component matrices in the first and
second mode, respectively. Dk is a diagonal matrix, whose
diagonal elements are the kth row of the third component
matrix C. Finally, Ek contains the error terms corresponding
to the entries in the kth frontal slice.

While direct fitting is applied on the raw data, it is also
possible to apply indirect fitting on covariance matrices of
data slices. For indirect fitting, raw data are rearranged as a
three-way dataset of covariance matrices, for instance in the
form of objects × objects × variables1 or objects × objects
× variables2 assuming one is particularly interested in the
object mode. The relationship between direct and indirect
fitting approach is similar to the one between SVD on a
data matrix and eigenvalue decomposition on a covariance
matrix.

2.1.2 Extensions of PARAFAC
Some of the extensions of PARAFAC model are PARA-
FAC2, Shifted PARAFAC (S-PARAFAC), Parallel Factors
with Linear Dependency (PARALIND) and Convolutive PA-
RAFAC (cPARAFAC). We discuss these models and their
similarities briefly. Their mathematical formulations are
also given in Table 1.

1. PARAFAC2 [Harshman 1972]: is introduced as a less
restrictive model than PARAFAC. For instance, indi-
rectly fitting PARAFAC has a restriction such that
PARAFAC can model data indirectly if one of the
component matrices in the model is columnwise or-
thogonal. Consequently, indirect fitting approach us-
ing a PARAFAC model cannot be applied to extract
oblique factors in every mode of a dataset. On the
other hand, PARAFAC2 can model data indirectly to
extract either orthogonal or oblique factors. PARA-
FAC2 relaxes a PARAFAC model by requiring the in-
variance of the matrix multiplication of a component
matrix with its transpose in one mode rather than the
invariance of the components themselves.

Xk = AkDkB
T + Ek (4)

s.t. AT
k Ak = Φ k = 1,...K

where Ak is the component matrix in the first mode
corresponding to the kth frontal slice. Φ, which is
the matrix product of Ak with its transpose, is re-
quired to be invariant for all slices k = 1, ..K. In
Equation 4, we observe that unlike in a PARAFAC
model, component matrix in the first mode (or one
of the modes) can vary across slices in a PARAFAC2
model. This relaxation enables the use of multiway
models in the cases, where a PARAFAC model can-
not fully recover the underlying structure, e.g. mod-
eling chromatographic data with retention time shifts
[Bro et al. 1999]. Furthermore, PARAFAC2 solves the
problem of modeling three-way arrays with slices of
different dimensionality (dimensionality differs only in
one mode). An example of such a multiway array is
an environmental dataset that contains the concentra-
tions of some chemical compounds measured at certain
time periods across several sampling sites (sampling
sites× parameters × time) [Stanimirova et al. 2004].
It is quite common to have measurements from sam-
pling sites for varying time periods, which would result
in a three-way array with different dimensionality in
one of the modes (e.g. time mode in this case). A
PARAFAC2 model using an indirect fitting approach
can also handle different dimensionality across slices.
Nevertheless, directly fitting PARAFAC2 on raw data
has more advantages than indirect fitting in terms of
imposing constraints, handling missing data and gen-
eralization of the model to N-way arrays [Kiers et al.
1999].

2. S-PARAFAC [Harshman et al. 2003]: has been intro-
duced in order to deal with shifting factors in sequen-
tial data such as time series or spectral data. While
PARAFAC restricts the data to have the same factor
in various proportions in all samples based on Cattell’s
idea, S- PARAFAC relaxes this restriction by incorpo-
rating shifting information into the model and cap-
turing the factors even if they are available in shifted
positions in different samples. One limitation of S-
PARAFAC is, though, it only considers one-dimensional
shifts such as time shifts but does not handle multi-
dimensional shifts that might be encountered in im-
age sequences like brain scans. When compared to
PARAFAC2, S-PARAFAC is quite similar. First of
all, both models are less-constrained versions of PA-



Table 1: Selection of models from PARAFAC family. PARAFAC2 and PARALIND are expressed in matrix notation to
make it easier to understand and compare with PARAFAC representation in Equation 3. In PARALIND, H represents the
dependency matrix. For Shifted PARAFAC, sjr represents the shift at column j for the rth factor. In Convolutive PARAFAC,
θ is used to capture the shifts in the log-frequency spectrogram.

Model Name Mathematical Formulation Handles Extended to
Rank-deficieny Nway data

PARAFAC xijk =
PR

r=1 airbjrckr + eijk × X
PARAFAC2 Xk = AkDkB

T + Ek × X
S-PARAFAC xijk =

PR
r=1 a(i+sjr)rbjrckr + eijk × X

PARALIND Xk = AHDkB
T + Ek X X

cPARAFAC xijk =
PR

r=1 airb(j−θ)rc
θ
kr + eijk × X

RAFAC and can model multiway datasets, which do
not follow Cattell’s Parallel Proportional Profiles idea.
Secondly, PARAFAC2, similar to S-PARAFAC, can
model data with shifting factors. In fact, both mod-
els have been used in the analysis of chromatographic
data with retention time shifts [Bro et al. 1999; Hong
and Harshman 2003]. However, PARAFAC2 can only
capture shifts that maintain the inner product of the
factors (i.e. the constraint in Equation 4) while S-
PARAFAC can model independent shifts at each fac-
tor. Still though S-PARAFAC can be considered as
a restricted version of PARAFAC2 since S-PARAFAC
can handle only shifting factors whereas PARAFAC2
can capture the structure in data as long as the inner
product of the factors across slices are the same.

3. cPARAFAC [Mørup and Schmidt 2006]: Another ex-
tension on PARAFAC is cPARAFAC, which is a gen-
eralization of Non-negative Matrix Factor Deconvolu-
tion (NMFD) to multiway spectral data. cPARAFAC,
closely related to S-PARAFAC, has been proposed for
multi-channel spectral data analysis in order to model
convolutive mixtures. Convolution basically means gen-
erating a mixture by sending the sources through a
filter. When convolution filter is sparse, cPARAFAC
becomes equivalent to S-PARAFAC.

4. PARALIND [Bro et al. 2005]: A common problem
that arises in real data analysis is that ranks of the
component matrices may not be the same (called rank
deficiency). That would require extracting different
number of factors in different modes. In that case, fit-
ting a PARAFAC model would perfectly give rank de-
ficient solutions and would not guarantee meaningful
uniqueness. PARALIND is proposed as an approach
for modeling such cases. This model introduces de-
pendency (or interaction) matrices among component
matrices to enable the modeling of the data with com-
ponent matrices with different ranks and capture the
dependency between components. Besides, via depen-
dency matrices, prior knowledge about the data and
constraints can be incorporated into the model.

In addition to the extensions of PARAFAC model discussed
so far, there is also another recent model called Constrained-
block PARAFAC [Almeida et al. 2006]. Constrained-block
PARAFAC proposes to model a multiway array as a sum
of PARAFAC blocks. Each block is modeled using a PA-
RAFAC model but has certain constraints enforced by the
constraint matrices introduced in the model, similar to de-
pendency matrices of a PARALIND model.

2.2 Tucker-family
Structural models in the PARAFAC family can be consid-
ered as constrained versions of less restricted multiway mod-
els, i.e. Tucker models, which are also called N-way principal
component analysis techniques.

2.2.1 Tucker3
Similar to PARAFAC, Tucker3 is an extension of bilinear
factor analysis to higher-order datasets. Equation 5 shows
a commonly-used formulation for a Tucker3 model applied
on a three-way array X ∈ RI×J×K .

xijk =

PX
p=1

QX
q=1

RX
r=1

gpqraipbjqckr + eijk (5)

where A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R are the
component matrices corresponding to the first, second and
third modes, respectively. G ∈ RP×Q×R is the core array
and E ∈ RI×J×K contains the residuals. Illustration of a
Tucker3 model on a three-way array is given in Figure 6.
Compared to PARAFAC, a Tucker3 model is a more flexi-
ble model. This flexibility is due to the core array, G, which
allows an interaction between a factor with any factor in
the other modes. While the core array enables us to explore
the underlying structure of a multiway dataset much better
than a restricted PARAFAC model, full-core array struc-
ture in Tucker3 has some drawbacks. First, this property
is the reason for rotational indeterminacy in Tucker3 mod-
els. Unlike PARAFAC, a Tucker3 model cannot determine
component matrices uniquely. When a component matrix
is rotated by a rotation matrix, it is possible to apply the
inverse of the rotation matrix to the core and still obtain the
same model fit. Therefore, a Tucker3 model can determine
component matrices only up to a rotation. Second, interpre-
tation of Tucker3 models is much more difficult compared
to PARAFAC models.

Originally, Tucker family contains Tucker1, Tucker2 and
Tucker3 models (Table 2). Tucker1 is based on the simple
idea of rearranging data as a matrix and decomposing the
unfolded data using SVD. Tucker2 and Tucker3 models allow
rank reduction in more than one mode and named after the
number of modes rank reduction is allowed. Desired rank
reduction in each mode are user-specified model parameters
and determining these parameters in Tucker models is a te-
dious task. While using ranks indicated by SVD on unfolded
data in each mode is a practical option, systematic meth-
ods, e.g. cross validation, DIFFIT [Timmerman and Kiers
2000], have also been developed. DIFFIT (Difference in Fit)



Figure 6: Illustration of a Tucker3 model. (P, Q, R)-component Tucker3 model, where a three-way array X ∈ RI×J×K is
modeled with component matrices A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R in the first, second and third mode, respectively.
G ∈ RP×Q×R is the core array and E ∈ RI×J×K contains the error terms.

enumerates all possible models and uses the differences be-
tween model fits to determine the number of components.
However, high computational complexity of DIFFIT makes
it inefficient. Therefore, it has later been improved by com-
paring approximate model fit values rather than exact model
fits [Kiers and Kinderen 2003]. The most recent work in find-
ing the number of components is based on searching for the
convex hull on the plot of model fit values vs. number of free
parameters [Ceulemans and Kiers 2006]. This approach is
more general than previously-proposed methods and helps
in determining the model parameters in not only Tucker3
but also Tucker1, Tucker2 and PARAFAC models. Even
though empirical comparison of DIFFIT and the convex hull
approach on simulation data suggests that the convex hull
approach gives promising results and outperforms previous
methods, there is no straightforward way to find the optimal
number of components [Ceulemans and Kiers 2006]. Similar
to the case of determining component numbers in a PARA-
FAC model, several diagnostics should be used to have a
true understanding of the structure of a multiway dataset.

2.2.2 Extensions of Tucker3
Similar extensions as in PARAFAC models have also been
studied for Tucker models in order to capture shifting fac-
tors. Shifted Tucker3 (S-T3) and Shifted Tucker2 (S-T2),
combination of Shifted Factor Analysis with Tucker3 and
Tucker2 models, have been introduced by [Harshman et al.
2003]. Although it is not proven formally, it has been dis-
cussed that incorporating shifting information in S-T3 sug-
gests the uniqueness of a S-T3 model [Harshman et al. 2003].
Structural models in Tucker-family are given in Table 2.

2.3 Tucker3 vs. SVD vs. PARAFAC
Tucker3 can be considered as the generalization of SVD to
higher-order tensors. The link between Tucker3 and SVD
and how singular values and singular vectors generalize to
those of higher-order datasets have been extensively stud-
ied in [Lathauwer et al. 2000]. This is a significant mile-
stone in multiway literature since it links multilinear algebra
with models originated in psychometrics and chemometrics.
Later, computation of singular values and singular vectors
of tensors using Lagrangian approach have been discussed
in depth in [Lim 2005], which complements the theoretical
background of generalization of singular value decomposi-

tion to higher-order datasets.

In [Lathauwer et al. 2000], Tucker3 with orthogonality con-
straints on the components, has been named as Higher-
Order Singular Value Decomposition (HOSVD). HOSVD
can simply be computed by flattening the tensor in each
mode and calculating the singular vectors corresponding to
that mode, which are also called n−mode singular vectors.
Given the singular vectors, a core tensor can be computed
as shown in Step 5 of Tucker3-ALS algorithm in Figure 7.
However, unlike SVD, HOSVD does not provide the best
rank-(R1, R2, ..RN ) approximation of a tensor [Lathauwer
et al. 2000], where Ri is the rank of tensor in ith mode. The
rank of a tensor in nth mode is called n − rank and it is
the dimension of the vector space spanned by the columns
of the matrix obtained by flattening the tensor in nth mode.
Nevertheless, it does give a good approximation of the data
as shown in many applications, e.g. face recognition on an
image dataset, where images are affected by several factors
such as viewpoints, facial expressions, lighting conditions,
etc. [Vasilescu and Terzopoulos 2002].

Compared to SVD, which is a decomposition that repre-
sents a matrix as a sum of rank-1 matrices, HOSVD does
not decompose a tensor as a sum of rank-1 tensors. In
that sense, PARAFAC is considered to be another gener-
alization of SVD to higher-order arrays because PARAFAC
decomposes a tensor as the sum of rank-1 tensors. How-
ever, orthogonality constraints on the component matrices
of a PARAFAC model, in general, cannot be satisfied. In
order to be able to decompose a tensor with a PARAFAC
model, which will give component matrices with orthogonal
columns, a tensor should be diagonalizable and in general
they are not [Kolda 2001].

SVD has been quite popular in every field of data analy-
sis from signal processing to social network analysis, from
chemometrics to image compression because it enables noise
filtering through dimensionality reduction. The first R sig-
nificant singular vectors may represent the data very well
and SVD provides the best rank-R approximation for a ma-
trix. Besides, if the best rank R+1 approximation is sought,
then first R singular vectors are kept the same and only one
more singular vector is computed. This property has played
an important role in the development of online SVD algo-
rithms, which compute SVD of a data stream by updating
singular vectors rather than computing SVD of the whole



Table 2: Selection of models from Tucker family. In Shifted Tucker3, sjp indicates the shift at jth column for pth factor.
Shifted Tucker2 is formulated similarly.

Model Name Mathematical Formulation Handles Extended to
Rank-deficieny Nway data

Tucker1 xijk =
PP

p=1 gpjkaip + eijk X X
Tucker2 xijk =

PP
p=1

PQ
q=1 gpqkaipbjq + eijk X X

Tucker3 xijk =
PP

p=1

PQ
q=1

PR
r=1 gpqraipbjqckr + eijk X X

S-Tucker3 xijk =
PP

p=1

PQ
q=1

PR
r=1 gpqra(i+sjp)pbjqckr + eijk X X

dataset every time data are updated [Levy and Lindenbaum
2002]. However, the best rank-R approximation through
SVD in matrices cannot be generalized to tensors [Kolda
2001; Kolda 2003]. Through a counterexample, [Kolda 2003]
demonstrates that best rank-(R+1) approximation of a ten-
sor does not necessarily contain the components present in
best rank-R approximation of the tensor. By best rank-R
approximation of a tensor, we refer to orthogonal rank de-
composition of a tensor, where tensor X is expressed as the
weighted sum of rank-one tensors as in Equation 6.

X =

RX
r=1

σrUr (6)

where Ui⊥Uj for all i 6= j and the minimal number of rank-
one tensors (minimal R) needed to express X in this form
is called the orthogonal rank of X. For a detailed discussion
on rank decompositions and algorithms computing the best
rank approximations, the reader is referred to [Lathauwer
et al. 2000; Kolda 2001; Zhang and Golub 2001].

2.4 Alternative Models
There exist several other models based on approaches other
than PARAFAC and Tucker models for unsupervised multi-
way data analysis. We briefly introduce Multilinear Engine
(ME) [Paatero 1999], multiway models based on STATIS
[Stanimirova et al. 2004] and multiblock multiway models
[Smilde et al. 2000].

ME is a program that is capable of fitting different struc-
tural models including PARAFAC and PARAFAC2 on mul-
tiway arrays using a general-purpose optimization/curve fit-
ting approach. Although models mentioned so far are only
capable of modeling multilinearity in data, structure tables
created by specified variables and functions enable ME to
fit multilinear as well as quasi-multilinear models. Multilin-
ear models are based on mathematical expressions, which
are linear with respect to each set of variables correspond-
ing to different modes whereas quasi-multilinear models con-
tain nonlinearity in the sense of polynomials. Therefore, the
multilinear engine can explore a wider range of structures in
data compared to PARAFAC, Tucker3, etc.

Another model focusing on three-way data analysis is ST-
ATIS [Stanimirova et al. 2004] originally studied in [Carlier
et al. 1989; Lavit et al. 1994]. When compared to N-way
analysis methods, which explore each mode simultaneously,
this STATIS-based model explores each mode separately. It
considers each observation/sample as a slice of a three-way
array and computes the covariance matrix corresponding to
that slice. The basic principle in the model is to apply Prin-
cipal Component Analysis (PCA) on a global covariance ma-
trix formed as a linear combination of covariance matrices

corresponding to individual slices. Similar to indirect fitting
approach, it is possible to analyze three-way arrays with
slices of different sizes using STATIS. One disadvantage of
STATIS is that it cannot be generalized to N-way arrays.

Methods, referenced so far, focus on the analysis of a single
multiway array. On the other hand, multiblock multiway
arrays are also encountered in various studies such as control
of batch processes, where more than two blocks of multiway
arrays need to be analyzed simultaneously. One approach
to deal with multiblock multiway component problems is to
analyze each multiway array using a certain structural model
such as a Tucker3 or a PARAFAC model and then combine
summaries of information from different multiway arrays in
a single matrix [Smilde et al. 2000]. The matrix containing
summaries from different arrays can then be analyzed using
bilinear factor models. This approach can be considered as a
generalized version of Collective PCA [Kargupta et al. 2001]
to higher-order datasets.

3. ALGORITHMS
Algorithms for fitting multiway models are, in general, it-
erative algorithms and based on Alternating Least Squares
(ALS). We briefly discuss the algorithms used for fitting
the structural models studied in the previous section. Fur-
thermore, we include robust algorithms developed to handle
outliers and noise problems in multiway data analysis.

3.1 Alternating Least Squares
In ALS, component matrices are usually estimated one at
a time keeping the estimates for other component matrices
fixed. Estimation of component matrices is repeated until
a convergence criterion, e.g. no change in model fit, is sat-
isfied. Apart from its simplicity, ALS is a frequently used
algorithm since it can be combined with constraints, gener-
alized to higher-order arrays and modified to handle objec-
tive functions in the form of weighted least squares. Here we
briefly describe a Tucker3-ALS algorithm with orthogonality
constraints on the component matrices and a PARAFAC-
ALS algorithm on a three-way array X ∈ RI×J×K .

1. Tucker3-ALS: A Tucker3 model on X can be expressed
as X(1) = AG(1)(C⊗B)T +E(1), where X(1) and E(1)

are unfolded tensors in the first mode of size I × JK,
G(1) is the core array matricized in the first mode,
A, B and C are the component matrices as given in
Figure 6. The symbol ⊗ denotes Kronecker product.
Kronecker product of matrices is defined as follows.
Let M ∈ RI×J and N ∈ RK×L. Kronecker product
denoted by M⊗N is then given by:



Figure 7: Tucker3-ALS algorithm with orthogonality constraints on the component matrices. ALS algorithm for computing
a (P, Q, R)-component Tucker3 model on a three-way array X ∈ RI×J×K . Commonly used convergence criterion is epsilon
difference between the values of relative change in fit computed in consecutive iterations.

M ⊗N =

2664 m11N m12N ... m1JN
m21N m22N ... m2JN

... ... ... ...
mI1N mI2N ... mIJN

3775 (7)

The objective function in a Tucker3 model is to mini-
mize the error given as follows:

minA,B,C,G

��|X(1) −AG(1)(C⊗B)T
�� |2

Tucker3-ALS algorithm with orthogonality constraints
on the component matrices is given in Figure 7.

2. PARAFAC-ALS: Similarly, a PARAFAC model given
in Equations 1, 2 and 3 can alternatively be expressed
in matrix notation as X(1) = A(C¯B)T +E(1), where
¯ denotes Khatri-Rao product. Khatri-Rao product
is defined as follows. Let M ∈ RI×K and N ∈ RJ×K

and mi and ni represent the ith column of M and
N, respectively for i = 1, 2, ...K. Then Khatri-Rao
product denoted by M ¯ N is given as M ¯ N =
[m1 ⊗ n1 m2 ⊗ n2 ... mK ⊗ nK ], which can be defined,
in other words, as columnwise kronecker product. The
objective function that minimizes the residuals is then
given by:

minA,B,C

��|X(1) −A(C¯B)T
�� |2

Figure 8 shows an algorithm satisfying the objective
function based on ALS.

In addition to ALS, there exist alternative algorithms for
PARAFAC. These algorithms can be studied under three
categories as specified in [Tomasi and Bro 2006]: alternating
algorithms, closed form solutions and gradient-based meth-
ods. Representatives of alternating algorithms, i.e. Alter-
nating Slice-wise Diagonalization (ASD) [Jiang et al. 2000],
Self Weighted Alternating Trilinear Diagonalization (SWA-
TLD) [Chen et al. 2000], have recently been studied and
compared in depth in [Faber et al. 2003; Tomasi and Bro
2006]. These algorithms particularly aim to improve PA-
RAFAC -ALS in terms of convergence rate and robustness
to overfactoring, i.e. more factors than the model rank of
an array are extracted. However, their objective functions
are not based on least squares and are, in fact, not well-
defined. The second category contains Generalized Rank
Annihilation Method (GRAM) and Direct Trilinear Decom-
position (DTLD), which find the solution of a PARAFAC
model by solving a generalized eigenvalue problem. GRAM
handles the cases where a three-way dataset has only two
slices in one mode and DTLD is the generalization of GRAM
to cases where more than two matrices/slices are explored.



Figure 8: PARAFAC-ALS algorithm. ALS algorithm for computing an R-component PARAFAC model on a three-way array
X ∈ RI×J×K . Similar to Tucker3-ALS, the algorithm converges when the relative change in fit does not change much from
one iteration to another.

Finally, the last category contains the algorithms based on
Gauss-Newton approach. PMF3, the algorithmic method
also employed in ME, is based on a modification of a Gauss-
Newton method. For further information and comparison of
these algorithms, the reader is referred to [Faber et al. 2003;
Tomasi and Bro 2006].

Algorithms employed in multiway models other than PA-
RAFAC also rely on the algorithms discussed in the previ-
ous paragraph. Both indirect [Harshman 1972] and direct
fitting [Kiers et al. 1999] approaches proposed for PARA-
FAC2 are based on ALS. Similarly, an ALS-based approach
improved by weighting schemes is used in Shifted Factor
models. Besides, most popular algorithms used in fitting a
Tucker model are Tucker3-ALS given above and closed form
solutions based on SVD.

3.2 Robust Algorithms
In addition to the algorithms mentioned so far, there are also
algorithms that particularly focus on robustness to outliers
and different types of noise/measurement errors. In the area
of outlier detection, robust algorithms for both Tucker3 (Ro-
bust Tucker3) [Pravdova et al. 2001] and PARAFAC (Ro-
bust PARAFAC) [Engelen and Hubert 2005] have been de-
veloped. The motivation in these robust algorithms is to im-
prove ALS method, which can dramatically suffer from out-
liers. In these algorithms, PARAFAC and Tucker3 are com-
bined with methods that can automatically handle outlier
detection. Robust PARAFAC combines Robust PCA with a
PARAFAC model while Robust Tucker3 applies multivariate
trimming or minimum covariance determinant methods to
remove outliers before applying a Tucker model. When we
consider the types of noise or measurement errors, in general
noise is either omitted in the studies or simply assumed to
be additive noise. Besides, noise is often assumed to be iden-
tically and independently distributed Gaussian. However, if
this assumption does not hold and measurement errors fol-

low a Laplacian or Cauchy distribution instead, ALS does
not perform as well as some recently proposed algorithms
[Vorobyov et al. 2005], which rely on an objective function,
that is least absolute error based on L1-norm rather than
least squares. It has been demonstrated in the context of
multiuser separation detection for a direct-sequence code-
division multiple access that when measurement errors do
not come from a Gaussian distribution, ALS fails to capture
the underlying structure as well as the recently developed
algorithms [Vorobyov et al. 2005]. Even if algorithms are
improved for different distributions, the assumption of noise
being identically and independently distributed remains as
a challenge. With a goal of handling the cases where noise
is not identically distributed, a weighted least squares ap-
proach has been proposed by [Kiers 1997]. This approach
has later been generalized to model data, which might have
correlated measurement errors, in [Bro et al. 2002] by an
algorithm called Maximum likelihood via Iterative Least
Squares (MILES). Similarly, in another study, a general-
ization of maximum likelihood PCA, called maximum like-
lihood PARAFAC (MLPARAFAC), has been proposed in
order to fit a PARAFAC model to multiway arrays contain-
ing correlated noise structure in general or in a specific mode
[Vega-Montoto and Wentzell 2003]. While MILES has been
developed as a general algorithm to fit any model with a
least squares solution, MLPARAFAC has been particularly
developed to fit a PARAFAC model.

Even though it is often not mentioned separately as a part of
many of the algorithms, preprocessing is also a crucial step
in data analysis. Similar to preprocessing in two-way data
analysis, centering and scaling both generalize to multiway
arrays [Bro and Smilde 2003]. Centering across one mode of
a three-way dataset is performed by simply matricizing the
data in the desired mode and applying two-way centering.
Scaling, on the other hand, requires scaling each slice of
the array corresponding to each variable rather than scaling



columns as in two-way analysis.

4. APPLICATIONS
As already mentioned, multiway models are employed in nu-
merous disciplines addressing the problem of finding hidden
multilinear structure in multiway datasets. There are many
applications in various fields and this survey offers some rep-
resentative examples from different research areas.

4.1 Chemistry
We start with one of the most popular application of a PA-
RAFAC model: modeling fluorescence excitation-emission
data, which is a commonly used data type in chemistry,
medicine and food science. Such data typically consist of
samples containing different concentrations of several chemi-
cal compounds. The goal of PARAFAC analysis on this data
type is to determine the compounds found in each sample
as well as the relative concentrations of compounds. Flu-
orescence spectroscopy enables the generation of three-way
datasets with modes: samples × emission × excitation.
Among many other applications of PARAFAC, modeling of
fluorescence spectroscopy is the one, which demonstrates the
modeling power and interpretation of factors of a PARA-
FAC model best. An example of a PARAFAC model on
a fluorescence spectroscopic dataset is given as an in-depth
study on a Fish dataset and data with known fluorophores
in [Andersen and Bro 2003]. This study is an important re-
source demonstrating the underlying idea of the structural
model of PARAFAC, its benefits and limitations. Limita-
tions of a PARAFAC model have also been addressed in
another study modeling chromatographic data [Bro et al.
1999]. Even though initial challenge of uniquely identify-
ing the components in chromatographic data can be solved
by a PARAFAC model, PARAFAC falls short in extracting
the components when elution profiles of the components fol-
low a shifting pattern throughout the experiments. On the
other hand, PARAFAC2 succeeds in modeling the shifting
factors and recovering the underlying components in chro-
matographic data with retention time shifts. In addition
to these studies, a recent review on multiway analysis in
chemistry lists a broader range of applications on chemical
datasets [Bro 2006].

4.2 Neuroscience
In neuroscience, multiway models have been initially used
in studying the effect of a new drug on brain activity [Esti-
enne et al. 2001]. In this study, EEG data and data col-
lected through experiments with different doses of a drug
over several patients under certain conditions are arranged
as a six-way array with modes: EEG, patients, doses, condi-
tions, etc. Results demonstrate that significant information
is successfully extracted from a complex drug dataset by a
Tucker3 model rather than two-way models such as PCA.
Multiway models have become even more popular in neuro-
science with the idea of decomposing EEG data into space-
time-frequency components [Miwakeichi et al. 2004]. PCA
and Independent Component Analysis (ICA) have been fre-
quently used in analyzing EEG datasets that are in the form
of time samples × electrodes or frequency × electrodes.
However, these techniques have not taken into account the
frequency content of the signals in specific time periods
across different electrodes. In [Miwakeichi et al. 2004], wavelet
transformation is applied on the signals recorded at each

electrode. Then wavelet-transformed data are arranged as a
three-way array with modes time samples × frequency ×
electrodes and analyzed using a PARAFAC model. Factors
in the first, second and third component matrices represent
the temporal, spectral and spatial signatures of the EEG
data, respectively. PARAFAC models with nonnegativity
constraints have later been used in another study on event-
related potentials (ERP) to find the underlying structure
of brain dynamics [Mørup et al. 2006]. These studies have
also motivated the application of multiway models in under-
standing the structure of epileptic seizures, localizing focus
origins [Acar et al. 2006] and removing artifacts using multi-
linear subspace analysis [Acar et al. 2007]. Most recently, a
toolbox called ERPWAVELAB [Mørup et al. 2006] running
under MATLAB [MathWorks ] has been released for multi-
channel time-frequency analysis of brain activity using EEG
and MEG data. This toolbox enables the use of multiway
models in the analysis of brain dynamics.

4.3 Social Network Analysis/Web-mining
Multiway data analysis has also often been employed in ex-
tracting relationships in social networks. The aim of social
networks analysis is to study and discover hidden structures
in social networks, for instance, extracting communication
patterns among people or within organizations. In [Acar
et al. 2005], chatroom communications data have been ar-
ranged as a three-way array with modes: users × keywords
× time samples and the performance of multiway models in
capturing the underlying user group structure has been com-
pared with that of two-way models. Another recent study
[Acar et al. 2006] assesses the performance of collective and
centralized tensor analysis approaches again in the context
of chatroom communications. Not only chatroom but also
email communications have been analyzed using multiway
models [Bader et al. 2006]. In the context of web link anal-
ysis, [Kolda et al. 2005] and [Kolda and Bader 2006] com-
bine hyperlink and anchor text information and rearrange
web graph data as a sparse three-way tensor with modes:
webpages × webpages × anchor text. Web graph is then
analyzed using an algorithm improved to fit a PARAFAC
model to large and sparse datasets efficiently in order to
capture the groupings of webpages and identify the main
topics. Finally, with a goal of improving personalized web
searches, click-through data have been analyzed using an al-
gorithm called CubeSVD [Sun et al. 2005], which is indeed
the same as HOSVD. Click-through data are arranged as a
three-way array with modes: users × queries × webpages
and CubeSVD is compared with two-way methods such as
Latent Semantic Indexing (LSI) and shown to outperform
the two-way approaches.

4.4 Computer Vision
Approximations of tensors have proved to be useful in com-
puter vision applications such as image compression and face
recognition. In computer vision and graphics, data often
have multiway nature, e.g a color image is a three-way array
with x and y-coordinates being two of the modes and color
being the third mode. Previously-developed image coding
techniques consider images as vectors or matrices by reshap-
ing the data as a vector or a matrix. For instance, x and
y-coordinates are vectorized and a color image is often rep-
resented as a two-way array with modes: color and spa-
tial information. On the other hand, recently it has been



shown that when images are represented as tensors and it-
eratively obtained rank-one approximations of tensors are
used to compress these images [Wang and Ahuja 2004], the
error between the original and reconstructed images is less
than the error obtained when PCA is used for compression.
Another application of multiway models in computer vision
is face recognition, where a set of face images are arranged as
a tensor, that represents images using not only pixel infor-
mation but also illuminations, expressions, viewpoints and
person identities. HOSVD is then used to decompose this
tensor and basis vectors called TensorFaces [Vasilescu and
Terzopoulos 2002] are determined. Component matrices ex-
tracted from each mode is used to construct person-specific,
viewpoint-specific, etc. TensorFaces, which improve the un-
derstanding of the underlying factors in an image dataset.
Apart from these applications, tensors have also been em-
ployed in several other fields, e.g. textured surface render-
ing, identifying human-motion signatures, in computer vi-
sion community.

4.5 Process Analysis
Last research area we will mention in this survey is process
monitoring. Real-time batch process monitoring is a chal-
lenging task since the whole data are needed for the analysis
in general and that would require waiting till the completion
of a batch. However, in-filling of missing future data and
modeling using a PARAFAC model have shown to overcome
this challenge [Meng et al. 2003] and PARAFAC has been
demonstrated to be an applicable approach in controlling
batch processes arranged as a three-way array with modes:
batches × variables × time samples. Similarly, STATIS
has been applied in monitoring batch processes on datasets
that come from various areas such as pharmacology, spec-
troscopy and yeast bakery production. These datasets are
arranged as three-way arrays but they have different num-
ber of dimensions in the time mode [Gourvnec et al. 2005] so
STATIS can handle this problem easily. On these datasets,
STATIS approach has been compared with unfolded PCA
on variables mode, which forms a matrix of variables ×
batches - time samples. It has been observed that detect-
ing bad batches is much easier with STATIS than it is with
unfolded PCA. Therefore, this study is a good example for
the cases when unfolded PCA will suffer from loss of in-
formation while three-way analysis techniques will perform
better.

5. SOFTWARE
As multiway analysis is spreading from chemometrics and
psychometrics to other fields, software tools have also been
developed and improved. Currently available softwares for
multiway data analysis are the Nway Toolbox [Andersson
and Bro 2000], Tensor Toolbox [Bader and Kolda 2006a;
Bader and Kolda 2007], PLS Toolbox [Eigenvector 2006]
and CuBatch [Gourvnec et al. 2005], which all run under
MATLAB. The Nway toolbox is the original toolbox, which
has combined multiway analysis techniques such as PARA-
FAC, Tucker models in a software package and enabled the
application of these models in different fields. The Ten-
sor Toolbox has been initially introduced as a TensorClass,
which handles mathematical operations on multiway arrays
such as tensor-matrix multiplications, matricization of ten-
sors and many other algebraic operations. It has later been
improved to manipulate efficiently not only multiway arrays

but also sparse tensors, where only small fraction of the el-
ements are nonzero. CuBatch is another software package
recently introduced as a multiway analysis toolbox with a
user-friendly interface. It has been originally built for ana-
lyzing batch process data but it is also applicable on multi-
way datasets in general. Available models for unsupervised
learning in this toolbox are PCA, PARAFAC, PARAFAC2,
and Tucker models. Preprocessing techniques such as cen-
tering and scaling and different techniques for identifying
outliers are also included in this toolbox. CuBatch contains
Nway Toolbox functions and it is a more developed ver-
sion of the initial toolbox. Apart from these freely available
toolboxes, there also exists a commercial toolbox called PLS
Toolbox, which enables the analysis of multiway arrays with
numerous multiway models providing visual analysis tools.
An efficient approach for analyzing multiway arrays would
be to combine the Tensor Toolbox with one of the other
toolboxes to have modeling, algorithmic and visualization
power as a readily-available package.

In addition to software running under MATLAB, there is
another software package called Multilinear Engine [Paatero
1999] implemented using FORTRAN. Structural models and
algorithms used in Multilinear Engine have already been
discussed in Section 2 and 3. There are also other software
packages for manipulating multiway arrays but they do not
particularly focus on multiway data analysis or multiway
models. For more information on these software packages,
interested users are referred to [Bader and Kolda 2006b] and
references therein.

6. SUMMARY
Multiway data analysis has recently attracted attention in
many fields. That is mostly due to the nature of the datasets,
which cannot be truly captured by ordinary two-way anal-
ysis techniques. As datasets started to be rearranged as
multiway arrays rather than matrices, multilinear models
originated in late sixties and seventies have become pop-
ular. These models have been followed by extended ver-
sions of original models and techniques, e.g. Shifted factor
models (S-PARAFAC, S-T3), PARALIND, in an effort to
capture data-specific structures in multiway datasets. The-
oretical aspects of these models such as model uniqueness
and rank properties of multiway arrays have been studied
more in depth. New algorithms, e.g. ASD, SWATLD, as
alternatives to ALS have been developed. Multilinear al-
gebra, a less-known field compared to linear algebra, has
been explored to perform operations between multiway ar-
rays and develop computationally efficient algorithms. En-
hanced software tools, e.g. Nway Toolbox, CuBatch, en-
abling multiway data analysis and mathematical operations
on multiway arrays, e.g. Tensor Toolbox, have been imple-
mented.

This study mainly focuses on structural multiway models
and briefly describes the algorithms employed in fitting these
models to multiway datasets. We also give representative
applications of multiway analysis from a variety of disci-
plines to illustrate the diversity of the fields making use of
multiway data analysis. However, we have not mentioned
some important aspects of multiway analysis in order to
have a compact and rather self-contained survey. There
are concepts such as uniqueness properties of models and
uniqueness conditions for models, e.g. well-known Kruskal’s



condition for PARAFAC [Kruskal 1989], understanding ro-
tations in factor models and using those rotations to simplify
the interpretation of a model and handling missing data.
Furthermore, most of the structural models given in Section
2 can be employed for both unsupervised and supervised
learning. In addition to those, there are also multiway mod-
els especially developed for supervised learning, e.g. Multi-
linear Partial Least Squares [Bro 1996]. We refer interested
users to [Bro 1998] and to the most recent book in multiway
data analysis [Smilde et al. 2004].

7. DISCUSSIONS
Recent studies show that multiway models have many ap-
plication areas in computer science such as social network
analysis, web link analysis and a variety of other problems
in data mining as well as computer vision. Besides, recent
theoretical studies focusing on multiway models improve the
understanding of the models originally developed in chem-
istry and psychometrics and make them more popular in
handling computer science problems.

Even though current algorithms and models are applicable
on numerous datasets, there are still further progress needed
in several fields. First area we want to emphasize is the
summarization and analysis of data streams. Techniques
discussed so far are based on offline and centralized dimen-
sionality reduction models. On the other hand, there is also
a demand for online methods to analyze data streams effi-
ciently, especially in communication networks. For instance,
a recent study introduces online algorithms for tensor anal-
ysis using an approach called dynamic tensor analysis [Sun
et al. 2006]. Similarly, developing distributed versions of
these methods would enable efficient analysis of massive
datasets.

In addition to these, concepts of multilinearity and non-
linearity should be studied further so that limitations of
multilinear models on capturing the structures in multiway
datasets are better understood. Factors extracted by com-
mon multilinear models, i.e. PARAFAC-family and Tucker-
family, are linear combinations of variables in each mode.
On the other hand, these models will fail to discover nonlin-
ear relationships between variables. Nonlinearity has been
a recent topic of interest in data mining community espe-
cially since kernel methods became popular [Shawe-Taylor
and Cristianini 2004]. Most two-way analysis techniques,
e.g. PCA, Canonical Correlation Analysis (CCA), are com-
bined with kernels in order to capture the underlying non-
linear structure among variables. Similar to a recent study
in computer vision community, which has combined HOSVD
with kernel methods for face recognition to capture the non-
linear relationship between image features [Y. Li and Lin
2005], embedding kernels into multiway models should be
explored more, especially from a theoretical perspective.

Finally, performance of multiway data analysis in terms of
space and computational complexity should be analyzed fur-
ther. Most studies applying multiway data analysis demon-
strate how multiway methods improve the interpretation
and accuracy of the underlying structure captured when
multiway models are used instead of two-way methods. How-
ever, computational and space complexity of multiway mod-
els and algorithms have not often been discussed in litera-
ture except for few studies including [Andersson and Bro
1998a; Andersson and Bro 1998b], where the speed of al-

gorithms for a Tucker3 model is compared and Tucker3 is
suggested as a compression method for speeding up mul-
tiway analysis, [Zhang and Golub 2001], which compares
different algorithms for computing rank-1 approximation of
a tensor, and [Bader and Kolda 2006b], which discusses effi-
cient tensor storage schemes. Recently, for efficient anal-
ysis of massive multiway datasets, e.g. recommendation
systems, hyperspectral image datasets, Tensor-CUR decom-
position has been proposed [Mahoney et al. 2006]. Unlike
multiway models discussed in this survey, Tensor-CUR does
not employ an approach based on factor models. Instead,
this algorithm relies on sampling subtensors, which consist
of the original data elements, based on a given probability
distribution and approximating the data using the sampled
subtensors. While sampling reduces the complexity of the
problem, how well it captures the multilinear structure in
datasets in general is another open problem.
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